425 lines
25 KiB
C++
425 lines
25 KiB
C++
/*
|
|
Speeduino - Simple engine management for the Arduino Mega 2560 platform
|
|
Copyright (C) Josh Stewart
|
|
A full copy of the license may be found in the projects root directory
|
|
*/
|
|
|
|
#include "scheduler.h"
|
|
#include "globals.h"
|
|
|
|
void initialiseSchedulers()
|
|
{
|
|
nullSchedule.Status = OFF;
|
|
|
|
// Much help in this from http://arduinomega.blogspot.com.au/2011/05/timer2-and-overflow-interrupt-lets-get.html
|
|
//Fuel Schedules, which uses timer 3
|
|
TCCR3B = 0x00; //Disable Timer3 while we set it up
|
|
TCNT3 = 0; //Reset Timer Count
|
|
TIFR3 = 0x00; //Timer3 INT Flag Reg: Clear Timer Overflow Flag
|
|
TCCR3A = 0x00; //Timer3 Control Reg A: Wave Gen Mode normal
|
|
TCCR3B = (1 << CS12); //Timer3 Control Reg B: Timer Prescaler set to 256. Refer to http://www.instructables.com/files/orig/F3T/TIKL/H3WSA4V7/F3TTIKLH3WSA4V7.jpg
|
|
//TCCR3B = 0x03; //Timer3 Control Reg B: Timer Prescaler set to 64. Refer to http://www.instructables.com/files/orig/F3T/TIKL/H3WSA4V7/F3TTIKLH3WSA4V7.jpg
|
|
fuelSchedule1.Status = OFF;
|
|
fuelSchedule2.Status = OFF;
|
|
fuelSchedule3.Status = OFF;
|
|
|
|
fuelSchedule1.schedulesSet = 0;
|
|
fuelSchedule2.schedulesSet = 0;
|
|
fuelSchedule3.schedulesSet = 0;
|
|
|
|
//Ignition Schedules, which uses timer 5
|
|
TCCR5B = 0x00; //Disable Timer3 while we set it up
|
|
TCNT5 = 0; //Reset Timer Count
|
|
TIFR5 = 0x00; //Timer5 INT Flag Reg: Clear Timer Overflow Flag
|
|
TCCR5A = 0x00; //Timer5 Control Reg A: Wave Gen Mode normal
|
|
//TCCR5B = (1 << CS12); //Timer5 Control Reg B: Timer Prescaler set to 256. Refer to http://www.instructables.com/files/orig/F3T/TIKL/H3WSA4V7/F3TTIKLH3WSA4V7.jpg
|
|
TCCR5B = 0x03; //aka Divisor = 64 = 490.1Hz
|
|
ignitionSchedule1.Status = OFF;
|
|
ignitionSchedule2.Status = OFF;
|
|
ignitionSchedule3.Status = OFF;
|
|
|
|
ignitionSchedule1.schedulesSet = 0;
|
|
ignitionSchedule2.schedulesSet = 0;
|
|
ignitionSchedule3.schedulesSet = 0;
|
|
|
|
//The remaining Schedules (Schedules 4 for fuel and ignition) use Timer4
|
|
TCCR4B = 0x00; //Disable Timer4 while we set it up
|
|
TCNT4 = 0; //Reset Timer Count
|
|
TIFR4 = 0x00; //Timer4 INT Flag Reg: Clear Timer Overflow Flag
|
|
TCCR4A = 0x00; //Timer4 Control Reg A: Wave Gen Mode normal
|
|
TCCR4B = (1 << CS12); //Timer4 Control Reg B: aka Divisor = 256 = 122.5HzTimer Prescaler set to 256. Refer to http://www.instructables.com/files/orig/F3T/TIKL/H3WSA4V7/F3TTIKLH3WSA4V7.jpg
|
|
ignitionSchedule4.Status = OFF;
|
|
fuelSchedule4.Status = OFF;
|
|
|
|
ignitionSchedule4.schedulesSet = 0;
|
|
fuelSchedule4.schedulesSet = 0;
|
|
//Note that timer4 compare channel C is used by the idle control
|
|
}
|
|
|
|
/*
|
|
These 8 function turn a schedule on, provides the time to start and the duration and gives it callback functions.
|
|
All 8 functions operate the same, just on different schedules
|
|
Args:
|
|
startCallback: The function to be called once the timeout is reached
|
|
timeout: The number of uS in the future that the startCallback should be triggered
|
|
duration: The number of uS after startCallback is called before endCallback is called
|
|
endCallback: This function is called once the duration time has been reached
|
|
*/
|
|
volatile bool flip = 0;
|
|
void setFuelSchedule1(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)())
|
|
{
|
|
if(fuelSchedule1.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
fuelSchedule1.StartCallback = startCallback; //Name the start callback function
|
|
fuelSchedule1.EndCallback = endCallback; //Name the end callback function
|
|
fuelSchedule1.duration = duration;
|
|
|
|
/*
|
|
* The following must be enclosed in the noIntterupts block to avoid contention caused if the relevant interrupts fires before the state is fully set
|
|
* We need to calculate the value to reset the timer to (preload) in order to achieve the desired overflow time
|
|
* As the timer is ticking every 16uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
* unsigned int absoluteTimeout = TCNT3 + (timeout / 16); //Each tick occurs every 16uS with the 256 prescaler, so divide the timeout by 16 to get ther required number of ticks. Add this to the current tick count to get the target time. This will automatically overflow as required
|
|
*/
|
|
noInterrupts();
|
|
fuelSchedule1.startCompare = TCNT3 + (timeout >> 4); //As above, but with bit shift instead of / 16
|
|
fuelSchedule1.endCompare = fuelSchedule1.startCompare + (duration >> 4);
|
|
fuelSchedule1.Status = PENDING; //Turn this schedule on
|
|
fuelSchedule1.schedulesSet++; //Increment the number of times this schedule has been set
|
|
if(channel5InjEnabled) { OCR3A = setQueue(timer3Aqueue, &fuelSchedule1, &fuelSchedule5, TCNT3); } //Schedule 1 shares a timer with schedule 5
|
|
else { timer3Aqueue[0] = &fuelSchedule1; timer3Aqueue[1] = &fuelSchedule1; timer3Aqueue[2] = &fuelSchedule1; timer3Aqueue[3] = &fuelSchedule1; OCR3A = fuelSchedule1.startCompare; }
|
|
interrupts();
|
|
TIMSK3 |= (1 << OCIE3A); //Turn on the A compare unit (ie turn on the interrupt)
|
|
}
|
|
void setFuelSchedule2(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)())
|
|
{
|
|
if(fuelSchedule2.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
fuelSchedule2.StartCallback = startCallback; //Name the start callback function
|
|
fuelSchedule2.EndCallback = endCallback; //Name the end callback function
|
|
fuelSchedule2.duration = duration;
|
|
|
|
/*
|
|
* The following must be enclosed in the noIntterupts block to avoid contention caused if the relevant interrupts fires before the state is fully set
|
|
* We need to calculate the value to reset the timer to (preload) in order to achieve the desired overflow time
|
|
* As the timer is ticking every 16uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
* unsigned int absoluteTimeout = TCNT3 + (timeout / 16); //Each tick occurs every 16uS with the 256 prescaler, so divide the timeout by 16 to get ther required number of ticks. Add this to the current tick count to get the target time. This will automatically overflow as required
|
|
*/
|
|
noInterrupts();
|
|
fuelSchedule2.startCompare = TCNT3 + (timeout >> 4); //As above, but with bit shift instead of / 16
|
|
fuelSchedule2.endCompare = fuelSchedule2.startCompare + (duration >> 4);
|
|
OCR3B = fuelSchedule2.startCompare; //Use the B copmare unit of timer 3
|
|
fuelSchedule2.Status = PENDING; //Turn this schedule on
|
|
fuelSchedule2.schedulesSet++; //Increment the number of times this schedule has been set
|
|
interrupts();
|
|
TIMSK3 |= (1 << OCIE3B); //Turn on the B compare unit (ie turn on the interrupt)
|
|
}
|
|
void setFuelSchedule3(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)())
|
|
{
|
|
if(fuelSchedule3.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
//We need to calculate the value to reset the timer to (preload) in order to achieve the desired overflow time
|
|
//As the timer is ticking every 16uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
//unsigned int absoluteTimeout = TCNT3 + (timeout / 16); //Each tick occurs every 16uS with the 256 prescaler, so divide the timeout by 16 to get ther required number of ticks. Add this to the current tick count to get the target time. This will automatically overflow as require
|
|
fuelSchedule3.startCompare = TCNT3 + (timeout >> 4); //As above, but with bit shift instead of / 16
|
|
fuelSchedule3.endCompare = fuelSchedule3.startCompare + (duration >> 4);
|
|
OCR3C = fuelSchedule3.startCompare; //Use the C copmare unit of timer 3
|
|
fuelSchedule3.duration = duration;
|
|
fuelSchedule3.StartCallback = startCallback; //Name the start callback function
|
|
fuelSchedule3.EndCallback = endCallback; //Name the end callback function
|
|
fuelSchedule3.Status = PENDING; //Turn this schedule on
|
|
fuelSchedule3.schedulesSet++; //Increment the number of times this schedule has been set
|
|
TIMSK3 |= (1 << OCIE3C); //Turn on the C compare unit (ie turn on the interrupt)
|
|
}
|
|
void setFuelSchedule4(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)()) //Uses timer 4 compare B
|
|
{
|
|
if(fuelSchedule4.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
//We need to calculate the value to reset the timer to (preload) in order to achieve the desired overflow time
|
|
//As the timer is ticking every 16uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
//unsigned int absoluteTimeout = TCNT4 + (timeout / 4); //Each tick occurs every 4uS with the 128 prescaler, so divide the timeout by 4 to get ther required number of ticks. Add this to the current tick count to get the target time. This will automatically overflow as required
|
|
fuelSchedule4.startCompare = TCNT4 + (timeout >> 4);
|
|
fuelSchedule4.endCompare = fuelSchedule4.startCompare + (duration >> 4);
|
|
OCR4B = fuelSchedule4.startCompare; //Use the C copmare unit of timer 3
|
|
fuelSchedule4.duration = duration;
|
|
fuelSchedule4.StartCallback = startCallback; //Name the start callback function
|
|
fuelSchedule4.EndCallback = endCallback; //Name the end callback function
|
|
fuelSchedule4.Status = PENDING; //Turn this schedule on
|
|
fuelSchedule4.schedulesSet++; //Increment the number of times this schedule has been set
|
|
TIMSK4 |= (1 << OCIE4B); //Turn on the B compare unit (ie turn on the interrupt)
|
|
}
|
|
void setFuelSchedule5(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)())
|
|
{
|
|
if(fuelSchedule5.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
//We need to calculate the value to reset the timer to (preload) in order to achieve the desired overflow time
|
|
//As the timer is ticking every 16uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
//unsigned int absoluteTimeout = TCNT3 + (timeout / 16); //Each tick occurs every 16uS with the 256 prescaler, so divide the timeout by 16 to get ther required number of ticks. Add this to the current tick count to get the target time. This will automatically overflow as required
|
|
fuelSchedule5.StartCallback = startCallback; //Name the start callback function
|
|
fuelSchedule5.EndCallback = endCallback; //Name the end callback function
|
|
fuelSchedule5.duration = duration;
|
|
|
|
/*
|
|
* The following must be enclosed in the noIntterupts block to avoid contention caused if the relevant interrupts fires before the state is fully set
|
|
*/
|
|
noInterrupts();
|
|
fuelSchedule5.startCompare = TCNT3 + (timeout >> 4); //As above, but with bit shift instead of / 16
|
|
fuelSchedule5.endCompare = fuelSchedule5.startCompare + (duration >> 4);
|
|
fuelSchedule5.Status = PENDING; //Turn this schedule on
|
|
fuelSchedule5.schedulesSet++; //Increment the number of times this schedule has been set
|
|
OCR3A = setQueue(timer3Aqueue, &fuelSchedule1, &fuelSchedule5, TCNT3); //Schedule 1 shares a timer with schedule 5
|
|
interrupts();
|
|
TIMSK3 |= (1 << OCIE3A); //Turn on the A compare unit (ie turn on the interrupt)
|
|
}
|
|
//Ignition schedulers use Timer 5
|
|
void setIgnitionSchedule1(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)())
|
|
{
|
|
if(ignitionSchedule1.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
//As the timer is ticking every 4uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
if (timeout > 262140) { timeout = 262100; } // If the timeout is >4x (Each tick represents 4uS) the maximum allowed value of unsigned int (65535), the timer compare value will overflow when appliedcausing erratic behaviour such as erroneous sparking.
|
|
OCR5A = TCNT5 + (timeout >> 2); //As there is a tick every 4uS, there are timeout/4 ticks until the interrupt should be triggered ( >>2 divides by 4)
|
|
|
|
ignitionSchedule1.duration = duration;
|
|
ignitionSchedule1.StartCallback = startCallback; //Name the start callback function
|
|
ignitionSchedule1.EndCallback = endCallback; //Name the start callback function
|
|
ignitionSchedule1.Status = PENDING; //Turn this schedule on
|
|
TIMSK5 |= (1 << OCIE5A); //Turn on the A compare unit (ie turn on the interrupt)
|
|
}
|
|
void setIgnitionSchedule2(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)())
|
|
{
|
|
if(ignitionSchedule2.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
//As the timer is ticking every 4uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
if (timeout > 262140) { timeout = 262100; } // If the timeout is >4x (Each tick represents 4uS) the maximum allowed value of unsigned int (65535), the timer compare value will overflow when applied causing erratic behaviour such as erroneous sparking. This must be set slightly lower than the max of 262140 to avoid strangeness
|
|
OCR5B = TCNT5 + (timeout >> 2); //As there is a tick every 4uS, there are timeout/4 ticks until the interrupt should be triggered ( >>2 divides by 4)
|
|
|
|
ignitionSchedule2.duration = duration;
|
|
ignitionSchedule2.StartCallback = startCallback; //Name the start callback function
|
|
ignitionSchedule2.EndCallback = endCallback; //Name the start callback function
|
|
ignitionSchedule2.Status = PENDING; //Turn this schedule on
|
|
TIMSK5 |= (1 << OCIE5B); //Turn on the B compare unit (ie turn on the interrupt)
|
|
}
|
|
void setIgnitionSchedule3(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)())
|
|
{
|
|
if(ignitionSchedule3.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
//The timer is ticking every 4uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
if (timeout > 262140) { timeout = 262100; } // If the timeout is >4x (Each tick represents 4uS) the maximum allowed value of unsigned int (65535), the timer compare value will overflow when applied causing erratic behaviour such as erroneous sparking. This must be set slightly lower than the max of 262140 to avoid strangeness
|
|
OCR5C = TCNT5 + (timeout >> 2); //As there is a tick every 4uS, there are timeout/4 ticks until the interrupt should be triggered ( >>2 divides by 4)
|
|
|
|
ignitionSchedule3.duration = duration;
|
|
ignitionSchedule3.StartCallback = startCallback; //Name the start callback function
|
|
ignitionSchedule3.EndCallback = endCallback; //Name the start callback function
|
|
ignitionSchedule3.Status = PENDING; //Turn this schedule on
|
|
TIMSK5 |= (1 << OCIE5C); //Turn on the C compare unit (ie turn on the interrupt)
|
|
}
|
|
void setIgnitionSchedule4(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)())
|
|
{
|
|
if(ignitionSchedule4.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
//We need to calculate the value to reset the timer to (preload) in order to achieve the desired overflow time
|
|
//The timer is ticking every 16uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
//Note this is different to the other ignition timers
|
|
unsigned int absoluteTimeout = TCNT4 + (timeout >> 4); //As above, but with bit shift instead of / 16
|
|
|
|
OCR4A = absoluteTimeout;
|
|
ignitionSchedule4.duration = duration;
|
|
ignitionSchedule4.StartCallback = startCallback; //Name the start callback function
|
|
ignitionSchedule4.EndCallback = endCallback; //Name the start callback function
|
|
ignitionSchedule4.Status = PENDING; //Turn this schedule on
|
|
TIMSK4 |= (1 << OCIE4A); //Turn on the A compare unit (ie turn on the interrupt)
|
|
}
|
|
void setIgnitionSchedule5(void (*startCallback)(), unsigned long timeout, unsigned long duration, void(*endCallback)())
|
|
{
|
|
return;
|
|
if(ignitionSchedule1.Status == RUNNING) { return; } //Check that we're not already part way through a schedule
|
|
|
|
//As the timer is ticking every 4uS (Time per Tick = (Prescale)*(1/Frequency))
|
|
if (timeout > 262140) { timeout = 262100; } // If the timeout is >4x (Each tick represents 4uS) the maximum allowed value of unsigned int (65535), the timer compare value will overflow when applied causing erratic behaviour such as erroneous sparking. This must be set slightly lower than the max of 262140 to avoid strangeness
|
|
OCR5A = TCNT5 + (timeout >> 2); //As there is a tick every 4uS, there are timeout/4 ticks until the interrupt should be triggered ( >>2 divides by 4)
|
|
|
|
ignitionSchedule5.duration = duration;
|
|
ignitionSchedule5.StartCallback = startCallback; //Name the start callback function
|
|
ignitionSchedule5.EndCallback = endCallback; //Name the start callback function
|
|
ignitionSchedule5.Status = PENDING; //Turn this schedule on
|
|
TIMSK5 |= (1 << OCIE5A); //Turn on the A compare unit (ie turn on the interrupt)
|
|
}
|
|
|
|
/*******************************************************************************************************************************************************************************************************/
|
|
//This function (All 8 ISR functions that are below) gets called when either the start time or the duration time are reached
|
|
//This calls the relevant callback function (startCallback or endCallback) depending on the status of the schedule.
|
|
//If the startCallback function is called, we put the scheduler into RUNNING state
|
|
//Timer3A (fuel schedule 1) Compare Vector
|
|
ISR(TIMER3_COMPA_vect, ISR_NOBLOCK) //fuelSchedules 1 and 5
|
|
{
|
|
if (timer3Aqueue[0]->Status == OFF) { TIMSK3 &= ~(1 << OCIE3A); return; } //Safety check. Turn off this output compare unit and return without performing any action
|
|
if (timer3Aqueue[0]->Status == PENDING) //Check to see if this schedule is turn on
|
|
{
|
|
timer3Aqueue[0]->StartCallback();
|
|
timer3Aqueue[0]->Status = RUNNING; //Set the status to be in progress (ie The start callback has been called, but not the end callback)
|
|
OCR3A = popQueue(timer3Aqueue);
|
|
}
|
|
else if (timer3Aqueue[0]->Status == RUNNING)
|
|
{
|
|
timer3Aqueue[0]->EndCallback();
|
|
timer3Aqueue[0]->Status = OFF; //Turn off the schedule
|
|
timer3Aqueue[0]->schedulesSet = 0;
|
|
OCR3A = popQueue(timer3Aqueue);
|
|
}
|
|
}
|
|
|
|
ISR(TIMER3_COMPB_vect, ISR_NOBLOCK) //fuelSchedule2
|
|
{
|
|
if (fuelSchedule2.Status == PENDING) //Check to see if this schedule is turn on
|
|
{
|
|
fuelSchedule2.StartCallback();
|
|
fuelSchedule2.Status = RUNNING; //Set the status to be in progress (ie The start callback has been called, but not the end callback)
|
|
OCR3B = fuelSchedule2.endCompare;
|
|
}
|
|
else if (fuelSchedule2.Status == RUNNING)
|
|
{
|
|
fuelSchedule2.EndCallback();
|
|
fuelSchedule2.Status = OFF; //Turn off the schedule
|
|
fuelSchedule2.schedulesSet = 0;
|
|
TIMSK3 &= ~(1 << OCIE3B); //Turn off this output compare unit (This simply writes 0 to the OCIE3A bit of TIMSK3)
|
|
}
|
|
}
|
|
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
|
|
ISR(TIMER3_COMPC_vect, ISR_NOBLOCK) //fuelSchedule3
|
|
#elif defined (CORE_TEENSY) && defined (__MK20DX256__)
|
|
void timer3compareCinterrupt() //Most ARM chips can simply call a function
|
|
#endif
|
|
{
|
|
if (fuelSchedule3.Status == PENDING) //Check to see if this schedule is turn on
|
|
{
|
|
fuelSchedule3.StartCallback();
|
|
fuelSchedule3.Status = RUNNING; //Set the status to be in progress (ie The start callback has been called, but not the end callback)
|
|
OCR3C = fuelSchedule3.endCompare;
|
|
}
|
|
else if (fuelSchedule3.Status == RUNNING)
|
|
{
|
|
fuelSchedule3.EndCallback();
|
|
fuelSchedule3.Status = OFF; //Turn off the schedule
|
|
fuelSchedule3.schedulesSet = 0;
|
|
TIMSK3 &= ~(1 << OCIE3C); //Turn off this output compare unit (This simply writes 0 to the OCIE3A bit of TIMSK3)
|
|
}
|
|
}
|
|
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
|
|
ISR(TIMER4_COMPB_vect, ISR_NOBLOCK) //fuelSchedule4
|
|
#elif defined (CORE_TEENSY) && defined (__MK20DX256__)
|
|
void timer4compareBinterrupt() //Most ARM chips can simply call a function
|
|
#endif
|
|
{
|
|
if (fuelSchedule4.Status == PENDING) //Check to see if this schedule is turn on
|
|
{
|
|
fuelSchedule4.StartCallback();
|
|
fuelSchedule4.Status = RUNNING; //Set the status to be in progress (ie The start callback has been called, but not the end callback)
|
|
OCR4B = fuelSchedule4.endCompare;
|
|
}
|
|
else if (fuelSchedule4.Status == RUNNING)
|
|
{
|
|
fuelSchedule4.EndCallback();
|
|
fuelSchedule4.Status = OFF; //Turn off the schedule
|
|
fuelSchedule4.schedulesSet = 0;
|
|
TIMSK4 &= ~(1 << OCIE4B); //Turn off this output compare unit (This simply writes 0 to the OCIE3A bit of TIMSK3)
|
|
}
|
|
}
|
|
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
|
|
ISR(TIMER5_COMPA_vect, ISR_NOBLOCK) //ignitionSchedule1
|
|
#elif defined (CORE_TEENSY) && defined (__MK20DX256__)
|
|
void timer5compareAinterrupt() //Most ARM chips can simply call a function
|
|
#endif
|
|
{
|
|
if (ignitionSchedule1.Status == PENDING) //Check to see if this schedule is turn on
|
|
{
|
|
//if ( ign1LastRev == startRevolutions ) { return; }
|
|
ignitionSchedule1.Status = RUNNING; //Set the status to be in progress (ie The start callback has been called, but not the end callback)
|
|
ignitionSchedule1.startTime = micros();
|
|
ignitionSchedule1.StartCallback();
|
|
ign1LastRev = startRevolutions;
|
|
OCR5A = TCNT5 + (ignitionSchedule1.duration >> 2); //Divide by 4
|
|
}
|
|
else if (ignitionSchedule1.Status == RUNNING)
|
|
{
|
|
ignitionSchedule1.Status = OFF; //Turn off the schedule
|
|
ignitionSchedule1.EndCallback();
|
|
ignitionCount += 1; //Increment the igintion counter
|
|
TIMSK5 &= ~(1 << OCIE5A); //Turn off this output compare unit
|
|
}
|
|
}
|
|
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
|
|
ISR(TIMER5_COMPB_vect, ISR_NOBLOCK) //ignitionSchedule2
|
|
#elif defined (CORE_TEENSY) && defined (__MK20DX256__)
|
|
void timer5compareBinterrupt() //Most ARM chips can simply call a function
|
|
#endif
|
|
{
|
|
if (ignitionSchedule2.Status == PENDING) //Check to see if this schedule is turn on
|
|
{
|
|
//if ( ign2LastRev == startRevolutions ) { return; }
|
|
ignitionSchedule2.Status = RUNNING; //Set the status to be in progress (ie The start callback has been called, but not the end callback)
|
|
ignitionSchedule2.startTime = micros();
|
|
ignitionSchedule2.StartCallback();
|
|
ign2LastRev = startRevolutions;
|
|
OCR5B = TCNT5 + (ignitionSchedule2.duration >> 2);
|
|
}
|
|
else if (ignitionSchedule2.Status == RUNNING)
|
|
{
|
|
ignitionSchedule2.Status = OFF; //Turn off the schedule
|
|
ignitionSchedule2.EndCallback();
|
|
ignitionCount += 1; //Increment the igintion counter
|
|
TIMSK5 &= ~(1 << OCIE5B); //Turn off this output compare unit (This simply writes 0 to the OCIE3A bit of TIMSK3)
|
|
}
|
|
}
|
|
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
|
|
ISR(TIMER5_COMPC_vect, ISR_NOBLOCK) //ignitionSchedule3
|
|
#elif defined (CORE_TEENSY) && defined (__MK20DX256__)
|
|
void timer5compareCinterrupt() //Most ARM chips can simply call a function
|
|
#endif
|
|
{
|
|
if (ignitionSchedule3.Status == PENDING) //Check to see if this schedule is turn on
|
|
{
|
|
//if ( ign3LastRev == startRevolutions ) { return; }
|
|
ignitionSchedule3.Status = RUNNING; //Set the status to be in progress (ie The start callback has been called, but not the end callback)
|
|
ignitionSchedule3.startTime = micros();
|
|
ignitionSchedule3.StartCallback();
|
|
ign3LastRev = startRevolutions;
|
|
OCR5C = TCNT5 + (ignitionSchedule3.duration >> 2);
|
|
}
|
|
else if (ignitionSchedule3.Status == RUNNING)
|
|
{
|
|
ignitionSchedule3.Status = OFF; //Turn off the schedule
|
|
ignitionSchedule3.EndCallback();
|
|
ignitionCount += 1; //Increment the igintion counter
|
|
TIMSK5 &= ~(1 << OCIE5C); //Turn off this output compare unit (This simply writes 0 to the OCIE3A bit of TIMSK3)
|
|
}
|
|
}
|
|
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
|
|
ISR(TIMER4_COMPA_vect, ISR_NOBLOCK) //ignitionSchedule4
|
|
#elif defined (CORE_TEENSY) && defined (__MK20DX256__)
|
|
void timer4compareAinterrupt() //Most ARM chips can simply call a function
|
|
#endif
|
|
{
|
|
if (ignitionSchedule4.Status == PENDING) //Check to see if this schedule is turn on
|
|
{
|
|
//if ( ign4LastRev == startRevolutions ) { return; }
|
|
ignitionSchedule4.Status = RUNNING; //Set the status to be in progress (ie The start callback has been called, but not the end callback)
|
|
ignitionSchedule4.startTime = micros();
|
|
ignitionSchedule4.StartCallback();
|
|
ign4LastRev = startRevolutions;
|
|
OCR4A = TCNT4 + (ignitionSchedule4.duration >> 4); //Divide by 16
|
|
}
|
|
else if (ignitionSchedule4.Status == RUNNING)
|
|
{
|
|
ignitionSchedule4.Status = OFF; //Turn off the schedule
|
|
ignitionSchedule4.EndCallback();
|
|
ignitionCount += 1; //Increment the igintion counter
|
|
TIMSK4 &= ~(1 << OCIE4A); //Turn off this output compare unit (This simply writes 0 to the OCIE4A bit of TIMSK4)
|
|
}
|
|
}
|