speeduino/table.ino

337 lines
12 KiB
Arduino
Raw Normal View History

2015-05-28 16:49:44 -07:00
/*
Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
*/
/*
Because the size of the table is dynamic, this functino is required to reallocate the array sizes
Note that this may clear some of the existing values of the table
*/
#include "table.h"
#include "globals.h"
void table2D_setSize(struct table2D* targetTable, byte newSize)
{
//2D tables can contain either bytes or ints, depending on the value of the valueSize field
if(targetTable->valueSize == SIZE_BYTE)
{
targetTable->values = (byte *)realloc(targetTable->values, newSize * sizeof(byte));
targetTable->axisX = (byte *)realloc(targetTable->axisX, newSize * sizeof(byte));
targetTable->xSize = newSize;
}
else
{
targetTable->values16 = (int *)realloc(targetTable->values16, newSize * sizeof(int));
targetTable->axisX16 = (int *)realloc(targetTable->axisX16, newSize * sizeof(int));
targetTable->xSize = newSize;
}
}
2015-09-17 22:06:21 -07:00
void table3D_setSize(struct table3D *targetTable, byte newSize)
{
targetTable->values = (byte **)malloc(newSize * sizeof(byte*));
for(byte i = 0; i < newSize; i++) { targetTable->values[i] = (byte *)malloc(newSize * sizeof(byte)); }
targetTable->axisX = (int *)malloc(newSize * sizeof(int));
targetTable->axisY = (int *)malloc(newSize * sizeof(int));
targetTable->xSize = newSize;
targetTable->ySize = newSize;
}
/*
This function simply pulls a 1D linear interpolated (ie averaged) value from a 2D table
ie: Given a value on the X axis, it returns a Y value that coresponds to the point on the curve between the nearest two defined X values
This function must take into account whether a table contains 8-bit or 16-bit values.
Unfortunately this means many of the lines are duplicated depending on this
*/
2015-06-05 01:02:47 -07:00
int table2D_getValue(struct table2D *fromTable, int X)
2014-01-07 00:01:14 -08:00
{
int xMinValue, xMaxValue;
2015-06-05 01:02:47 -07:00
if (fromTable->valueSize == SIZE_BYTE)
{
//Byte version
2015-06-05 01:02:47 -07:00
xMinValue = fromTable->axisX[0];
xMaxValue = fromTable->axisX[fromTable->xSize-1];
}
else
{
//int version
2015-06-05 01:02:47 -07:00
xMinValue = fromTable->axisX16[0];
xMaxValue = fromTable->axisX16[fromTable->xSize-1];
}
2014-01-07 00:01:14 -08:00
int xMin = 0;
int xMax = 0;
//If the requested X value is greater/small than the maximum/minimum bin, reset X to be that value
if(X > xMaxValue) { X = xMaxValue; }
if(X < xMinValue) { X = xMinValue; }
2015-06-05 01:02:47 -07:00
for (int x = fromTable->xSize-1; x >= 0; x--)
2014-01-07 00:01:14 -08:00
{
2015-06-05 01:02:47 -07:00
if (fromTable->valueSize == SIZE_BYTE)
{
//Byte version
//Checks the case where the X value is exactly what was requested
2015-06-05 01:02:47 -07:00
if ( (X == fromTable->axisX[x]) || (x == 0) )
{
2015-06-05 01:02:47 -07:00
return fromTable->values[x]; //Simply return the coresponding value
}
//Normal case
2015-06-05 01:02:47 -07:00
if ( (X <= fromTable->axisX[x]) && (X > fromTable->axisX[x-1]) )
{
2015-06-05 01:02:47 -07:00
xMaxValue = fromTable->axisX[x];
xMinValue = fromTable->axisX[x-1];
xMax = x;
xMin = x-1;
break;
}
}
else
{
//int version
2015-06-05 01:02:47 -07:00
if ( (X == fromTable->axisX16[x]) || (x == 0) )
{
2015-06-05 01:02:47 -07:00
return fromTable->values16[x]; //Simply return the coresponding value
}
//Normal case
2015-06-05 01:02:47 -07:00
if ( (X <= fromTable->axisX16[x]) && (X > fromTable->axisX16[x-1]) )
{
2015-06-05 01:02:47 -07:00
xMaxValue = fromTable->axisX16[x];
xMinValue = fromTable->axisX16[x-1];
xMax = x;
xMin = x-1;
break;
}
}
2014-01-07 00:01:14 -08:00
}
unsigned int m = X - xMinValue;
unsigned int n = xMaxValue - xMinValue;
//Float version
/*
int yVal = (m / n) * (abs(fromTable.values[xMax] - fromTable.values[xMin]));
*/
//Non-Float version
int yVal;
2015-06-05 01:02:47 -07:00
if (fromTable->valueSize == SIZE_BYTE)
{
//Byte version
2015-06-05 01:02:47 -07:00
yVal = ((long)(m << 6) / n) * (abs(fromTable->values[xMax] - fromTable->values[xMin]));
yVal = (yVal >> 6);
2015-06-05 01:02:47 -07:00
if (fromTable->values[xMax] > fromTable->values[xMin]) { yVal = fromTable->values[xMin] + yVal; }
else { yVal = fromTable->values[xMin] - yVal; }
}
else
{
//int version
2015-06-05 01:02:47 -07:00
yVal = ((long)(m << 6) / n) * (abs(fromTable->values16[xMax] - fromTable->values16[xMin]));
yVal = (yVal >> 6);
2015-06-05 01:02:47 -07:00
if (fromTable->values[xMax] > fromTable->values16[xMin]) { yVal = fromTable->values16[xMin] + yVal; }
else { yVal = fromTable->values16[xMin] - yVal; }
}
2014-01-07 00:01:14 -08:00
return yVal;
}
//This function pulls a value from a 3D table given a target for X and Y coordinates.
//It performs a 2D linear interpolation as descibred in: http://www.megamanual.com/v22manual/ve_tuner.pdf
2015-06-04 04:54:11 -07:00
int get3DTableValue(struct table3D *fromTable, int Y, int X)
2014-01-07 00:01:14 -08:00
{
//Loop through the X axis bins for the min/max pair
//Note: For the X axis specifically, rather than looping from tableAxisX[0] up to tableAxisX[max], we start at tableAxisX[Max] and go down.
// This is because the important tables (fuel and injection) will have the highest RPM at the top of the X axis, so starting there will mean the best case occurs when the RPM is highest (And hence the CPU is needed most)
2015-06-04 04:54:11 -07:00
int xMinValue = fromTable->axisX[0];
int xMaxValue = fromTable->axisX[fromTable->xSize-1];
2015-06-03 07:31:02 -07:00
byte xMin = 0;
byte xMax = 0;
2014-01-07 00:01:14 -08:00
//If the requested X value is greater/small than the maximum/minimum bin, reset X to be that value
if(X > xMaxValue) { X = xMaxValue; }
if(X < xMinValue) { X = xMinValue; }
2015-06-04 04:54:11 -07:00
//1st check is whether we're still in the same X bin as last time
if ( (X <= fromTable->axisX[fromTable->lastXMax]) && (X > fromTable->axisX[fromTable->lastXMin]) )
2014-01-07 00:01:14 -08:00
{
2015-06-04 04:54:11 -07:00
xMaxValue = fromTable->axisX[fromTable->lastXMax];
xMinValue = fromTable->axisX[fromTable->lastXMin];
xMax = fromTable->lastXMax;
xMin = fromTable->lastXMin;
}
//2nd check is whether we're in the next RPM bin (To the right)
else if ( ((fromTable->lastXMax + 1) < fromTable->xSize ) && (X <= fromTable->axisX[fromTable->lastXMax +1 ]) && (X > fromTable->axisX[fromTable->lastXMin + 1]) ) //First make sure we're not already at the last X bin
{
fromTable->lastXMax = xMax = fromTable->lastXMax + 1;
fromTable->lastXMin = xMin = fromTable->lastXMin + 1;
xMaxValue = fromTable->axisX[fromTable->lastXMax];
xMinValue = fromTable->axisX[fromTable->lastXMin];
}
//3rd check is to look at the previous bin (to the left)
else if ( (fromTable->lastXMin > 0 ) && (X <= fromTable->axisX[fromTable->lastXMax - 1]) && (X > fromTable->axisX[fromTable->lastXMin - 1]) ) //First make sure we're not already at the first X bin
{
fromTable->lastXMax = xMax = fromTable->lastXMax - 1;
fromTable->lastXMin = xMin = fromTable->lastXMin - 1;
xMaxValue = fromTable->axisX[fromTable->lastXMax];
xMinValue = fromTable->axisX[fromTable->lastXMin];
}
else
//If it's not caught by one of the above scenarios, give up and just run the loop
{
for (byte x = fromTable->xSize-1; x >= 0; x--)
2014-01-07 00:01:14 -08:00
{
2015-06-04 04:54:11 -07:00
//Checks the case where the X value is exactly what was requested
if ( (X == fromTable->axisX[x]) || (x == 0) )
{
xMaxValue = fromTable->axisX[x];
xMinValue = fromTable->axisX[x];
fromTable->lastXMax = xMax = x;
fromTable->lastXMin = xMin = x;
break;
}
//Normal case
if ( (X <= fromTable->axisX[x]) && (X > fromTable->axisX[x-1]) )
{
xMaxValue = fromTable->axisX[x];
xMinValue = fromTable->axisX[x-1];
fromTable->lastXMax = xMax = x;
fromTable->lastXMin = xMin = x-1;
break;
}
2014-01-07 00:01:14 -08:00
}
}
//Loop through the Y axis bins for the min/max pair
2015-06-04 04:54:11 -07:00
int yMaxValue = fromTable->axisY[0];
int yMinValue = fromTable->axisY[fromTable->ySize-1];
2015-06-03 07:31:02 -07:00
byte yMin = 0;
byte yMax = 0;
2014-01-07 00:01:14 -08:00
//If the requested Y value is greater/small than the maximum/minimum bin, reset Y to be that value
if(Y > yMaxValue) { Y = yMaxValue; }
if(Y < yMinValue) { Y = yMinValue; }
2015-06-04 04:54:11 -07:00
//1st check is whether we're still in the same Y bin as last time
if ( (Y >= fromTable->axisY[fromTable->lastYMax]) && (Y < fromTable->axisY[fromTable->lastYMin]) )
2014-01-07 00:01:14 -08:00
{
2015-06-04 04:54:11 -07:00
yMaxValue = fromTable->axisY[fromTable->lastYMax];
yMinValue = fromTable->axisY[fromTable->lastYMin];
yMax = fromTable->lastYMax;
yMin = fromTable->lastYMin;
}
//2nd check is whether we're in the next MAP/TPS bin (Next one up)
else if ( (fromTable->lastYMin > 0 ) && (Y <= fromTable->axisY[fromTable->lastYMin - 1 ]) && (Y > fromTable->axisY[fromTable->lastYMax - 1]) ) //First make sure we're not already at the top Y bin
{
fromTable->lastYMax = yMax = fromTable->lastYMax - 1;
fromTable->lastYMin = yMin = fromTable->lastYMin - 1;
yMaxValue = fromTable->axisY[fromTable->lastYMax];
yMinValue = fromTable->axisY[fromTable->lastYMin];
}
//3rd check is to look at the previous bin (Next one down)
else if ( ((fromTable->lastYMax + 1) < fromTable->ySize) && (Y <= fromTable->axisY[fromTable->lastYMin + 1]) && (Y > fromTable->axisY[fromTable->lastYMax + 1]) ) //First make sure we're not already at the bottom Y bin
{
fromTable->lastYMax = yMax = fromTable->lastYMax + 1;
fromTable->lastYMin = yMin = fromTable->lastYMin + 1;
yMaxValue = fromTable->axisY[fromTable->lastYMax];
yMinValue = fromTable->axisY[fromTable->lastYMin];
}
else
//If it's not caught by one of the above scenarios, give up and just run the loop
{
for (byte y = fromTable->ySize-1; y >= 0; y--)
2014-01-07 00:01:14 -08:00
{
2015-06-04 04:54:11 -07:00
//Checks the case where the Y value is exactly what was requested
if ( (Y == fromTable->axisY[y]) || (y==0) )
{
yMaxValue = fromTable->axisY[y];
yMinValue = fromTable->axisY[y];
fromTable->lastYMax = yMax = y;
fromTable->lastYMin = yMin = y;
break;
}
//Normal case
if ( (Y >= fromTable->axisY[y]) && (Y < fromTable->axisY[y-1]) )
{
yMaxValue = fromTable->axisY[y];
yMinValue = fromTable->axisY[y-1];
fromTable->lastYMax = yMax = y;
fromTable->lastYMin = yMin = y-1;
break;
}
2014-01-07 00:01:14 -08:00
}
}
/*
At this point we have the 4 corners of the map where the interpolated value will fall in
Eg: (yMin,xMin) (yMin,xMax)
(yMax,xMin) (yMax,xMax)
In the following calculation the table values are referred to by the following variables:
A B
C D
*/
2015-06-04 04:54:11 -07:00
int A = fromTable->values[yMin][xMin];
int B = fromTable->values[yMin][xMax];
int C = fromTable->values[yMax][xMin];
int D = fromTable->values[yMax][xMax];
2014-01-07 00:01:14 -08:00
//Create some normalised position values
//These are essentially percentages (between 0 and 1) of where the desired value falls between the nearest bins on each axis
// Float version
/*
float p, q;
if (xMaxValue == xMinValue)
{ p = (float)(X-xMinValue); }
else { p = ((float)(X - xMinValue)) / (float)(xMaxValue - xMinValue); }
if (yMaxValue == yMinValue)
{ q = (float)(Y - yMinValue); }
2015-06-08 04:25:29 -07:00
else { q = 1- (((float)(Y - yMaxValue)) / (float)(yMinValue - yMaxValue)); }
2014-01-07 00:01:14 -08:00
float m = (1.0-p) * (1.0-q);
float n = p * (1-q);
float o = (1-p) * q;
float r = p * q;
return ( (A * m) + (B * n) + (C * o) + (D * r) );
*/
// Non-Float version:
//Initial check incase the values were hit straight on
long p;
if (xMaxValue == xMinValue)
{ p = ((long)(X - xMinValue) << 8); } //This only occurs if the requested X value was equal to one of the X axis bins
else
{
p = ((long)(X - xMinValue) << 8) / (xMaxValue - xMinValue); //This is the standard case
}
2014-01-07 00:01:14 -08:00
long q;
if (yMaxValue == yMinValue)
{ q = ((long)(Y - yMinValue) << 8); }
else
2015-06-03 07:31:02 -07:00
{
2015-06-08 04:25:29 -07:00
q = 256 - (((long)(Y - yMaxValue) << 8) / (yMinValue - yMaxValue));
2015-06-03 07:31:02 -07:00
}
2015-06-08 04:25:29 -07:00
int m = ((256-p) * (256-q)) >> 8;
int n = (p * (256-q)) >> 8;
int o = ((256-p) * q) >> 8;
2014-01-07 00:01:14 -08:00
int r = (p * q) >> 8;
return ( (A * m) + (B * n) + (C * o) + (D * r) ) >> 8;
}