/* Speeduino - Simple engine management for the Arduino Mega 2560 platform Copyright (C) Josh Stewart A full copy of the license may be found in the projects root directory */ //Old PID method. Retained incase the new one has issues //integerPID boostPID(&MAPx100, &boost_pwm_target_value, &boostTargetx100, configPage3.boostKP, configPage3.boostKI, configPage3.boostKD, DIRECT); integerPID_ideal boostPID(¤tStatus.MAP, ¤tStatus.boostDuty , ¤tStatus.boostTarget, &configPage11.boostSens, &configPage11.boostIntv, configPage3.boostKP, configPage3.boostKI, configPage3.boostKD, DIRECT); //This is the PID object if that algorithm is used. Needs to be global as it maintains state outside of each function call /* Fan control */ void initialiseFan() { if( configPage3.fanInv == 1 ) { fanHIGH = LOW; fanLOW = HIGH; } else { fanHIGH = HIGH; fanLOW = LOW; } digitalWrite(pinFan, fanLOW); //Initiallise program with the fan in the off state currentStatus.fanOn = false; } void fanControl() { if( configPage3.fanEnable == 1 ) { int onTemp = (int)configPage3.fanSP - CALIBRATION_TEMPERATURE_OFFSET; int offTemp = onTemp - configPage3.fanHyster; if ( (!currentStatus.fanOn) && (currentStatus.coolant >= onTemp) ) { digitalWrite(pinFan,fanHIGH); currentStatus.fanOn = true; } if ( (currentStatus.fanOn) && (currentStatus.coolant <= offTemp) ) { digitalWrite(pinFan, fanLOW); currentStatus.fanOn = false; } } } void initialiseAuxPWM() { #if defined(CORE_AVR) TCCR1B = 0x00; //Disbale Timer1 while we set it up TCNT1 = 0; //Reset Timer Count TIFR1 = 0x00; //Timer1 INT Flag Reg: Clear Timer Overflow Flag TCCR1A = 0x00; //Timer1 Control Reg A: Wave Gen Mode normal (Simply counts up from 0 to 65535 (16-bit int) TCCR1B = (1 << CS12); //Timer1 Control Reg B: Timer Prescaler set to 256. 1 tick = 16uS. Refer to http://www.instructables.com/files/orig/F3T/TIKL/H3WSA4V7/F3TTIKLH3WSA4V7.jpg #elif defined(CORE_TEENSY) //REALLY NEED TO DO THIS! #elif defined(CORE_STM32) Timer1.attachInterrupt(2, boostInterrupt); Timer1.attachInterrupt(3, vvtInterrupt); Timer1.resume(); #endif boost_pin_port = portOutputRegister(digitalPinToPort(pinBoost)); boost_pin_mask = digitalPinToBitMask(pinBoost); vvt_pin_port = portOutputRegister(digitalPinToPort(pinVVT_1)); vvt_pin_mask = digitalPinToBitMask(pinVVT_1); #if defined(CORE_STM32) //2uS resolution Min 8Hz, Max 5KHz boost_pwm_max_count = 1000000L / (configPage3.boostFreq * 2); //Converts the frequency in Hz to the number of ticks (at 16uS) it takes to complete 1 cycle. The x2 is there because the frequency is stored at half value (in a byte) to allow freqneucies up to 511Hz vvt_pwm_max_count = 1000000L / (configPage3.vvtFreq * 2); //Converts the frequency in Hz to the number of ticks (at 16uS) it takes to complete 1 cycle #else boost_pwm_max_count = 1000000L / (16 * configPage3.boostFreq * 2); //Converts the frequency in Hz to the number of ticks (at 16uS) it takes to complete 1 cycle. The x2 is there because the frequency is stored at half value (in a byte) to allow freqneucies up to 511Hz vvt_pwm_max_count = 1000000L / (16 * configPage3.vvtFreq * 2); //Converts the frequency in Hz to the number of ticks (at 16uS) it takes to complete 1 cycle #endif //TIMSK1 |= (1 << OCIE1A); <---- Not required as compare A is turned on when needed by boost control ENABLE_VVT_TIMER(); //Turn on the B compare unit (ie turn on the interrupt) boostPID.SetOutputLimits(configPage1.boostMinDuty, configPage1.boostMaxDuty); if(configPage3.boostMode == BOOST_MODE_SIMPLE) { boostPID.SetTunings(100, 100, 100); } else { boostPID.SetTunings(configPage3.boostKP, configPage3.boostKI, configPage3.boostKD); } currentStatus.boostDuty = 0; boostCounter = 0; } #define BOOST_HYSTER 40 void boostControl() { if( configPage3.boostEnabled==1 ) { if( (boostCounter & 7) == 1) { currentStatus.boostTarget = get3DTableValue(&boostTable, currentStatus.TPS, currentStatus.RPM) * 2; } //Boost target table is in kpa and divided by 2 if(currentStatus.MAP >= (currentStatus.boostTarget - BOOST_HYSTER) ) { //If flex fuel is enabled, there can be an adder to the boost target based on ethanol content if( configPage1.flexEnabled == 1 ) { int16_t boostAdder = (((int16_t)configPage1.flexBoostHigh - (int16_t)configPage1.flexBoostLow) * currentStatus.ethanolPct) / 100; boostAdder = boostAdder + configPage1.flexBoostLow; //Required in case flexBoostLow is less than 0 currentStatus.boostTarget += boostAdder; } if(currentStatus.boostTarget > 0) { //This only needs to be run very infrequently, once every 16 calls to boostControl(). This is approx. once per second if( (boostCounter & 15) == 1) { boostPID.SetOutputLimits(configPage1.boostMinDuty, configPage1.boostMaxDuty); if(configPage3.boostMode == BOOST_MODE_SIMPLE) { boostPID.SetTunings(100, 100, 100); } else { boostPID.SetTunings(configPage3.boostKP, configPage3.boostKI, configPage3.boostKD); } } bool PIDcomputed = boostPID.Compute(); //Compute() returns false if the required interval has not yet passed. if(currentStatus.boostDuty == 0) { DISABLE_BOOST_TIMER(); BOOST_PIN_LOW(); } //If boost duty is 0, shut everything down else { if(PIDcomputed == true) { boost_pwm_target_value = ((unsigned long)(currentStatus.boostDuty) * boost_pwm_max_count) / 10000; //Convert boost duty (Which is a % multipled by 100) to a pwm count ENABLE_BOOST_TIMER(); //Turn on the compare unit (ie turn on the interrupt) if boost duty >0 } } } else { //If boost target is 0, turn everything off boostDisable(); } } else { //Boost control does nothing if kPa below the hyster point boostDisable(); } } else { DISABLE_BOOST_TIMER(); } // Disable timer channel boostCounter++; } void vvtControl() { if( configPage3.vvtEnabled == 1 ) { byte vvtDuty = get3DTableValue(&vvtTable, currentStatus.TPS, currentStatus.RPM); //VVT table can be used for controlling on/off switching. If this is turned on, then disregard any interpolation or non-binary values if( (configPage3.VVTasOnOff == true) && (vvtDuty < 100) ) { vvtDuty = 0; } if(vvtDuty == 0) { //Make sure solenoid is off (0% duty) VVT_PIN_LOW(); DISABLE_VVT_TIMER(); } else if (vvtDuty >= 100) { //Make sure solenoid is on (100% duty) VVT_PIN_HIGH(); DISABLE_VVT_TIMER(); } else { vvt_pwm_target_value = percentage(vvtDuty, vvt_pwm_max_count); ENABLE_VVT_TIMER(); } } else { DISABLE_VVT_TIMER(); } // Disable timer channel } void boostDisable() { boostPID.Initialize(); //This resets the ITerm value to prevent rubber banding currentStatus.boostDuty = 0; DISABLE_BOOST_TIMER(); //Turn off timer BOOST_PIN_LOW(); //Make sure solenoid is off (0% duty) } //The interrupt to control the Boost PWM #if defined(CORE_AVR) ISR(TIMER1_COMPA_vect) #elif defined (CORE_TEENSY) || defined(CORE_STM32) static inline void boostInterrupt() //Most ARM chips can simply call a function #endif { if (boost_pwm_state) { BOOST_PIN_LOW(); // Switch pin to low BOOST_TIMER_COMPARE = BOOST_TIMER_COUNTER + (boost_pwm_max_count - boost_pwm_cur_value); boost_pwm_state = false; } else { BOOST_PIN_HIGH(); // Switch pin high BOOST_TIMER_COMPARE = BOOST_TIMER_COUNTER + boost_pwm_target_value; boost_pwm_cur_value = boost_pwm_target_value; boost_pwm_state = true; } } //The interrupt to control the VVT PWM #if defined(CORE_AVR) ISR(TIMER1_COMPB_vect) #elif defined (CORE_TEENSY) || defined(CORE_STM32) static inline void vvtInterrupt() //Most ARM chips can simply call a function #endif { if (vvt_pwm_state) { VVT_PIN_LOW(); // Switch pin to low VVT_TIMER_COMPARE = VVT_TIMER_COUNTER + (vvt_pwm_max_count - vvt_pwm_cur_value); vvt_pwm_state = false; } else { VVT_PIN_HIGH(); // Switch pin high VVT_TIMER_COMPARE = VVT_TIMER_COUNTER + vvt_pwm_target_value; vvt_pwm_cur_value = vvt_pwm_target_value; vvt_pwm_state = true; } }