/* Speeduino - Simple engine management for the Arduino Mega 2560 platform Copyright (C) Josh Stewart A full copy of the license may be found in the projects root directory */ /* This is called when a command is received over serial from TunerStudio / Megatune It parses the command and calls the relevant function A detailed description of each call can be found at: http://www.msextra.com/doc/ms1extra/COM_RS232.htm */ //#include "comms.h" //#include "globals.h" //#include "storage.h" void command() { switch (Serial.read()) { case 'A': // send x bytes of realtime values sendValues(packetSize, 0); //send values to serial0 break; case 'B': // Burn current values to eeprom writeConfig(); break; case 'C': // test communications. This is used by Tunerstudio to see whether there is an ECU on a given serial port testComm(); break; case 'L': // List the contents of current page in human readable form sendPage(true); break; case 'N': // Displays a new line. Like pushing enter in a text editor Serial.println(); break; case 'P': // set the current page //A 2nd byte of data is required after the 'P' specifying the new page number. //This loop should never need to run as the byte should already be in the buffer, but is here just in case while (Serial.available() == 0) { } currentPage = Serial.read(); if (currentPage >= '0') {//This converts the ascii number char into binary currentPage -= '0'; } if (currentPage == veMapPage || currentPage == ignMapPage || currentPage == afrMapPage) { // Detecting if the current page is a table/map isMap = true; } else { isMap = false; } break; case 'R': // send 39 bytes of realtime values sendValues(39,0); break; case 'F': // send serial protocol version Serial.print("001"); break; case 'S': // send code version Serial.print("Speeduino 2016.12"); currentStatus.secl = 0; //This is required in TS3 due to its stricter timings break; case 'Q': // send code version Serial.print("speeduino 201612"); break; case 'V': // send VE table and constants in binary sendPage(false); break; case 'W': // receive new VE obr constant at 'W'++ int valueOffset; //cannot use offset as a variable name, it is a reserved word for several teensy libraries while (Serial.available() == 0) { } if (isMap) { byte offset1, offset2; offset1 = Serial.read(); while (Serial.available() == 0) { } offset2 = Serial.read(); valueOffset = word(offset2, offset1); } else { valueOffset = Serial.read(); } while (Serial.available() == 0) { } receiveValue(valueOffset, Serial.read()); break; case 't': // receive new Calibration info. Command structure: "t", . This is an MS2/Extra command, NOT part of MS1 spec byte tableID; //byte canID; //The first 2 bytes sent represent the canID and tableID while (Serial.available() == 0) { } tableID = Serial.read(); //Not currently used for anything receiveCalibration(tableID); //Receive new values and store in memory writeCalibration(); //Store received values in EEPROM break; case 'Z': //Totally non-standard testing function. Will be removed once calibration testing is completed. This function takes 1.5kb of program space! :S digitalWrite(pinInjector1, HIGH); digitalWrite(pinInjector2, HIGH); delay(20); digitalWrite(pinInjector1, LOW); digitalWrite(pinInjector2, LOW); return; Serial.println(F("Coolant")); for (int x = 0; x < CALIBRATION_TABLE_SIZE; x++) { Serial.print(x); Serial.print(", "); Serial.println(cltCalibrationTable[x]); } Serial.println(F("Inlet temp")); for (int x = 0; x < CALIBRATION_TABLE_SIZE; x++) { Serial.print(x); Serial.print(", "); Serial.println(iatCalibrationTable[x]); } Serial.println(F("O2")); for (int x = 0; x < CALIBRATION_TABLE_SIZE; x++) { Serial.print(x); Serial.print(", "); Serial.println(o2CalibrationTable[x]); } Serial.println(F("WUE")); for (int x = 0; x < 10; x++) { Serial.print(configPage2.wueBins[x]); Serial.print(", "); Serial.println(configPage1.wueValues[x]); } Serial.flush(); break; case 'T': //Send 256 tooth log entries to Tuner Studios tooth logger sendToothLog(false); //Sends tooth log values as ints break; case 'r': //Send 256 tooth log entries to a terminal emulator sendToothLog(true); //Sends tooth log values as chars break; case '?': Serial.println (F( "\n" "===Command Help===\n\n" "All commands are single character and are concatenated with their parameters \n" "without spaces. Some parameters are binary and cannot be entered through this \n" "prompt by conventional means. \n" "Syntax: +++\n\n" "===List of Commands===\n\n" "A - Displays 31 bytes of currentStatus values in binary (live data)\n" "B - Burn current map and configPage values to eeprom\n" "C - Test COM port. Used by Tunerstudio to see whether an ECU is on a given serial \n" " port. Returns a binary number.\n" "L - Displays map page (aka table) or configPage values. Use P to change page (not \n" " every page is a map)\n" "N - Print new line.\n" "P - Set current page. Syntax: P+\n" "R - Same as A command\n" "S - Display signature number\n" "Q - Same as S command\n" "V - Display map or configPage values in binary\n" "W - Set one byte in map or configPage. Expects binary parameters. \n" " Syntax: W++\n" "t - Set calibration values. Expects binary parameters. Table index is either 0, \n" " 1, or 2. Syntax: t++++\n" "Z - Display calibration values\n" "T - Displays 256 tooth log entries in binary\n" "r - Displays 256 tooth log entries\n" "? - Displays this help page" )); break; default: break; } } /* This function returns the current values of a fixed group of variables */ void sendValues(int packetlength, byte portNum) { byte response[packetlength]; if (portNum == 3) { //CAN serial Serial3.write("A"); //confirm cmd type Serial3.write(packetlength); //confirm no of byte to be sent } else { if(requestCount == 0) { currentStatus.secl = 0; } requestCount++; } currentStatus.spark ^= (-currentStatus.hasSync ^ currentStatus.spark) & (1 << BIT_SPARK_SYNC); //Set the sync bit of the Spark variable to match the hasSync variable response[0] = currentStatus.secl; //secl is simply a counter that increments each second. Used to track unexpected resets (Which will reset this count to 0) response[1] = currentStatus.squirt; //Squirt Bitfield response[2] = currentStatus.engine; //Engine Status Bitfield response[3] = (byte)(divu100(currentStatus.dwell)); //Dwell in ms * 10 response[4] = (byte)(currentStatus.MAP >> 1); //map value is divided by 2 response[5] = (byte)(currentStatus.IAT + CALIBRATION_TEMPERATURE_OFFSET); //mat response[6] = (byte)(currentStatus.coolant + CALIBRATION_TEMPERATURE_OFFSET); //Coolant ADC response[7] = currentStatus.tpsADC; //TPS (Raw 0-255) response[8] = currentStatus.battery10; //battery voltage response[9] = currentStatus.O2; //O2 response[10] = currentStatus.egoCorrection; //Exhaust gas correction (%) response[11] = currentStatus.iatCorrection; //Air temperature Correction (%) response[12] = currentStatus.wueCorrection; //Warmup enrichment (%) response[13] = lowByte(currentStatus.RPM); //rpm HB response[14] = highByte(currentStatus.RPM); //rpm LB response[15] = currentStatus.TAEamount; //acceleration enrichment (%) response[16] = 0x00; //Barometer correction (%) response[17] = currentStatus.corrections; //Total GammaE (%) response[18] = currentStatus.VE; //Current VE 1 (%) response[19] = currentStatus.afrTarget; response[20] = (byte)(currentStatus.PW1 / 100); //Pulsewidth 1 multiplied by 10 in ms. Have to convert from uS to mS. response[21] = currentStatus.tpsDOT; //TPS DOT response[22] = currentStatus.advance; response[23] = currentStatus.TPS; // TPS (0% to 100%) //Need to split the int loopsPerSecond value into 2 bytes response[24] = lowByte(currentStatus.loopsPerSecond); response[25] = highByte(currentStatus.loopsPerSecond); //The following can be used to show the amount of free memory currentStatus.freeRAM = freeRam(); response[26] = lowByte(currentStatus.freeRAM); //(byte)((currentStatus.loopsPerSecond >> 8) & 0xFF); response[27] = highByte(currentStatus.freeRAM); response[28] = currentStatus.batCorrection; //Battery voltage correction (%) response[29] = currentStatus.spark; //Spark related bitfield response[30] = currentStatus.O2_2; //O2 //rpmDOT must be sent as a signed integer response[31] = lowByte(currentStatus.rpmDOT); response[32] = highByte(currentStatus.rpmDOT); response[33] = currentStatus.ethanolPct; //Flex sensor value (or 0 if not used) response[34] = currentStatus.flexCorrection; //Flex fuel correction (% above or below 100) response[35] = currentStatus.flexIgnCorrection; //Ignition correction (Increased degrees of advance) for flex fuel response[36] = getNextError(); //cli(); if (portNum == 0) { Serial.write(response, (size_t)packetlength); } else if (portNum == 3) { Serial3.write(response, (size_t)packetlength); } //sei(); return; } void receiveValue(int valueOffset, byte newValue) { void* pnt_configPage;//This only stores the address of the value that it's pointing to and not the max size switch (currentPage) { case veMapPage: if (valueOffset < 256) //New value is part of the fuel map { fuelTable.values[15 - valueOffset / 16][valueOffset % 16] = newValue; return; } else { //Check whether this is on the X (RPM) or Y (MAP/TPS) axis if (valueOffset < 272) { //X Axis fuelTable.axisX[(valueOffset - 256)] = ((int)(newValue) * TABLE_RPM_MULTIPLIER); //The RPM values sent by megasquirt are divided by 100, need to multiple it back by 100 to make it correct (TABLE_RPM_MULTIPLIER) } else { //Y Axis valueOffset = 15 - (valueOffset - 272); //Need to do a translation to flip the order (Due to us using (0,0) in the top left rather than bottom right fuelTable.axisY[valueOffset] = (int)(newValue) * TABLE_LOAD_MULTIPLIER; } return; } break; case veSetPage: pnt_configPage = &configPage1; //Setup a pointer to the relevant config page //For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size if (valueOffset < page_size) { *((byte *)pnt_configPage + (byte)valueOffset) = newValue; } break; case ignMapPage: //Ignition settings page (Page 2) if (valueOffset < 256) //New value is part of the ignition map { ignitionTable.values[15 - valueOffset / 16][valueOffset % 16] = newValue; return; } else { //Check whether this is on the X (RPM) or Y (MAP/TPS) axis if (valueOffset < 272) { //X Axis ignitionTable.axisX[(valueOffset - 256)] = (int)(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by megasquirt are divided by 100, need to multiple it back by 100 to make it correct } else { //Y Axis valueOffset = 15 - (valueOffset - 272); //Need to do a translation to flip the order ignitionTable.axisY[valueOffset] = (int)(newValue) * TABLE_LOAD_MULTIPLIER; } return; } case ignSetPage: pnt_configPage = &configPage2; //For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size if (valueOffset < page_size) { *((byte *)pnt_configPage + (byte)valueOffset) = newValue; } break; case afrMapPage: //Air/Fuel ratio target settings page if (valueOffset < 256) //New value is part of the afr map { afrTable.values[15 - valueOffset / 16][valueOffset % 16] = newValue; return; } else { //Check whether this is on the X (RPM) or Y (MAP/TPS) axis if (valueOffset < 272) { //X Axis afrTable.axisX[(valueOffset - 256)] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by megasquirt are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER) } else { //Y Axis valueOffset = 15 - (valueOffset - 272); //Need to do a translation to flip the order afrTable.axisY[valueOffset] = int(newValue) * TABLE_LOAD_MULTIPLIER; } return; } case afrSetPage: pnt_configPage = &configPage3; //For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size if (valueOffset < page_size) { *((byte *)pnt_configPage + (byte)valueOffset) = newValue; } break; case iacPage: //Idle Air Control settings page (Page 4) pnt_configPage = &configPage4; //For some reason, TunerStudio is sending offsets greater than the maximum page size. I'm not sure if it's their bug or mine, but the fix is to only update the config page if the offset is less than the maximum size if (valueOffset < page_size) { *((byte *)pnt_configPage + (byte)valueOffset) = newValue; } break; case boostvvtPage: //Boost and VVT maps (8x8) if (valueOffset < 64) //New value is part of the boost map { boostTable.values[7 - valueOffset / 8][valueOffset % 8] = newValue; return; } else if (valueOffset < 72) //New value is on the X (RPM) axis of the boost table { boostTable.axisX[(valueOffset - 64)] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER) return; } else if (valueOffset < 80) //New value is on the Y (TPS) axis of the boost table { boostTable.axisY[(7 - (valueOffset - 72))] = int(newValue) * TABLE_LOAD_MULTIPLIER; return; } else if (valueOffset < 144) //New value is part of the vvt map { valueOffset = valueOffset - 80; vvtTable.values[7 - valueOffset / 8][valueOffset % 8] = newValue; return; } else if (valueOffset < 152) //New value is on the X (RPM) axis of the vvt table { valueOffset = valueOffset - 144; vvtTable.axisX[valueOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER) return; } else //New value is on the Y (Load) axis of the vvt table { valueOffset = valueOffset - 152; vvtTable.axisY[(7 - valueOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; return; } case seqFuelPage: if (valueOffset < 36) { trim1Table.values[5 - valueOffset / 6][valueOffset % 6] = newValue; } //Trim1 values else if (valueOffset < 42) { trim1Table.axisX[(valueOffset - 36)] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the trim1 table. The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER) else if (valueOffset < 48) { trim1Table.axisY[(5 - (valueOffset - 42))] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (TPS) axis of the boost table //Trim table 2 else if (valueOffset < 84) { valueOffset = valueOffset - 48; trim2Table.values[5 - valueOffset / 6][valueOffset % 6] = newValue; } //New value is part of the trim2 map else if (valueOffset < 90) { valueOffset = valueOffset - 84; trim2Table.axisX[valueOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the table. //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER) else if (valueOffset < 96) { valueOffset = valueOffset - 90; trim2Table.axisY[(5 - valueOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (Load) axis of the table //Trim table 3 else if (valueOffset < 132) { valueOffset = valueOffset - 96; trim3Table.values[5 - valueOffset / 6][valueOffset % 6] = newValue; } //New value is part of the trim2 map else if (valueOffset < 138) { valueOffset = valueOffset - 132; trim3Table.axisX[valueOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the table. //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER) else if (valueOffset < 144) { valueOffset = valueOffset - 138; trim3Table.axisY[(5 - valueOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (Load) axis of the table //Trim table 4 else if (valueOffset < 180) { valueOffset = valueOffset - 144; trim4Table.values[5 - valueOffset / 6][valueOffset % 6] = newValue; } //New value is part of the trim2 map else if (valueOffset < 186) { valueOffset = valueOffset - 180; trim4Table.axisX[valueOffset] = int(newValue) * TABLE_RPM_MULTIPLIER; } //New value is on the X (RPM) axis of the table. //The RPM values sent by TunerStudio are divided by 100, need to multiply it back by 100 to make it correct (TABLE_RPM_MULTIPLIER) else if (valueOffset < 192) { valueOffset = valueOffset - 186; trim4Table.axisY[(5 - valueOffset)] = int(newValue) * TABLE_LOAD_MULTIPLIER; } //New value is on the Y (Load) axis of the table break; default: break; } } /* sendPage() packs the data within the current page (As set with the 'P' command) into a buffer and sends it. Note that some translation of the data is required to lay it out in the way Megasqurit / TunerStudio expect it useChar - If true, all values are send as chars, this is for the serial command line interface. TunerStudio expects data as raw values, so this must be set false in that case */ void sendPage(bool useChar) { void* pnt_configPage; struct table3D currentTable; byte currentTitleIndex = 0;// This corresponds to the count up to the first char of a string in pageTitles switch (currentPage) { case veMapPage: { currentTitleIndex = 0; currentTable = fuelTable; break; } case veSetPage: { // currentTitleIndex = 27; if (useChar) { // To Display Values from Config Page 1 // When casting to the __FlashStringHelper type Serial.println uses the same subroutine as when using the F macro Serial.println((const __FlashStringHelper *)&pageTitles[27]);//27 is the index to the first char in the second sting in pageTitles // The following loop displays in human readable form of all byte values in config page 1 up to but not including the first array. // incrementing void pointers is cumbersome. Thus we have "pnt_configPage = (byte *)pnt_configPage + 1" for (pnt_configPage = &configPage1; pnt_configPage < &configPage1.wueValues[0]; pnt_configPage = (byte *)pnt_configPage + 1) Serial.println(*((byte *)pnt_configPage)); for (byte x = 10; x; x--)// The x between the ';' has the same representation as the "x != 0" test or comparision { Serial.print(configPage1.wueValues[10 - x]);// This displays the values horizantially on the screen Serial.print(' '); } Serial.println(); for (pnt_configPage = (byte *)&configPage1.wueValues[9] + 1; pnt_configPage < &configPage1.inj1Ang; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage));// This displays all the byte values between the last array up to but not including the first unsigned int on config page 1 } // The following loop displays four unsigned ints for (pnt_configPage = &configPage1.inj1Ang; pnt_configPage < (unsigned int *)&configPage1.inj4Ang + 1; pnt_configPage = (unsigned int *)pnt_configPage + 1) Serial.println(*((unsigned int *)pnt_configPage)); // Following loop displays byte values between the unsigned ints for (pnt_configPage = (unsigned int *)&configPage1.inj4Ang + 1; pnt_configPage < &configPage1.mapMax; pnt_configPage = (byte *)pnt_configPage + 1) Serial.println(*((byte *)pnt_configPage)); Serial.println(configPage1.mapMax); // Following loop displays remaining byte values of the page for (pnt_configPage = (unsigned int *)&configPage1.mapMax + 1; pnt_configPage < (byte *)&configPage1 + page_size; pnt_configPage = (byte *)pnt_configPage + 1) Serial.println(*((byte *)pnt_configPage)); return; } else pnt_configPage = &configPage1; //Create a pointer to Page 1 in memory break; } case ignMapPage: { currentTitleIndex = 42;// the index to the first char of the third string in pageTitles currentTable = ignitionTable; break; } case ignSetPage: { //currentTitleIndex = 56; if (useChar) { //To Display Values from Config Page 2 Serial.println((const __FlashStringHelper *)&pageTitles[56]); Serial.println(configPage2.triggerAngle);// configPsge2.triggerAngle is an int so just display it without complication // Following loop displays byte values after that first int up to but not including the first array in config page 2 for (pnt_configPage = (int *)&configPage2 + 1; pnt_configPage < &configPage2.taeBins[0]; pnt_configPage = (byte *)pnt_configPage + 1) Serial.println(*((byte *)pnt_configPage)); for (byte y = 2; y; y--)// Displaying two equal sized arrays { byte * currentVar;// A placeholder for each array if (y == 2) { currentVar = configPage2.taeBins; } else { currentVar = configPage2.taeValues; } for (byte x = 4; x; x--) { Serial.print(currentVar[4 - x]); Serial.print(' '); } Serial.println(); } for (byte x = 10; x ; x--) { Serial.print(configPage2.wueBins[10 - x]);//Displaying array horizontally across screen Serial.print(' '); } Serial.println(); Serial.println(configPage2.dwellLimit);// Little lonely byte stuck between two arrays. No complications just display it. for (byte x = 6; x; x--) { Serial.print(configPage2.dwellCorrectionValues[6 - x]); Serial.print(' '); } Serial.println(); for (pnt_configPage = (byte *)&configPage2.dwellCorrectionValues[5] + 1; pnt_configPage < (byte *)&configPage2 + page_size; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage));// Displaying remaining byte values of the page } return; } else pnt_configPage = &configPage2; //Create a pointer to Page 2 in memory break; } case afrMapPage: { currentTitleIndex = 71;//Array index to next string currentTable = afrTable; break; } case afrSetPage: { //currentTitleIndex = 91; if (useChar) { //To Display Values from Config Page 3 Serial.println((const __FlashStringHelper *)&pageTitles[91]);//special typecasting to enable suroutine that the F macro uses for (pnt_configPage = &configPage3; pnt_configPage < &configPage3.voltageCorrectionBins[0]; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage));// Displaying byte values of config page 3 up to but not including the first array } for (byte y = 2; y; y--)// Displaying two equally sized arrays that are next to each other { byte * currentVar; if (y == 2) { currentVar = configPage3.voltageCorrectionBins; } else { currentVar = configPage3.injVoltageCorrectionValues; } for (byte x = 6; x; x--) { Serial.print(currentVar[6 - x]); Serial.print(' '); } Serial.println(); } for (byte y = 2; y; y--)// and again { byte* currentVar; if (y == 2) currentVar = configPage3.airDenBins; else currentVar = configPage3.airDenRates; for (byte x = 9; x; x--) { Serial.print(currentVar[9 - x]); Serial.print(' '); } Serial.println(); } // Following loop displays the remaining byte values of the page for (pnt_configPage = (byte *)&configPage3.airDenRates[8] + 1; pnt_configPage < (byte *)&configPage3 + page_size; pnt_configPage = (byte *)pnt_configPage + 1) { Serial.println(*((byte *)pnt_configPage)); } return; } else pnt_configPage = &configPage3; //Create a pointer to Page 3 in memory break; } case iacPage: { //currentTitleIndex = 106; //To Display Values from Config Page 4 if (useChar) { Serial.println((const __FlashStringHelper *)&pageTitles[106]);// F macro hack for (byte y = 4; y; y--)// Display four equally sized arrays { byte * currentVar; switch (y) { case 1: currentVar = configPage4.iacBins; break; case 2: currentVar = configPage4.iacOLPWMVal; break; case 3: currentVar = configPage4.iacOLStepVal; break; case 4: currentVar = configPage4.iacCLValues; break; default: break; } for (byte x = 10; x; x--) { Serial.print(currentVar[10 - x]); Serial.print(' '); } Serial.println(); } for (byte y = 3; y; y--)// Three equally sized arrays { byte * currentVar; switch (y) { case 1: currentVar = configPage4.iacCrankBins; break; case 2: currentVar = configPage4.iacCrankDuty; break; case 3: currentVar = configPage4.iacCrankSteps; break; default: break; } for (byte x = 4; x; x--) { Serial.print(currentVar[4 - x]); Serial.print(' '); } Serial.println(); } // Following loop is for remaining byte value of page for (pnt_configPage = (byte *)&configPage4.iacCrankBins[3] + 1; pnt_configPage < (byte *)&configPage4 + page_size; pnt_configPage = (byte *)pnt_configPage + 1) Serial.println(*((byte *)pnt_configPage)); return; } else pnt_configPage = &configPage4; //Create a pointer to Page 4 in memory break; } case boostvvtPage: { if(useChar) { currentTable = boostTable; currentTitleIndex = 121; } else { //Need to perform a translation of the values[MAP/TPS][RPM] into the MS expected format byte response[160]; //Bit hacky, but the size is: (8x8 + 8 + 8) + (8x8 + 8 + 8) = 160 //Boost table for (int x = 0; x < 64; x++) { response[x] = boostTable.values[7 - x / 8][x % 8]; } for (int x = 64; x < 72; x++) { response[x] = byte(boostTable.axisX[(x - 64)] / TABLE_RPM_MULTIPLIER); } for (int y = 72; y < 80; y++) { response[y] = byte(boostTable.axisY[7 - (y - 72)]); } //VVT table for (int x = 0; x < 64; x++) { response[x + 80] = vvtTable.values[7 - x / 8][x % 8]; } for (int x = 64; x < 72; x++) { response[x + 80] = byte(vvtTable.axisX[(x - 64)] / TABLE_RPM_MULTIPLIER); } for (int y = 72; y < 80; y++) { response[y + 80] = byte(vvtTable.axisY[7 - (y - 72)]); } Serial.write((byte *)&response, sizeof(response)); return; } break; } case seqFuelPage: { if(useChar) { currentTable = trim1Table; for (int y = 0; y < currentTable.ySize; y++) { byte axisY = byte(currentTable.axisY[y]); if (axisY < 100) { Serial.write(" "); if (axisY < 10) { Serial.write(" "); } } Serial.print(axisY);// Vertical Bins Serial.write(" "); for (int x = 0; x < currentTable.xSize; x++) { byte value = currentTable.values[y][x]; if (value < 100) { Serial.write(" "); if (value < 10) { Serial.write(" "); } } Serial.print(value); Serial.write(" "); } Serial.println(""); } return; //Do.... Something? } else { //Need to perform a translation of the values[MAP/TPS][RPM] into the MS expected format byte response[192]; //Bit hacky, but the size is: (6x6 + 6 + 6) * 4 = 192 //trim1 table for (int x = 0; x < 36; x++) { response[x] = trim1Table.values[5 - x / 6][x % 6]; } for (int x = 36; x < 42; x++) { response[x] = byte(trim1Table.axisX[(x - 36)] / 100); } for (int y = 42; y < 48; y++) { response[y] = byte(trim1Table.axisY[5 - (y - 42)]); } //trim2 table for (int x = 0; x < 36; x++) { response[x + 48] = trim2Table.values[5 - x / 6][x % 6]; } for (int x = 36; x < 42; x++) { response[x + 48] = byte(trim2Table.axisX[(x - 36)] / 100); } for (int y = 42; y < 48; y++) { response[y + 48] = byte(trim2Table.axisY[5 - (y - 42)]); } //trim3 table for (int x = 0; x < 36; x++) { response[x + 96] = trim3Table.values[5 - x / 6][x % 6]; } for (int x = 36; x < 42; x++) { response[x + 96] = byte(trim3Table.axisX[(x - 36)] / 100); } for (int y = 42; y < 48; y++) { response[y + 96] = byte(trim3Table.axisY[5 - (y - 42)]); } //trim4 table for (int x = 0; x < 36; x++) { response[x + 144] = trim4Table.values[5 - x / 6][x % 6]; } for (int x = 36; x < 42; x++) { response[x + 144] = byte(trim4Table.axisX[(x - 36)] / 100); } for (int y = 42; y < 48; y++) { response[y + 144] = byte(trim4Table.axisY[5 - (y - 42)]); } Serial.write((byte *)&response, sizeof(response)); return; } break; } default: { Serial.println(F("\nPage has not been implemented yet. Change to another page.")); return; break; } } if (isMap) { if (useChar) { do //This is a do while loop that kicks in for the boostvvtPage { const char spaceChar = ' '; /*while(pageTitles[currentTitleIndex]) { Serial.print(pageTitles[currentTitleIndex]); currentTitleIndex++; }*/ Serial.println((const __FlashStringHelper *)&pageTitles[currentTitleIndex]);// F macro hack Serial.println(); for (int y = 0; y < currentTable.ySize; y++) { byte axisY = byte(currentTable.axisY[y]); if (axisY < 100) { Serial.write(spaceChar); if (axisY < 10) { Serial.write(spaceChar); } } Serial.print(axisY);// Vertical Bins Serial.write(spaceChar); for (int x = 0; x < currentTable.xSize; x++) { byte value = currentTable.values[y][x]; if (value < 100) { Serial.write(spaceChar); if (value < 10) { Serial.write(spaceChar); } } Serial.print(value); Serial.write(spaceChar); } Serial.println(); } Serial.print(F(" ")); for (int x = 0; x < currentTable.xSize; x++)// Horizontal bins { byte axisX = byte(currentTable.axisX[x] / 100); if (axisX < 100) { Serial.write(spaceChar); if (axisX < 10) { Serial.write(spaceChar); } } Serial.print(axisX); Serial.write(spaceChar); } Serial.println(); if(currentTitleIndex == 121) //Check to see if on boostTable { currentTitleIndex = 132; //Change over to vvtTable mid display currentTable = vvtTable; } else currentTitleIndex = 0; }while(currentTitleIndex == 132); //Should never loop unless going to display vvtTable } else { //Need to perform a translation of the values[yaxis][xaxis] into the MS expected format //MS format has origin (0,0) in the bottom left corner, we use the top left for efficiency reasons byte response[map_page_size]; for (int x = 0; x < 256; x++) { response[x] = currentTable.values[15 - x / 16][x % 16]; } //This is slightly non-intuitive, but essentially just flips the table vertically (IE top line becomes the bottom line etc). Columns are unchanged. Every 16 loops, manually call loop() to avoid potential misses //loop(); for (int x = 256; x < 272; x++) { response[x] = byte(currentTable.axisX[(x - 256)] / TABLE_RPM_MULTIPLIER); } //RPM Bins for VE table (Need to be dvidied by 100) //loop(); for (int y = 272; y < 288; y++) { response[y] = byte(currentTable.axisY[15 - (y - 272)]); } //MAP or TPS bins for VE table //loop(); Serial.write((byte *)&response, sizeof(response)); } } else { /*if(useChar) { while(pageTitles[currentTitleIndex]) { Serial.print(pageTitles[currentTitleIndex]); currentTitleIndex++; } Serial.println(); for(byte x=0;x 255) { tempValue = 255; // Cap the maximum value to prevent overflow when converting to byte } if (tempValue < 0) { tempValue = 0; } pnt_TargetTable[(x / 2)] = (byte)tempValue; //From TS3.x onwards, the EEPROM must be written here as TS restarts immediately after the process completes which is before the EEPROM write completes int y = EEPROM_START + (x / 2); EEPROM.update(y, (byte)tempValue); every2nd = false; analogWrite(13, (counter % 50) ); counter++; } else { every2nd = true; } } } /* Send 256 tooth log entries * if useChar is true, the values are sent as chars to be printed out by a terminal emulator * if useChar is false, the values are sent as a 2 byte integer which is readable by TunerStudios tooth logger */ void sendToothLog(bool useChar) { //We need TOOTH_LOG_SIZE number of records to send to TunerStudio. If there aren't that many in the buffer then we just return and wait for the next call if (toothHistoryIndex < TOOTH_LOG_SIZE) { return; //This should no longer ever occur since the flagging system was put in place } unsigned int tempToothHistory[TOOTH_LOG_BUFFER]; //Create a temporary array that will contain a copy of what is in the main toothHistory array //Copy the working history into the temporary buffer array. This is done so that, if the history loops whilst the values are being sent over serial, it doesn't affect the values memcpy( (void*)tempToothHistory, (void*)toothHistory, sizeof(tempToothHistory) ); toothHistoryIndex = 0; //Reset the history index //Loop only needs to go to half the buffer size if (useChar) { for (int x = 0; x < TOOTH_LOG_SIZE; x++) { Serial.println(tempToothHistory[x]); } } else { for (int x = 0; x < TOOTH_LOG_SIZE; x++) { Serial.write(highByte(tempToothHistory[x])); Serial.write(lowByte(tempToothHistory[x])); } BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_TOOTHLOG1READY); } toothLogRead = true; } void testComm() { Serial.write(1); return; }