speeduino/speeduino/board_stm32_generic.cpp

206 lines
8.5 KiB
C++

#if defined(CORE_STM32_GENERIC)
#include "board_stm32_generic.h"
#include "globals.h"
#include "auxiliaries.h"
#include "idle.h"
#include "scheduler.h"
#include "HardwareTimer.h"
#if defined(FRAM_AS_EEPROM)
#if defined(STM32F407xx)
FramClass EEPROM(PB5, PB4, PB3, PB0); /*(mosi, miso, sclk, ssel, clockspeed) 31/01/2020*/
#else
FramClass EEPROM(PB15, PB14, PB13, PB12); //Blue/Black Pills
#endif
#endif
void initBoard()
{
/*
***********************************************************************************************************
* General
*/
#ifndef FLASH_LENGTH
#define FLASH_LENGTH 8192
#endif
delay(10);
/*
***********************************************************************************************************
* Idle
*/
if( (configPage6.iacAlgorithm == IAC_ALGORITHM_PWM_OL) || (configPage6.iacAlgorithm == IAC_ALGORITHM_PWM_CL) )
{
idle_pwm_max_count = 1000000L / (TIMER_RESOLUTION * configPage6.idleFreq * 2); //Converts the frequency in Hz to the number of ticks (at 2uS) it takes to complete 1 cycle. Note that the frequency is divided by 2 coming from TS to allow for up to 5KHz
}
//This must happen at the end of the idle init
Timer1.setMode(4, TIMER_OUTPUT_COMPARE);
Timer1.attachInterrupt(4, idleInterrupt); //on first flash the configPage4.iacAlgorithm is invalid
/*
***********************************************************************************************************
* Timers
*/
#if defined(ARDUINO_BLUEPILL_F103C8) || defined(ARDUINO_BLUEPILL_F103CB)
Timer4.setPeriod(1000); // Set up period
Timer4.setMode(1, TIMER_OUTPUT_COMPARE);
Timer4.attachInterrupt(1, oneMSInterval);
Timer4.resume(); //Start Timer
#else
Timer11.setPeriod(1000); // Set up period
Timer11.setMode(1, TIMER_OUTPUT_COMPARE);
Timer11.attachInterrupt(1, oneMSInterval);
Timer11.resume(); //Start Timer
#endif
pinMode(LED_BUILTIN, OUTPUT); //Visual WDT
/*
***********************************************************************************************************
* Auxiliaries
*/
//2uS resolution Min 8Hz, Max 5KHz
boost_pwm_max_count = 1000000L / (TIMER_RESOLUTION * configPage6.boostFreq * 2); //Converts the frequency in Hz to the number of ticks (at 2uS) it takes to complete 1 cycle. The x2 is there because the frequency is stored at half value (in a byte) to allow frequencies up to 511Hz
vvt_pwm_max_count = 1000000L / (TIMER_RESOLUTION * configPage6.vvtFreq * 2); //Converts the frequency in Hz to the number of ticks (at 2uS) it takes to complete 1 cycle
fan_pwm_max_count = 1000000L / (TIMER_RESOLUTION * configPage6.fanFreq * 2); //Converts the frequency in Hz to the number of ticks (at 4uS) it takes to complete 1 cycle
//Need to be initialised last due to instant interrupt
Timer1.setMode(1, TIMER_OUTPUT_COMPARE);
Timer1.setMode(2, TIMER_OUTPUT_COMPARE);
Timer1.setMode(3, TIMER_OUTPUT_COMPARE);
Timer1.attachInterrupt(1, fanInterrupt);
Timer1.attachInterrupt(2, boostInterrupt);
Timer1.attachInterrupt(3, vvtInterrupt);
/*
***********************************************************************************************************
* Schedules
*/
#if defined(ARDUINO_BLUEPILL_F103C8) || defined(ARDUINO_BLUEPILL_F103CB)
//(CYCLES_PER_MICROSECOND == 72, APB2 at 72MHz, APB1 at 36MHz).
//Timer2 to 4 is on APB1, Timer1 on APB2. www.st.com/resource/en/datasheet/stm32f103cb.pdf sheet 12
Timer1.setPrescaleFactor(((Timer1.getBaseFrequency()/1000000) * TIMER_RESOLUTION)-1); //2us resolution
Timer2.setPrescaleFactor(((Timer2.getBaseFrequency()/1000000) * TIMER_RESOLUTION)-1); //2us resolution
Timer3.setPrescaleFactor(((Timer3.getBaseFrequency()/1000000) * TIMER_RESOLUTION)-1); //2us resolution
#else
//(CYCLES_PER_MICROSECOND == 168, APB2 at 84MHz, APB1 at 42MHz).
//Timer2 to 14 is on APB1, Timers 1, 8, 9 and 10 on APB2. www.st.com/resource/en/datasheet/stm32f407vg.pdf sheet 120
Timer1.setPrescaleFactor(((Timer1.getBaseFrequency()/1000000) * TIMER_RESOLUTION)-1); //2us resolution
Timer2.setPrescaleFactor(((Timer2.getBaseFrequency()/1000000) * TIMER_RESOLUTION)-1); //2us resolution
Timer3.setPrescaleFactor(((Timer3.getBaseFrequency()/1000000) * TIMER_RESOLUTION)-1); //2us resolution
Timer4.setPrescaleFactor(((Timer4.getBaseFrequency()/1000000) * TIMER_RESOLUTION)-1); //2us resolution
Timer5.setPrescaleFactor(((Timer5.getBaseFrequency()/1000000) * TIMER_RESOLUTION)-1); //2us resolution
#endif
Timer2.setMode(1, TIMER_OUTPUT_COMPARE);
Timer2.setMode(2, TIMER_OUTPUT_COMPARE);
Timer2.setMode(3, TIMER_OUTPUT_COMPARE);
Timer2.setMode(4, TIMER_OUTPUT_COMPARE);
Timer3.setMode(1, TIMER_OUTPUT_COMPARE);
Timer3.setMode(2, TIMER_OUTPUT_COMPARE);
Timer3.setMode(3, TIMER_OUTPUT_COMPARE);
Timer3.setMode(4, TIMER_OUTPUT_COMPARE);
//Attach interrupt functions
//Injection
Timer2.attachInterrupt(1, fuelSchedule1Interrupt);
Timer2.attachInterrupt(2, fuelSchedule2Interrupt);
Timer2.attachInterrupt(3, fuelSchedule3Interrupt);
Timer2.attachInterrupt(4, fuelSchedule4Interrupt);
#if (INJ_CHANNELS >= 5)
Timer5.setMode(1, TIMER_OUTPUT_COMPARE);
Timer5.attachInterrupt(1, fuelSchedule5Interrupt);
#endif
#if (INJ_CHANNELS >= 6)
Timer5.setMode(2, TIMER_OUTPUT_COMPARE);
Timer5.attachInterrupt(2, fuelSchedule6Interrupt);
#endif
#if (INJ_CHANNELS >= 7)
Timer5.setMode(3, TIMER_OUTPUT_COMPARE);
Timer5.attachInterrupt(3, fuelSchedule7Interrupt);
#endif
#if (INJ_CHANNELS >= 8)
Timer5.setMode(4, TIMER_OUTPUT_COMPARE);
Timer5.attachInterrupt(4, fuelSchedule8Interrupt);
#endif
//Ignition
Timer3.attachInterrupt(1, ignitionSchedule1Interrupt);
Timer3.attachInterrupt(2, ignitionSchedule2Interrupt);
Timer3.attachInterrupt(3, ignitionSchedule3Interrupt);
Timer3.attachInterrupt(4, ignitionSchedule4Interrupt);
#if (IGN_CHANNELS >= 5)
Timer4.setMode(1, TIMER_OUTPUT_COMPARE);
Timer4.attachInterrupt(1, ignitionSchedule5Interrupt);
#endif
#if (IGN_CHANNELS >= 6)
Timer4.setMode(2, TIMER_OUTPUT_COMPARE);
Timer4.attachInterrupt(2, ignitionSchedule6Interrupt);
#endif
#if (IGN_CHANNELS >= 7)
Timer4.setMode(3, TIMER_OUTPUT_COMPARE);
Timer4.attachInterrupt(3, ignitionSchedule7Interrupt);
#endif
#if (IGN_CHANNELS >= 8)
Timer4.setMode(4, TIMER_OUTPUT_COMPARE);
Timer4.attachInterrupt(4, ignitionSchedule8Interrupt);
#endif
Timer1.setOverflow(0xFFFF);
Timer1.resume();
Timer2.setOverflow(0xFFFF);
Timer2.resume();
Timer3.setOverflow(0xFFFF);
Timer3.resume();
#if (IGN_CHANNELS >= 5)
Timer4.setOverflow(0xFFFF);
Timer4.resume();
#endif
#if (INJ_CHANNELS >= 5)
Timer5.setOverflow(0xFFFF);
Timer5.resume();
#endif
}
uint16_t freeRam()
{
char top = 't';
return &top - reinterpret_cast<char*>(sbrk(0));
}
void doSystemReset( void )
{
__disable_irq();
NVIC_SystemReset();
}
void jumpToBootloader( void ) // https://github.com/3devo/Arduino_Core_STM32/blob/jumpSysBL/libraries/SrcWrapper/src/stm32/bootloader.c
{ // https://github.com/markusgritsch/SilF4ware/blob/master/SilF4ware/drv_reset.c
HAL_RCC_DeInit();
HAL_DeInit();
SysTick->VAL = SysTick->LOAD = SysTick->CTRL = 0;
SYSCFG->MEMRMP = 0x01;
#if defined(STM32F7xx) || defined(STM32H7xx)
const uint32_t DFU_addr = 0x1FF00000; // From AN2606
#else
const uint32_t DFU_addr = 0x1FFF0000; // Default for STM32F10xxx and STM32F40xxx/STM32F41xxx from AN2606
#endif
// This is assembly to prevent modifying the stack pointer after
// loading it, and to ensure a jump (not call) to the bootloader.
// Not sure if the barriers are really needed, they were taken from
// https://github.com/GrumpyOldPizza/arduino-STM32L4/blob/ac659033eadd50cfe001ba1590a1362b2d87bb76/system/STM32L4xx/Source/boot_stm32l4xx.c#L159-L165
asm volatile (
"ldr r0, [%[DFU_addr], #0] \n\t" // get address of stack pointer
"msr msp, r0 \n\t" // set stack pointer
"ldr r0, [%[DFU_addr], #4] \n\t" // get address of reset handler
"dsb \n\t" // data sync barrier
"isb \n\t" // instruction sync barrier
"bx r0 \n\t" // branch to bootloader
: : [DFU_addr] "l" (DFU_addr) : "r0"
);
__builtin_unreachable();
}
#endif