speeduino/speeduino/auxiliaries.ino

159 lines
6.1 KiB
C++

/*
Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
*/
integerPID boostPID(&MAPx100, &boost_pwm_target_value, &boostTargetx100, configPage3.boostKP, configPage3.boostKI, configPage3.boostKD, DIRECT); //This is the PID object if that algorithm is used. Needs to be global as it maintains state outside of each function call
/*
Fan control
*/
void initialiseFan()
{
if( configPage4.fanInv == 1 ) { fanHIGH = LOW; fanLOW = HIGH; }
else { fanHIGH = HIGH; fanLOW = LOW; }
digitalWrite(pinFan, fanLOW); //Initiallise program with the fan in the off state
currentStatus.fanOn = false;
}
void fanControl()
{
if( configPage4.fanEnable == 1 )
{
int onTemp = (int)configPage4.fanSP - CALIBRATION_TEMPERATURE_OFFSET;
int offTemp = onTemp - configPage4.fanHyster;
if ( (!currentStatus.fanOn) && (currentStatus.coolant >= onTemp) ) { digitalWrite(pinFan,fanHIGH); currentStatus.fanOn = true; }
if ( (currentStatus.fanOn) && (currentStatus.coolant <= offTemp) ) { digitalWrite(pinFan, fanLOW); currentStatus.fanOn = false; }
}
}
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
void initialiseAuxPWM()
{
TCCR1B = 0x00; //Disbale Timer1 while we set it up
TCNT1 = 0; //Reset Timer Count
TIFR1 = 0x00; //Timer1 INT Flag Reg: Clear Timer Overflow Flag
TCCR1A = 0x00; //Timer1 Control Reg A: Wave Gen Mode normal (Simply counts up from 0 to 65535 (16-bit int)
TCCR1B = (1 << CS12); //Timer1 Control Reg B: Timer Prescaler set to 256. 1 tick = 16uS. Refer to http://www.instructables.com/files/orig/F3T/TIKL/H3WSA4V7/F3TTIKLH3WSA4V7.jpg
boost_pin_port = portOutputRegister(digitalPinToPort(pinBoost));
boost_pin_mask = digitalPinToBitMask(pinBoost);
vvt_pin_port = portOutputRegister(digitalPinToPort(pinVVT_1));
vvt_pin_mask = digitalPinToBitMask(pinVVT_1);
boost_pwm_max_count = 1000000L / (16 * configPage3.boostFreq * 2); //Converts the frequency in Hz to the number of ticks (at 16uS) it takes to complete 1 cycle. The x2 is there because the frequency is stored at half value (in a byte) to allow freqneucies up to 511Hz
vvt_pwm_max_count = 1000000L / (16 * configPage3.vvtFreq * 2); //Converts the frequency in Hz to the number of ticks (at 16uS) it takes to complete 1 cycle
//TIMSK1 |= (1 << OCIE1A); <---- Not required as compare A is turned on when needed by boost control
TIMSK1 |= (1 << OCIE1B); //Turn on the B compare unit (ie turn on the interrupt)
boostPID.SetOutputLimits(percentage(configPage1.boostMinDuty, boost_pwm_max_count) , percentage(configPage1.boostMaxDuty, boost_pwm_max_count));
boostPID.SetTunings(configPage3.boostKP, configPage3.boostKI, configPage3.boostKD);
boostPID.SetMode(AUTOMATIC); //Turn PID on
currentStatus.boostDuty = 0;
boostCounter = 0;
}
void boostControl()
{
if( configPage3.boostEnabled==1 )
{
if(currentStatus.MAP >= 100)
{
MAPx100 = currentStatus.MAP * 100;
boost_cl_target_boost = get3DTableValue(&boostTable, currentStatus.TPS, currentStatus.RPM) * 2; //Boost target table is in kpa and divided by 2
//If flex fuel is enabled, there can be an adder to the boost target based on ethanol content
if( configPage1.flexEnabled == 1 )
{
int16_t boostAdder = (((int16_t)configPage1.flexBoostHigh - (int16_t)configPage1.flexBoostLow) * currentStatus.ethanolPct) / 100;
boostAdder = boostAdder + configPage1.flexBoostLow; //Required in case flexBoostLow is less than 0
boost_cl_target_boost = boost_cl_target_boost + boostAdder;
}
boostTargetx100 = boost_cl_target_boost * 100;
currentStatus.boostTarget = boost_cl_target_boost >> 1; //Boost target is sent as a byte value to TS and so is divided by 2
if(currentStatus.boostTarget > 0)
{
if( (boostCounter & 31) == 1) { boostPID.SetTunings(configPage3.boostKP, configPage3.boostKI, configPage3.boostKD); } //This only needs to be run very infrequently, once every 32 calls to boostControl(). This is approx. once per second
boostPID.Compute();
currentStatus.boostDuty = (unsigned long)(boost_pwm_target_value * 100UL) / boost_pwm_max_count;
TIMSK1 |= (1 << OCIE1A); //Turn on the compare unit (ie turn on the interrupt)
}
else
{
//If boost target is 0, turn everything off
TIMSK1 &= ~(1 << OCIE1A); //Turn off timer
digitalWrite(pinBoost, LOW);
}
}
else
{
//Boost control does nothing if kPa below 100
TIMSK1 &= ~(1 << OCIE1A); //Turn off timer
digitalWrite(pinBoost, LOW); //Make sure solenoid is off (0% duty)
}
}
else { TIMSK1 &= ~(1 << OCIE1A); } // Disable timer channel
boostCounter++;
}
void vvtControl()
{
if( configPage3.vvtEnabled == 1 )
{
byte vvtDuty = get3DTableValue(&vvtTable, currentStatus.TPS, currentStatus.RPM);
vvt_pwm_target_value = percentage(vvtDuty, vvt_pwm_max_count);
}
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
else { TIMSK1 &= ~(1 << OCIE1B); } // Disable timer channel
#endif
}
//The interrupt to control the Boost PWM
ISR(TIMER1_COMPA_vect)
{
if (boost_pwm_state)
{
*boost_pin_port &= ~(boost_pin_mask); // Switch pin to low
OCR1A = TCNT1 + (boost_pwm_max_count - boost_pwm_cur_value);
boost_pwm_state = false;
}
else
{
*boost_pin_port |= (boost_pin_mask); // Switch pin high
OCR1A = TCNT1 + boost_pwm_target_value;
boost_pwm_cur_value = boost_pwm_target_value;
boost_pwm_state = true;
}
}
//The interrupt to control the VVT PWM
ISR(TIMER1_COMPB_vect)
{
if (vvt_pwm_state)
{
*vvt_pin_port &= ~(vvt_pin_mask); // Switch pin to low
OCR1B = TCNT1 + (vvt_pwm_max_count - vvt_pwm_cur_value);
vvt_pwm_state = false;
}
else
{
*vvt_pin_port |= (vvt_pin_mask); // Switch pin high
OCR1B = TCNT1 + vvt_pwm_target_value;
vvt_pwm_cur_value = vvt_pwm_target_value;
vvt_pwm_state = true;
}
}
#elif defined (CORE_TEENSY) || defined(CORE_STM32)
//YET TO BE IMPLEMENTED ON TEENSY
void initialiseAuxPWM() { }
void boostControl() { }
void vvtControl() { }
#endif