1532 lines
74 KiB
C++
1532 lines
74 KiB
C++
/*
|
|
Speeduino - Simple engine management for the Arduino Mega 2560 platform
|
|
Copyright (C) Josh Stewart
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,la
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
//**************************************************************************************************
|
|
// Config section
|
|
#define engineSquirtsPerCycle 2 //Would be 1 for a 2 stroke
|
|
//**************************************************************************************************
|
|
|
|
#include "globals.h"
|
|
#include "utils.h"
|
|
#include "table.h"
|
|
#include "scheduler.h"
|
|
#include "comms.h"
|
|
#include "cancomms.h"
|
|
#include "math.h"
|
|
#include "corrections.h"
|
|
#include "timers.h"
|
|
#include "display.h"
|
|
#include "decoders.h"
|
|
#include "idle.h"
|
|
#include "auxiliaries.h"
|
|
#include "sensors.h"
|
|
#include "src/PID_v1/PID_v1.h"
|
|
//#include "src/DigitalWriteFast/digitalWriteFast.h"
|
|
#include "errors.h"
|
|
|
|
#ifdef __SAM3X8E__
|
|
//Do stuff for ARM based CPUs
|
|
#else
|
|
#include "storage.h"
|
|
#endif
|
|
|
|
|
|
struct config1 configPage1;
|
|
struct config2 configPage2;
|
|
struct config3 configPage3;
|
|
struct config4 configPage4;
|
|
|
|
int req_fuel_uS, inj_opentime_uS;
|
|
#define MAX_RPM 18000 //This is the maximum rpm that the ECU will attempt to run at. It is NOT related to the rev limiter, but is instead dictates how fast certain operations will be allowed to run. Lower number gives better performance
|
|
|
|
volatile byte startRevolutions = 0; //A counter for how many revolutions have been completed since sync was achieved.
|
|
volatile byte ign1LastRev;
|
|
volatile byte ign2LastRev;
|
|
volatile byte ign3LastRev;
|
|
volatile byte ign4LastRev;
|
|
volatile byte ign5LastRev;
|
|
bool ignitionOn = false; //The current state of the ignition system
|
|
bool fuelOn = false; //The current state of the ignition system
|
|
bool fuelPumpOn = false; //The current status of the fuel pump
|
|
|
|
void (*trigger)(); //Pointer for the trigger function (Gets pointed to the relevant decoder)
|
|
void (*triggerSecondary)(); //Pointer for the secondary trigger function (Gets pointed to the relevant decoder)
|
|
int (*getRPM)(); //Pointer to the getRPM function (Gets pointed to the relevant decoder)
|
|
int (*getCrankAngle)(int); //Pointer to the getCrank Angle function (Gets pointed to the relevant decoder)
|
|
|
|
struct table3D fuelTable; //16x16 fuel map
|
|
struct table3D ignitionTable; //16x16 ignition map
|
|
struct table3D afrTable; //16x16 afr target map
|
|
struct table3D boostTable; //8x8 boost map
|
|
struct table3D vvtTable; //8x8 vvt map
|
|
struct table3D trim1Table; //6x6 Fuel trim 1 map
|
|
struct table3D trim2Table; //6x6 Fuel trim 2 map
|
|
struct table3D trim3Table; //6x6 Fuel trim 3 map
|
|
struct table3D trim4Table; //6x6 Fuel trim 4 map
|
|
struct table2D taeTable; //4 bin TPS Acceleration Enrichment map (2D)
|
|
struct table2D WUETable; //10 bin Warm Up Enrichment map (2D)
|
|
struct table2D dwellVCorrectionTable; //6 bin dwell voltage correction (2D)
|
|
struct table2D injectorVCorrectionTable; //6 bin injector voltage correction (2D)
|
|
struct table2D IATDensityCorrectionTable; //9 bin inlet air temperature density correction (2D)
|
|
struct table2D IATRetardTable; //6 bin ignition adjustment based on inlet air temperature (2D)
|
|
byte cltCalibrationTable[CALIBRATION_TABLE_SIZE];
|
|
byte iatCalibrationTable[CALIBRATION_TABLE_SIZE];
|
|
byte o2CalibrationTable[CALIBRATION_TABLE_SIZE];
|
|
|
|
//These variables are used for tracking the number of running sensors values that appear to be errors. Once a threshold is reached, the sensor reading will go to default value and assume the sensor is faulty
|
|
byte mapErrorCount = 0;
|
|
byte iatErrorCount = 0;
|
|
byte cltErrorCount = 0;
|
|
|
|
unsigned long counter;
|
|
unsigned long currentLoopTime; //The time the current loop started (uS)
|
|
unsigned long previousLoopTime; //The time the previous loop started (uS)
|
|
|
|
unsigned long MAPrunningValue; //Used for tracking either the total of all MAP readings in this cycle (Event average) or the lowest value detected in this cycle (event minimum)
|
|
unsigned int MAPcount; //Number of samples taken in the current MAP cycle
|
|
byte MAPcurRev = 0; //Tracks which revolution we're sampling on
|
|
|
|
int CRANK_ANGLE_MAX = 720;
|
|
int CRANK_ANGLE_MAX_IGN = 360, CRANK_ANGLE_MAX_INJ = 360; // The number of crank degrees that the system track over. 360 for wasted / timed batch and 720 for sequential
|
|
//bool useSequentialFuel; // Whether sequential fueling is to be used (1 squirt per cycle)
|
|
//bool useSequentialIgnition; // Whether sequential ignition is used (1 spark per cycle)
|
|
|
|
static byte coilHIGH = HIGH;
|
|
static byte coilLOW = LOW;
|
|
static byte fanHIGH = HIGH; // Used to invert the cooling fan output
|
|
static byte fanLOW = LOW; // Used to invert the cooling fan output
|
|
|
|
struct statuses currentStatus;
|
|
volatile int mainLoopCount;
|
|
byte deltaToothCount = 0; //The last tooth that was used with the deltaV calc
|
|
int rpmDelta;
|
|
byte ignitionCount;
|
|
byte fixedCrankingOverride = 0;
|
|
unsigned long secCounter; //The next time to incremen 'runSecs' counter.
|
|
unsigned long MAX_STALL_TIME = 500000UL; //The maximum time (in uS) that the system will continue to function before the engine is considered stalled/stopped. This is unique to each decoder, depending on the number of teeth etc. 500000 (half a second) is used as the default value, most decoders will be much less.
|
|
int channel1IgnDegrees; //The number of crank degrees until cylinder 1 is at TDC (This is obviously 0 for virtually ALL engines, but there's some weird ones)
|
|
int channel2IgnDegrees; //The number of crank degrees until cylinder 2 (and 5/6/7/8) is at TDC
|
|
int channel3IgnDegrees; //The number of crank degrees until cylinder 3 (and 5/6/7/8) is at TDC
|
|
int channel4IgnDegrees; //The number of crank degrees until cylinder 4 (and 5/6/7/8) is at TDC
|
|
int channel5IgnDegrees; //The number of crank degrees until cylinder 5 is at TDC
|
|
int channel1InjDegrees; //The number of crank degrees until cylinder 1 is at TDC (This is obviously 0 for virtually ALL engines, but there's some weird ones)
|
|
int channel2InjDegrees; //The number of crank degrees until cylinder 2 (and 5/6/7/8) is at TDC
|
|
int channel3InjDegrees; //The number of crank degrees until cylinder 3 (and 5/6/7/8) is at TDC
|
|
int channel4InjDegrees; //The number of crank degrees until cylinder 4 (and 5/6/7/8) is at TDC
|
|
int channel5InjDegrees; //The number of crank degrees until cylinder 5 is at TDC
|
|
|
|
bool channel1InjEnabled = true;
|
|
bool channel2InjEnabled = false;
|
|
bool channel3InjEnabled = false;
|
|
bool channel4InjEnabled = false;
|
|
bool channel5InjEnabled = false;
|
|
|
|
//These are the functions the get called to begin and end the ignition coil charging. They are required for the various spark output modes
|
|
void (*ign1StartFunction)();
|
|
void (*ign1EndFunction)();
|
|
void (*ign2StartFunction)();
|
|
void (*ign2EndFunction)();
|
|
void (*ign3StartFunction)();
|
|
void (*ign3EndFunction)();
|
|
void (*ign4StartFunction)();
|
|
void (*ign4EndFunction)();
|
|
void (*ign5StartFunction)();
|
|
void (*ign5EndFunction)();
|
|
|
|
int timePerDegree;
|
|
byte degreesPerLoop; //The number of crank degrees that pass for each mainloop of the program
|
|
volatile bool fpPrimed = false; //Tracks whether or not the fuel pump priming has been completed yet
|
|
|
|
void setup()
|
|
{
|
|
Serial.begin(115200);
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //ATmega2561 does not have Serial3
|
|
if (configPage1.canEnable) { Serial3.begin(115200); }
|
|
#endif
|
|
|
|
//Setup the dummy fuel and ignition tables
|
|
//dummyFuelTable(&fuelTable);
|
|
//dummyIgnitionTable(&ignitionTable);
|
|
table3D_setSize(&fuelTable, 16);
|
|
table3D_setSize(&ignitionTable, 16);
|
|
table3D_setSize(&afrTable, 16);
|
|
table3D_setSize(&boostTable, 8);
|
|
table3D_setSize(&vvtTable, 8);
|
|
table3D_setSize(&trim1Table, 6);
|
|
table3D_setSize(&trim2Table, 6);
|
|
table3D_setSize(&trim3Table, 6);
|
|
table3D_setSize(&trim4Table, 6);
|
|
|
|
loadConfig();
|
|
|
|
//Repoint the 2D table structs to the config pages that were just loaded
|
|
taeTable.valueSize = SIZE_BYTE; //Set this table to use byte values
|
|
taeTable.xSize = 4;
|
|
taeTable.values = configPage2.taeValues;
|
|
taeTable.axisX = configPage2.taeBins;
|
|
WUETable.valueSize = SIZE_BYTE; //Set this table to use byte values
|
|
WUETable.xSize = 10;
|
|
WUETable.values = configPage1.wueValues;
|
|
WUETable.axisX = configPage2.wueBins;
|
|
|
|
dwellVCorrectionTable.valueSize = SIZE_BYTE;
|
|
dwellVCorrectionTable.xSize = 6;
|
|
dwellVCorrectionTable.values = configPage2.dwellCorrectionValues;
|
|
dwellVCorrectionTable.axisX = configPage3.voltageCorrectionBins;
|
|
injectorVCorrectionTable.valueSize = SIZE_BYTE;
|
|
injectorVCorrectionTable.xSize = 6;
|
|
injectorVCorrectionTable.values = configPage3.injVoltageCorrectionValues;
|
|
injectorVCorrectionTable.axisX = configPage3.voltageCorrectionBins;
|
|
IATDensityCorrectionTable.valueSize = SIZE_BYTE;
|
|
IATDensityCorrectionTable.xSize = 9;
|
|
IATDensityCorrectionTable.values = configPage3.airDenRates;
|
|
IATDensityCorrectionTable.axisX = configPage3.airDenBins;
|
|
IATRetardTable.valueSize = SIZE_BYTE;
|
|
IATRetardTable.xSize = 6;
|
|
IATRetardTable.values = configPage2.iatRetValues;
|
|
IATRetardTable.axisX = configPage2.iatRetBins;
|
|
|
|
//Setup the calibration tables
|
|
loadCalibration();
|
|
//Set the pin mappings
|
|
setPinMapping(configPage1.pinMapping);
|
|
|
|
//Need to check early on whether the coil charging is inverted. If this is not set straight away it can cause an unwanted spark at bootup
|
|
if(configPage2.IgInv == 1) { coilHIGH = LOW, coilLOW = HIGH; }
|
|
else { coilHIGH = HIGH, coilLOW = LOW; }
|
|
endCoil1Charge();
|
|
endCoil2Charge();
|
|
endCoil3Charge();
|
|
endCoil4Charge();
|
|
endCoil5Charge();
|
|
|
|
//Similar for injectors, make sure they're turned off
|
|
closeInjector1();
|
|
closeInjector2();
|
|
closeInjector3();
|
|
closeInjector4();
|
|
closeInjector5();
|
|
|
|
//Set the tacho output default state
|
|
digitalWrite(pinTachOut, HIGH);
|
|
|
|
//Lookup the current MAP reading for barometric pressure
|
|
readMAP();
|
|
/*
|
|
* The highest sea-level pressure on Earth occurs in Siberia, where the Siberian High often attains a sea-level pressure above 105 kPa;
|
|
* with record highs close to 108.5 kPa.
|
|
* The lowest measurable sea-level pressure is found at the centers of tropical cyclones and tornadoes, with a record low of 87 kPa;
|
|
*/
|
|
if ((currentStatus.MAP >= BARO_MIN) && (currentStatus.MAP <= BARO_MAX)) //Check if engine isn't running
|
|
{
|
|
currentStatus.baro = currentStatus.MAP;
|
|
EEPROM.update(EEPROM_LAST_BARO, currentStatus.baro);
|
|
}
|
|
else
|
|
{
|
|
//Attempt to use the last known good baro reading from EEPROM
|
|
if ((EEPROM.read(EEPROM_LAST_BARO) >= BARO_MIN) && (EEPROM.read(EEPROM_LAST_BARO) <= BARO_MAX)) //Make sure it's not invalid (Possible on first run etc)
|
|
{ currentStatus.baro = EEPROM.read(EEPROM_LAST_BARO); } //last baro correction
|
|
else { currentStatus.baro = 100; } //Final fall back position.
|
|
}
|
|
|
|
//Perform all initialisations
|
|
initialiseSchedulers();
|
|
initialiseTimers();
|
|
//initialiseDisplay();
|
|
initialiseIdle();
|
|
initialiseFan();
|
|
initialiseAuxPWM();
|
|
initialiseCorrections();
|
|
initialiseADC();
|
|
|
|
//Check whether the flex sensor is enabled and if so, attach an interupt for it
|
|
if(configPage1.flexEnabled)
|
|
{
|
|
attachInterrupt(digitalPinToInterrupt(pinFlex), flexPulse, RISING);
|
|
currentStatus.ethanolPct = 0;
|
|
}
|
|
|
|
//Once the configs have been loaded, a number of one time calculations can be completed
|
|
req_fuel_uS = configPage1.reqFuel * 100; //Convert to uS and an int. This is the only variable to be used in calculations
|
|
inj_opentime_uS = configPage1.injOpen * 100; //Injector open time. Comes through as ms*10 (Eg 15.5ms = 155).
|
|
|
|
//Begin the main crank trigger interrupt pin setup
|
|
//The interrupt numbering is a bit odd - See here for reference: http://arduino.cc/en/Reference/AttachInterrupt
|
|
//These assignments are based on the Arduino Mega AND VARY BETWEEN BOARDS. Please confirm the board you are using and update acordingly.
|
|
byte triggerInterrupt = 0; // By default, use the first interrupt
|
|
byte triggerInterrupt2 = 1;
|
|
currentStatus.RPM = 0;
|
|
currentStatus.hasSync = false;
|
|
currentStatus.runSecs = 0;
|
|
currentStatus.secl = 0;
|
|
triggerFilterTime = 0; //Trigger filter time is the shortest possible time (in uS) that there can be between crank teeth (ie at max RPM). Any pulses that occur faster than this time will be disgarded as noise. This is simply a default value, the actual values are set in the setup() functinos of each decoder
|
|
|
|
switch (pinTrigger) {
|
|
//Arduino Mega 2560 mapping
|
|
case 2:
|
|
triggerInterrupt = 0; break;
|
|
case 3:
|
|
triggerInterrupt = 1; break;
|
|
case 18:
|
|
triggerInterrupt = 5; break;
|
|
case 19:
|
|
triggerInterrupt = 4; break;
|
|
case 20:
|
|
triggerInterrupt = 3; break;
|
|
case 21:
|
|
triggerInterrupt = 2; break;
|
|
|
|
}
|
|
switch (pinTrigger2) {
|
|
//Arduino Mega 2560 mapping
|
|
case 2:
|
|
triggerInterrupt2 = 0; break;
|
|
case 3:
|
|
triggerInterrupt2 = 1; break;
|
|
case 18:
|
|
triggerInterrupt2 = 5; break;
|
|
case 19:
|
|
triggerInterrupt2 = 4; break;
|
|
case 20:
|
|
triggerInterrupt2 = 3; break;
|
|
case 21:
|
|
triggerInterrupt2 = 2; break;
|
|
|
|
}
|
|
pinMode(pinTrigger, INPUT);
|
|
pinMode(pinTrigger2, INPUT);
|
|
pinMode(pinTrigger3, INPUT);
|
|
//digitalWrite(pinTrigger, HIGH);
|
|
|
|
|
|
//Set the trigger function based on the decoder in the config
|
|
switch (configPage2.TrigPattern)
|
|
{
|
|
case 0:
|
|
//Missing tooth decoder
|
|
triggerSetup_missingTooth();
|
|
trigger = triggerPri_missingTooth;
|
|
triggerSecondary = triggerSec_missingTooth;
|
|
getRPM = getRPM_missingTooth;
|
|
getCrankAngle = getCrankAngle_missingTooth;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); }
|
|
if(configPage2.TrigEdgeSec == 0) { attachInterrupt(triggerInterrupt2, triggerSec_missingTooth, RISING); }
|
|
else { attachInterrupt(triggerInterrupt2, triggerSec_missingTooth, FALLING); }
|
|
break;
|
|
|
|
case 1:
|
|
// Basic distributor
|
|
triggerSetup_BasicDistributor();
|
|
trigger = triggerPri_BasicDistributor;
|
|
getRPM = getRPM_BasicDistributor;
|
|
getCrankAngle = getCrankAngle_BasicDistributor;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); }
|
|
break;
|
|
|
|
case 2:
|
|
triggerSetup_DualWheel();
|
|
trigger = triggerPri_DualWheel;
|
|
getRPM = getRPM_DualWheel;
|
|
getCrankAngle = getCrankAngle_DualWheel;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); }
|
|
if(configPage2.TrigEdgeSec == 0) { attachInterrupt(triggerInterrupt2, triggerSec_DualWheel, RISING); }
|
|
else { attachInterrupt(triggerInterrupt2, triggerSec_DualWheel, FALLING); }
|
|
break;
|
|
|
|
case 3:
|
|
triggerSetup_GM7X();
|
|
trigger = triggerPri_GM7X;
|
|
getRPM = getRPM_GM7X;
|
|
getCrankAngle = getCrankAngle_GM7X;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); }
|
|
break;
|
|
|
|
case 4:
|
|
triggerSetup_4G63();
|
|
trigger = triggerPri_4G63;
|
|
getRPM = getRPM_4G63;
|
|
getCrankAngle = getCrankAngle_4G63;
|
|
|
|
//These may both need to change, not sure
|
|
if(configPage2.TrigEdge == 0)
|
|
{
|
|
attachInterrupt(triggerInterrupt, trigger, CHANGE); // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
attachInterrupt(triggerInterrupt2, triggerSec_4G63, FALLING); //changed
|
|
}
|
|
else
|
|
{
|
|
attachInterrupt(triggerInterrupt, trigger, CHANGE); // Primary trigger connects to
|
|
attachInterrupt(triggerInterrupt2, triggerSec_4G63, FALLING);
|
|
}
|
|
break;
|
|
|
|
case 5:
|
|
triggerSetup_24X();
|
|
trigger = triggerPri_24X;
|
|
getRPM = getRPM_24X;
|
|
getCrankAngle = getCrankAngle_24X;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); } // Primary trigger connects to
|
|
attachInterrupt(triggerInterrupt2, triggerSec_24X, CHANGE);
|
|
break;
|
|
|
|
case 6:
|
|
triggerSetup_Jeep2000();
|
|
trigger = triggerPri_Jeep2000;
|
|
getRPM = getRPM_Jeep2000;
|
|
getCrankAngle = getCrankAngle_Jeep2000;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); } // Primary trigger connects to
|
|
attachInterrupt(triggerInterrupt2, triggerSec_Jeep2000, CHANGE);
|
|
break;
|
|
|
|
case 7:
|
|
triggerSetup_Audi135();
|
|
trigger = triggerPri_Audi135;
|
|
getRPM = getRPM_Audi135;
|
|
getCrankAngle = getCrankAngle_Audi135;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); }
|
|
attachInterrupt(triggerInterrupt2, triggerSec_Audi135, RISING);
|
|
break;
|
|
|
|
case 8:
|
|
triggerSetup_HondaD17();
|
|
trigger = triggerPri_HondaD17;
|
|
getRPM = getRPM_HondaD17;
|
|
getCrankAngle = getCrankAngle_HondaD17;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); } // Primary trigger connects to
|
|
attachInterrupt(triggerInterrupt2, triggerSec_HondaD17, CHANGE);
|
|
break;
|
|
|
|
case 9:
|
|
triggerSetup_Miata9905();
|
|
trigger = triggerPri_Miata9905;
|
|
getRPM = getRPM_Miata9905;
|
|
getCrankAngle = getCrankAngle_Miata9905;
|
|
|
|
//These may both need to change, not sure
|
|
if(configPage2.TrigEdge == 0)
|
|
{
|
|
attachInterrupt(triggerInterrupt, trigger, RISING); // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
attachInterrupt(triggerInterrupt2, triggerSec_Miata9905, FALLING); //changed
|
|
}
|
|
else
|
|
{
|
|
attachInterrupt(triggerInterrupt, trigger, FALLING); // Primary trigger connects to
|
|
attachInterrupt(triggerInterrupt2, triggerSec_Miata9905, RISING);
|
|
}
|
|
break;
|
|
|
|
case 10:
|
|
triggerSetup_MazdaAU();
|
|
trigger = triggerPri_MazdaAU;
|
|
getRPM = getRPM_MazdaAU;
|
|
getCrankAngle = getCrankAngle_MazdaAU;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); } // Primary trigger connects to
|
|
attachInterrupt(triggerInterrupt2, triggerSec_MazdaAU, FALLING);
|
|
break;
|
|
|
|
case 11:
|
|
triggerSetup_non360();
|
|
trigger = triggerPri_DualWheel; //Is identical to the dual wheel decoder, so that is used. Same goes for the secondary below
|
|
getRPM = getRPM_non360;
|
|
getCrankAngle = getCrankAngle_non360;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); }
|
|
attachInterrupt(triggerInterrupt2, triggerSec_DualWheel, FALLING); //Note the use of the Dual Wheel trigger function here. No point in having the same code in twice.
|
|
break;
|
|
|
|
default:
|
|
trigger = triggerPri_missingTooth;
|
|
getRPM = getRPM_missingTooth;
|
|
getCrankAngle = getCrankAngle_missingTooth;
|
|
|
|
if(configPage2.TrigEdge == 0) { attachInterrupt(triggerInterrupt, trigger, RISING); } // Attach the crank trigger wheel interrupt (Hall sensor drags to ground when triggering)
|
|
else { attachInterrupt(triggerInterrupt, trigger, FALLING); }
|
|
break;
|
|
}
|
|
|
|
//End crank triger interrupt attachment
|
|
|
|
req_fuel_uS = req_fuel_uS / engineSquirtsPerCycle; //The req_fuel calculation above gives the total required fuel (At VE 100%) in the full cycle. If we're doing more than 1 squirt per cycle then we need to split the amount accordingly. (Note that in a non-sequential 4-stroke setup you cannot have less than 2 squirts as you cannot determine the stroke to make the single squirt on)
|
|
|
|
//Initial values for loop times
|
|
previousLoopTime = 0;
|
|
currentLoopTime = micros();
|
|
|
|
mainLoopCount = 0;
|
|
ignitionCount = 0;
|
|
|
|
//Calculate the number of degrees between cylinders
|
|
switch (configPage1.nCylinders) {
|
|
case 1:
|
|
channel1IgnDegrees = 0;
|
|
channel1InjDegrees = 0;
|
|
|
|
channel1InjEnabled = true;
|
|
break;
|
|
case 2:
|
|
channel1IgnDegrees = 0;
|
|
|
|
if (configPage1.engineType == EVEN_FIRE )
|
|
{
|
|
channel2IgnDegrees = 180;
|
|
}
|
|
else { channel2IgnDegrees = configPage1.oddfire2; }
|
|
|
|
//For alternating injection, the squirt occurs at different times for each channel
|
|
if(configPage1.injLayout == INJ_SEMISEQUENTIAL)
|
|
{
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = channel2IgnDegrees; //Set to the same as the ignition degrees (Means there's no need for another if to check for oddfire)
|
|
}
|
|
if (!configPage1.injTiming) { channel1InjDegrees = channel2InjDegrees = 0; } //For simultaneous, all squirts happen at the same time
|
|
|
|
channel1InjEnabled = true;
|
|
channel2InjEnabled = true;
|
|
break;
|
|
case 3:
|
|
channel1IgnDegrees = 0;
|
|
|
|
if (configPage1.engineType == EVEN_FIRE )
|
|
{
|
|
channel2IgnDegrees = 120;
|
|
channel3IgnDegrees = 240;
|
|
}
|
|
else
|
|
{
|
|
channel2IgnDegrees = configPage1.oddfire2;
|
|
channel3IgnDegrees = configPage1.oddfire3;
|
|
}
|
|
|
|
//For alternatiing injection, the squirt occurs at different times for each channel
|
|
if(configPage1.injLayout == INJ_SEMISEQUENTIAL || configPage1.injLayout == INJ_PAIRED)
|
|
{
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = channel2IgnDegrees;
|
|
channel3InjDegrees = channel3IgnDegrees;
|
|
}
|
|
else if (configPage1.injLayout == INJ_SEQUENTIAL)
|
|
{
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = 240;
|
|
channel3InjDegrees = 480;
|
|
CRANK_ANGLE_MAX_INJ = 720;
|
|
req_fuel_uS = req_fuel_uS * 2;
|
|
}
|
|
if (!configPage1.injTiming) { channel1InjDegrees = channel2InjDegrees = channel3InjDegrees = 0; } //For simultaneous, all squirts happen at the same time
|
|
|
|
channel1InjEnabled = true;
|
|
channel2InjEnabled = true;
|
|
channel3InjEnabled = true;
|
|
break;
|
|
case 4:
|
|
channel1IgnDegrees = 0;
|
|
|
|
if (configPage1.engineType == EVEN_FIRE )
|
|
{
|
|
channel2IgnDegrees = 180;
|
|
|
|
if(configPage2.sparkMode == IGN_MODE_SEQUENTIAL)
|
|
{
|
|
channel3IgnDegrees = 360;
|
|
channel4IgnDegrees = 540;
|
|
|
|
CRANK_ANGLE_MAX_IGN = 720;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
channel2IgnDegrees = configPage1.oddfire2;
|
|
channel3IgnDegrees = configPage1.oddfire3;
|
|
channel4IgnDegrees = configPage1.oddfire4;
|
|
}
|
|
|
|
//For alternatiing injection, the squirt occurs at different times for each channel
|
|
if(configPage1.injLayout == INJ_SEMISEQUENTIAL || configPage1.injLayout == INJ_PAIRED)
|
|
{
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = 180;
|
|
}
|
|
else if (configPage1.injLayout == INJ_SEQUENTIAL)
|
|
{
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = 180;
|
|
channel3InjDegrees = 360;
|
|
channel4InjDegrees = 540;
|
|
|
|
channel3InjEnabled = true;
|
|
channel4InjEnabled = true;
|
|
|
|
CRANK_ANGLE_MAX_INJ = 720;
|
|
req_fuel_uS = req_fuel_uS * 2;
|
|
}
|
|
if (!configPage1.injTiming) { channel1InjDegrees = channel2InjDegrees = 0; } //For simultaneous, all squirts happen at the same time
|
|
|
|
channel1InjEnabled = true;
|
|
channel2InjEnabled = true;
|
|
break;
|
|
case 5:
|
|
channel1IgnDegrees = 0;
|
|
channel2IgnDegrees = 72;
|
|
channel3IgnDegrees = 144;
|
|
channel4IgnDegrees = 216;
|
|
channel5IgnDegrees = 288;
|
|
|
|
if(configPage2.sparkMode == IGN_MODE_SEQUENTIAL)
|
|
{
|
|
channel2IgnDegrees = 144;
|
|
channel3IgnDegrees = 288;
|
|
channel4IgnDegrees = 432;
|
|
channel5IgnDegrees = 576;
|
|
|
|
CRANK_ANGLE_MAX_IGN = 720;
|
|
}
|
|
|
|
//For alternatiing injection, the squirt occurs at different times for each channel
|
|
if(configPage1.injLayout == INJ_SEMISEQUENTIAL || configPage1.injLayout == INJ_PAIRED)
|
|
{
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = 72;
|
|
channel3InjDegrees = 144;
|
|
channel4InjDegrees = 216;
|
|
channel5InjDegrees = 288;
|
|
}
|
|
else if (configPage1.injLayout == INJ_SEQUENTIAL)
|
|
{
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = 144;
|
|
channel3InjDegrees = 288;
|
|
channel4InjDegrees = 432;
|
|
channel5InjDegrees = 576;
|
|
|
|
CRANK_ANGLE_MAX_INJ = 720;
|
|
}
|
|
if (!configPage1.injTiming) { channel1InjDegrees = channel2InjDegrees = channel3InjDegrees = channel4InjDegrees = channel5InjDegrees = 0; } //For simultaneous, all squirts happen at the same time
|
|
|
|
channel1InjEnabled = true;
|
|
channel2InjEnabled = true;
|
|
channel3InjEnabled = false; //this is disabled as injector 5 function calls 3 & 5 together
|
|
channel4InjEnabled = true;
|
|
channel5InjEnabled = true;
|
|
break;
|
|
case 6:
|
|
channel1IgnDegrees = 0;
|
|
channel2IgnDegrees = 120;
|
|
channel3IgnDegrees = 240;
|
|
|
|
//For alternatiing injection, the squirt occurs at different times for each channel
|
|
/*
|
|
if(configPage1.injLayout == INJ_SEMISEQUENTIAL || configPage1.injLayout == INJ_SEQUENTIAL || configPage1.injLayout == INJ_PAIRED) //No full sequential for more than 4 cylinders
|
|
{
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = 120;
|
|
channel3InjDegrees = 240;
|
|
}
|
|
*/
|
|
if (!configPage1.injTiming) { channel1InjDegrees = channel2InjDegrees = channel3InjDegrees = 0; } //For simultaneous, all squirts happen at the same time
|
|
|
|
configPage1.injLayout = 0; //This is a failsafe. We can never run semi-sequential with more than 4 cylinders
|
|
|
|
channel1InjEnabled = true;
|
|
channel2InjEnabled = true;
|
|
channel3InjEnabled = true;
|
|
break;
|
|
case 8:
|
|
channel1IgnDegrees = 0;
|
|
channel2IgnDegrees = 90;
|
|
channel3IgnDegrees = 180;
|
|
channel4IgnDegrees = 270;
|
|
|
|
//For alternatiing injection, the squirt occurs at different times for each channel
|
|
/*
|
|
if(configPage1.injLayout == INJ_SEMISEQUENTIAL || configPage1.injTiming == INJ_SEQUENTIAL) //No full sequential for more than 4 cylinders
|
|
{
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = 90;
|
|
channel3InjDegrees = 180;
|
|
channel4InjDegrees = 270;
|
|
}
|
|
*/
|
|
if (!configPage1.injTiming) { channel1InjDegrees = channel2InjDegrees = channel3InjDegrees = channel4InjDegrees = 0; } //For simultaneous, all squirts happen at the same time
|
|
|
|
configPage1.injLayout = 0; //This is a failsafe. We can never run semi-sequential with more than 4 cylinders
|
|
|
|
channel1InjEnabled = true;
|
|
channel2InjEnabled = true;
|
|
channel3InjEnabled = true;
|
|
channel4InjEnabled = true;
|
|
break;
|
|
default: //Handle this better!!!
|
|
channel1InjDegrees = 0;
|
|
channel2InjDegrees = 180;
|
|
break;
|
|
}
|
|
|
|
switch(configPage2.sparkMode)
|
|
{
|
|
case IGN_MODE_WASTED:
|
|
//Wasted Spark (Normal mode)
|
|
ign1StartFunction = beginCoil1Charge;
|
|
ign1EndFunction = endCoil1Charge;
|
|
ign2StartFunction = beginCoil2Charge;
|
|
ign2EndFunction = endCoil2Charge;
|
|
ign3StartFunction = beginCoil3Charge;
|
|
ign3EndFunction = endCoil3Charge;
|
|
ign4StartFunction = beginCoil4Charge;
|
|
ign4EndFunction = endCoil4Charge;
|
|
ign5StartFunction = beginCoil5Charge;
|
|
ign5EndFunction = endCoil5Charge;
|
|
break;
|
|
|
|
case IGN_MODE_SINGLE:
|
|
//Single channel mode. All ignition pulses are on channel 1
|
|
ign1StartFunction = beginCoil1Charge;
|
|
ign1EndFunction = endCoil1Charge;
|
|
ign2StartFunction = beginCoil1Charge;
|
|
ign2EndFunction = endCoil1Charge;
|
|
ign3StartFunction = beginCoil1Charge;
|
|
ign3EndFunction = endCoil1Charge;
|
|
ign4StartFunction = beginCoil1Charge;
|
|
ign4EndFunction = endCoil1Charge;
|
|
ign5StartFunction = beginCoil1Charge;
|
|
ign5EndFunction = endCoil1Charge;
|
|
break;
|
|
|
|
case IGN_MODE_WASTEDCOP:
|
|
//Wasted COP mode. Ignition channels 1&3 and 2&4 are paired together
|
|
//This is not a valid mode for >4 cylinders
|
|
if( configPage1.nCylinders <= 4 )
|
|
{
|
|
ign1StartFunction = beginCoil1and3Charge;
|
|
ign1EndFunction = endCoil1and3Charge;
|
|
ign2StartFunction = beginCoil2and4Charge;
|
|
ign2EndFunction = endCoil2and4Charge;
|
|
|
|
ign3StartFunction = nullCallback;
|
|
ign3EndFunction = nullCallback;
|
|
ign4StartFunction = nullCallback;
|
|
ign4EndFunction = nullCallback;
|
|
}
|
|
else
|
|
{
|
|
//If the person has inadvertantly selected this when running more than 4 cylinders, just use standard Wasted spark mode
|
|
ign1StartFunction = beginCoil1Charge;
|
|
ign1EndFunction = endCoil1Charge;
|
|
ign2StartFunction = beginCoil2Charge;
|
|
ign2EndFunction = endCoil2Charge;
|
|
ign3StartFunction = beginCoil3Charge;
|
|
ign3EndFunction = endCoil3Charge;
|
|
ign4StartFunction = beginCoil4Charge;
|
|
ign4EndFunction = endCoil4Charge;
|
|
ign5StartFunction = beginCoil5Charge;
|
|
ign5EndFunction = endCoil5Charge;
|
|
}
|
|
break;
|
|
|
|
case IGN_MODE_SEQUENTIAL:
|
|
ign1StartFunction = beginCoil1Charge;
|
|
ign1EndFunction = endCoil1Charge;
|
|
ign2StartFunction = beginCoil2Charge;
|
|
ign2EndFunction = endCoil2Charge;
|
|
ign3StartFunction = beginCoil3Charge;
|
|
ign3EndFunction = endCoil3Charge;
|
|
ign4StartFunction = beginCoil4Charge;
|
|
ign4EndFunction = endCoil4Charge;
|
|
ign5StartFunction = beginCoil5Charge;
|
|
ign5EndFunction = endCoil5Charge;
|
|
break;
|
|
|
|
default:
|
|
//Wasted spark (Shouldn't ever happen anyway)
|
|
ign1StartFunction = beginCoil1Charge;
|
|
ign1EndFunction = endCoil1Charge;
|
|
ign2StartFunction = beginCoil2Charge;
|
|
ign2EndFunction = endCoil2Charge;
|
|
ign3StartFunction = beginCoil3Charge;
|
|
ign3EndFunction = endCoil3Charge;
|
|
ign4StartFunction = beginCoil4Charge;
|
|
ign4EndFunction = endCoil4Charge;
|
|
ign5StartFunction = beginCoil5Charge;
|
|
ign5EndFunction = endCoil5Charge;
|
|
break;
|
|
}
|
|
|
|
//Begin priming the fuel pump. This is turned off in the low resolution, 1s interrupt in timers.ino
|
|
digitalWrite(pinFuelPump, HIGH);
|
|
fuelPumpOn = true;
|
|
//Perform the priming pulses. Set these to run at an arbitrary time in the future (100us). The prime pulse value is in ms*10, so need to multiple by 100 to get to uS
|
|
setFuelSchedule1(openInjector1and4, 100, (unsigned long)(configPage1.primePulse * 100), closeInjector1and4);
|
|
setFuelSchedule2(openInjector2and3, 100, (unsigned long)(configPage1.primePulse * 100), closeInjector2and3);
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
mainLoopCount++;
|
|
//Check for any requets from serial. Serial operations are checked under 2 scenarios:
|
|
// 1) Every 64 loops (64 Is more than fast enough for TunerStudio). This function is equivalent to ((loopCount % 64) == 1) but is considerably faster due to not using the mod or division operations
|
|
// 2) If the amount of data in the serial buffer is greater than a set threhold (See globals.h). This is to avoid serial buffer overflow when large amounts of data is being sent
|
|
if ( ((mainLoopCount & 31) == 1) or (Serial.available() > SERIAL_BUFFER_THRESHOLD) )
|
|
{
|
|
if (Serial.available() > 0)
|
|
{
|
|
command();
|
|
}
|
|
}
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //ATmega2561 does not have Serial3
|
|
//if Can interface is enabled then check for serial3 requests.
|
|
if (configPage1.canEnable)
|
|
{
|
|
if ( ((mainLoopCount & 31) == 1) or (Serial3.available() > SERIAL_BUFFER_THRESHOLD) )
|
|
{
|
|
if (Serial3.available() > 0)
|
|
{
|
|
canCommand();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// if (configPage1.displayType && (mainLoopCount & 255) == 1) { updateDisplay();} //Displays currently disabled
|
|
|
|
previousLoopTime = currentLoopTime;
|
|
currentLoopTime = micros();
|
|
unsigned long timeToLastTooth = (currentLoopTime - toothLastToothTime);
|
|
if ( (timeToLastTooth < MAX_STALL_TIME) || (toothLastToothTime > currentLoopTime) ) //Check how long ago the last tooth was seen compared to now. If it was more than half a second ago then the engine is probably stopped. toothLastToothTime can be greater than currentLoopTime if a pulse occurs between getting the lastest time and doing the comparison
|
|
{
|
|
int lastRPM = currentStatus.RPM; //Need to record this for rpmDOT calculation
|
|
currentStatus.RPM = currentStatus.longRPM = getRPM(); //Long RPM is included here
|
|
if(fuelPumpOn == false) { digitalWrite(pinFuelPump, HIGH); fuelPumpOn = true; } //Check if the fuel pump is on and turn it on if it isn't.
|
|
currentStatus.rpmDOT = ldiv(1000000, (currentLoopTime - previousLoopTime)).quot * (currentStatus.RPM - lastRPM); //This is the RPM per second that the engine has accelerated/decelleratedin the last loop
|
|
}
|
|
else
|
|
{
|
|
//We reach here if the time between teeth is too great. This VERY likely means the engine has stopped
|
|
currentStatus.RPM = 0;
|
|
currentStatus.PW1 = 0;
|
|
currentStatus.VE = 0;
|
|
toothLastToothTime = 0;
|
|
currentStatus.hasSync = false;
|
|
currentStatus.runSecs = 0; //Reset the counter for number of seconds running.
|
|
secCounter = 0; //Reset our seconds counter.
|
|
startRevolutions = 0;
|
|
MAPcurRev = 0;
|
|
currentStatus.rpmDOT = 0;
|
|
ignitionOn = false;
|
|
fuelOn = false;
|
|
if (fpPrimed) { digitalWrite(pinFuelPump, LOW); } //Turn off the fuel pump, but only if the priming is complete
|
|
fuelPumpOn = false;
|
|
disableIdle(); //Turn off the idle PWM
|
|
}
|
|
|
|
//Uncomment the following for testing
|
|
/*
|
|
currentStatus.hasSync = true;
|
|
currentStatus.RPM = 500;
|
|
*/
|
|
|
|
//***Perform sensor reads***
|
|
//-----------------------------------------------------------------------------------------------------
|
|
readMAP();
|
|
|
|
//TPS setting to be performed every 32 loops (any faster and it can upset the TPSdot sampling time)
|
|
if ((mainLoopCount & 31) == 1)
|
|
{
|
|
readTPS();
|
|
|
|
//Check for launching (clutch) can be done around here too
|
|
bool launchTrigger;
|
|
if(configPage3.launchHiLo) { launchTrigger = digitalRead(pinLaunch); }
|
|
else { launchTrigger = !digitalRead(pinLaunch); }
|
|
if (configPage3.launchEnabled && launchTrigger && (currentStatus.RPM > ((unsigned int)(configPage3.lnchSoftLim) * 100)) ) { currentStatus.launchingSoft = true; BIT_SET(currentStatus.spark, BIT_SPARK_SLAUNCH); } //SoftCut rev limit for 2-step launch control.
|
|
else { currentStatus.launchingSoft = false; BIT_CLEAR(currentStatus.spark, BIT_SPARK_SLAUNCH); }
|
|
if (configPage3.launchEnabled && launchTrigger && (currentStatus.RPM > ((unsigned int)(configPage3.lnchHardLim) * 100)) ) { currentStatus.launchingHard = true; BIT_SET(currentStatus.spark, BIT_SPARK_HLAUNCH); } //HardCut rev limit for 2-step launch control.
|
|
else { currentStatus.launchingHard = false; BIT_CLEAR(currentStatus.spark, BIT_SPARK_HLAUNCH); }
|
|
|
|
//Boost cutoff is very similar to launchControl, but with a check against MAP rather than a switch
|
|
if(configPage3.boostCutType && currentStatus.MAP > (configPage3.boostLimit * 2) ) //The boost limit is divided by 2 to allow a limit up to 511kPa
|
|
{
|
|
switch(configPage3.boostCutType)
|
|
{
|
|
case 1:
|
|
BIT_SET(currentStatus.spark, BIT_SPARK_BOOSTCUT);
|
|
BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_BOOSTCUT);
|
|
break;
|
|
case 2:
|
|
BIT_SET(currentStatus.squirt, BIT_SQUIRT_BOOSTCUT);
|
|
BIT_CLEAR(currentStatus.spark, BIT_SPARK_BOOSTCUT);
|
|
break;
|
|
case 3:
|
|
BIT_SET(currentStatus.spark, BIT_SPARK_BOOSTCUT);
|
|
BIT_SET(currentStatus.squirt, BIT_SQUIRT_BOOSTCUT);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
BIT_CLEAR(currentStatus.spark, BIT_SPARK_BOOSTCUT);
|
|
BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_BOOSTCUT);
|
|
}
|
|
|
|
//And check whether the tooth log buffer is ready
|
|
if(toothHistoryIndex > TOOTH_LOG_SIZE) { BIT_SET(currentStatus.squirt, BIT_SQUIRT_TOOTHLOG1READY); }
|
|
}
|
|
if(toothHistoryIndex > TOOTH_LOG_SIZE) { BIT_SET(currentStatus.squirt, BIT_SQUIRT_TOOTHLOG1READY); }
|
|
//The IAT and CLT readings can be done less frequently. This still runs about 4 times per second
|
|
if ((mainLoopCount & 255) == 1)
|
|
{
|
|
|
|
readCLT();
|
|
readIAT();
|
|
readO2();
|
|
readBat();
|
|
|
|
vvtControl();
|
|
boostControl(); //Most boost tends to run at about 30Hz, so placing it here ensures a new target time is fetched frequently enough
|
|
idleControl(); //Perform any idle related actions. Even at higher frequencies, running 4x per second is sufficient.
|
|
}
|
|
if(configPage4.iacAlgorithm == 4) { idleControl(); } //Run idlecontrol every loop for stepper idle.
|
|
|
|
//Always check for sync
|
|
//Main loop runs within this clause
|
|
if (currentStatus.hasSync && (currentStatus.RPM > 0))
|
|
{
|
|
if(startRevolutions >= configPage2.StgCycles) { ignitionOn = true; fuelOn = true;} //Enable the fuel and ignition, assuming staging revolutions are complete
|
|
//If it is, check is we're running or cranking
|
|
if(currentStatus.RPM > ((unsigned int)configPage2.crankRPM * 100)) //Crank RPM stored in byte as RPM / 100
|
|
{
|
|
BIT_SET(currentStatus.engine, BIT_ENGINE_RUN); //Sets the engine running bit
|
|
//Only need to do anything if we're transitioning from cranking to running
|
|
if( BIT_CHECK(currentStatus.engine, BIT_ENGINE_CRANK) )
|
|
{
|
|
BIT_CLEAR(currentStatus.engine, BIT_ENGINE_CRANK); //clears the engine cranking bit
|
|
if(configPage2.ignBypassEnabled) { digitalWrite(pinIgnBypass, HIGH); }
|
|
}
|
|
}
|
|
else
|
|
{ //Sets the engine cranking bit, clears the engine running bit
|
|
BIT_SET(currentStatus.engine, BIT_ENGINE_CRANK);
|
|
BIT_CLEAR(currentStatus.engine, BIT_ENGINE_RUN);
|
|
currentStatus.runSecs = 0; //We're cranking (hopefully), so reset the engine run time to prompt ASE.
|
|
if(configPage2.ignBypassEnabled) { digitalWrite(pinIgnBypass, LOW); }
|
|
}
|
|
|
|
//END SETTING STATUSES
|
|
//-----------------------------------------------------------------------------------------------------
|
|
|
|
//Begin the fuel calculation
|
|
//Calculate an injector pulsewidth from the VE
|
|
currentStatus.corrections = correctionsFuel();
|
|
//currentStatus.corrections = 100;
|
|
if (configPage1.algorithm == 0) //Check which fuelling algorithm is being used
|
|
{
|
|
//Speed Density
|
|
currentStatus.VE = get3DTableValue(&fuelTable, currentStatus.MAP, currentStatus.RPM); //Perform lookup into fuel map for RPM vs MAP value
|
|
currentStatus.PW1 = PW_SD(req_fuel_uS, currentStatus.VE, currentStatus.MAP, currentStatus.corrections, inj_opentime_uS);
|
|
currentStatus.advance = get3DTableValue(&ignitionTable, currentStatus.MAP, currentStatus.RPM); //As above, but for ignition advance
|
|
}
|
|
else
|
|
{
|
|
//Alpha-N
|
|
currentStatus.VE = get3DTableValue(&fuelTable, currentStatus.TPS, currentStatus.RPM); //Perform lookup into fuel map for RPM vs TPS value
|
|
currentStatus.PW1 = PW_AN(req_fuel_uS, currentStatus.VE, currentStatus.TPS, currentStatus.corrections, inj_opentime_uS); //Calculate pulsewidth using the Alpha-N algorithm (in uS)
|
|
currentStatus.advance = get3DTableValue(&ignitionTable, currentStatus.TPS, currentStatus.RPM); //As above, but for ignition advance
|
|
}
|
|
|
|
currentStatus.advance = correctionsIgn(currentStatus.advance);
|
|
/*
|
|
//Check for fixed ignition angles
|
|
if (configPage2.FixAng != 0) { currentStatus.advance = configPage2.FixAng; } //Check whether the user has set a fixed timing angle
|
|
if ( BIT_CHECK(currentStatus.engine, BIT_ENGINE_CRANK) ) { currentStatus.advance = configPage2.CrankAng; } //Use the fixed cranking ignition angle
|
|
//Adjust the advance based on IAT. If the adjustment amount is greater than the current advance, just set advance to 0
|
|
byte advanceIATadjust = table2D_getValue(&IATRetardTable, currentStatus.IAT);
|
|
if (advanceIATadjust <= currentStatus.advance) { currentStatus.advance -= advanceIATadjust; }
|
|
else { currentStatus.advance = 0; }
|
|
*/
|
|
|
|
int injector1StartAngle = 0;
|
|
int injector2StartAngle = 0;
|
|
int injector3StartAngle = 0; //Currently used for 3 cylinder only
|
|
int injector4StartAngle = 0; //Not used until sequential gets written
|
|
int injector5StartAngle = 0; //For 5 cylinder testing
|
|
int ignition1StartAngle = 0;
|
|
int ignition2StartAngle = 0;
|
|
int ignition3StartAngle = 0; //Currently used for 3 cylinder only
|
|
int ignition4StartAngle = 0; //Not used until sequential or 4+ cylinders support gets written
|
|
int ignition5StartAngle = 0; //Not used until sequential or 4+ cylinders support gets written
|
|
//These are used for comparisons on channels above 1 where the starting angle (for injectors or ignition) can be less than a single loop time
|
|
//(Don't ask why this is needed, it will break your head)
|
|
int tempCrankAngle;
|
|
int tempStartAngle;
|
|
|
|
//********************************************************
|
|
//How fast are we going? Need to know how long (uS) it will take to get from one tooth to the next. We then use that to estimate how far we are between the last tooth and the next one
|
|
//We use a 1st Deriv accleration prediction, but only when there is an even spacing between primary sensor teeth
|
|
//Any decoder that has uneven spacing has its triggerToothAngle set to 0
|
|
if(secondDerivEnabled && toothHistoryIndex >= 3 && currentStatus.RPM < 2000) //toothHistoryIndex must be greater than or equal to 3 as we need the last 3 entries. Currently this mode only runs below 3000 rpm
|
|
{
|
|
//Only recalculate deltaV if the tooth has changed since last time (DeltaV stays the same until the next tooth)
|
|
//if (deltaToothCount != toothCurrentCount)
|
|
{
|
|
deltaToothCount = toothCurrentCount;
|
|
int angle1, angle2; //These represent the crank angles that are travelled for the last 2 pulses
|
|
if(configPage2.TrigPattern == 4)
|
|
{
|
|
//Special case for 70/110 pattern on 4g63
|
|
angle2 = triggerToothAngle; //Angle 2 is the most recent
|
|
if (angle2 == 70) { angle1 = 110; }
|
|
else { angle1 = 70; }
|
|
}
|
|
else if(configPage2.TrigPattern == 0)
|
|
{
|
|
//Special case for missing tooth decoder where the missing tooth was one of the last 2 seen
|
|
if(toothCurrentCount == 1) { angle2 = 2*triggerToothAngle; angle1 = triggerToothAngle; }
|
|
else if(toothCurrentCount == 2) { angle1 = 2*triggerToothAngle; angle2 = triggerToothAngle; }
|
|
else { angle1 = angle2 = triggerToothAngle; }
|
|
}
|
|
else { angle1 = angle2 = triggerToothAngle; }
|
|
|
|
long toothDeltaV = (1000000L * angle2 / toothHistory[toothHistoryIndex]) - (1000000L * angle1 / toothHistory[toothHistoryIndex-1]);
|
|
long toothDeltaT = toothHistory[toothHistoryIndex];
|
|
long timeToLastTooth = micros() - toothLastToothTime; //Cannot be unsigned
|
|
|
|
rpmDelta = (toothDeltaV << 10) / (6 * toothDeltaT);
|
|
}
|
|
|
|
|
|
timePerDegree = ldiv( 166666L, (currentStatus.RPM + rpmDelta)).quot; //There is a small amount of rounding in this calculation, however it is less than 0.001 of a uS (Faster as ldiv than / )
|
|
}
|
|
else
|
|
{
|
|
timePerDegree = ldiv( 166666L, currentStatus.RPM ).quot; //There is a small amount of rounding in this calculation, however it is less than 0.001 of a uS (Faster as ldiv than / )
|
|
}
|
|
|
|
//Check that the duty cycle of the chosen pulsewidth isn't too high. This is disabled at cranking
|
|
if( !BIT_CHECK(currentStatus.engine, BIT_ENGINE_CRANK) )
|
|
{
|
|
unsigned long pwLimit = percentage(configPage1.dutyLim, revolutionTime); //The pulsewidth limit is determined to be the duty cycle limit (Eg 85%) by the total time it takes to perform 1 revolution
|
|
if (CRANK_ANGLE_MAX_INJ == 720) { pwLimit = pwLimit * 2; } //For sequential, the maximum pulse time is double (2 revolutions). Wouldn't work for 2 stroke...
|
|
if (currentStatus.PW1 > pwLimit) { currentStatus.PW1 = pwLimit; }
|
|
}
|
|
|
|
|
|
//***********************************************************************************************
|
|
//BEGIN INJECTION TIMING
|
|
//Determine next firing angles
|
|
currentStatus.PW2 = currentStatus.PW3 = currentStatus.PW4 = currentStatus.PW1; // Initial state is for all pulsewidths to be the same (This gets changed below)
|
|
int PWdivTimerPerDegree = div(currentStatus.PW1, timePerDegree).quot; //How many crank degrees the calculated PW will take at the current speed
|
|
injector1StartAngle = configPage1.inj1Ang - ( PWdivTimerPerDegree ); //This is a little primitive, but is based on the idea that all fuel needs to be delivered before the inlet valve opens. See http://www.extraefi.co.uk/sequential_fuel.html for more detail
|
|
if(injector1StartAngle < 0) {injector1StartAngle += CRANK_ANGLE_MAX_INJ;}
|
|
|
|
//Repeat the above for each cylinder
|
|
switch (configPage1.nCylinders)
|
|
{
|
|
//2 cylinders
|
|
case 2:
|
|
injector2StartAngle = (configPage1.inj2Ang + channel2InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector2StartAngle > CRANK_ANGLE_MAX_INJ) {injector2StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
break;
|
|
//3 cylinders
|
|
case 3:
|
|
injector2StartAngle = (configPage1.inj2Ang + channel2InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector2StartAngle > CRANK_ANGLE_MAX_INJ) {injector2StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
injector3StartAngle = (configPage1.inj3Ang + channel3InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector3StartAngle > CRANK_ANGLE_MAX_INJ) {injector3StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
break;
|
|
//4 cylinders
|
|
case 4:
|
|
injector2StartAngle = (configPage1.inj2Ang + channel2InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector2StartAngle > CRANK_ANGLE_MAX_INJ) {injector2StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
|
|
if(configPage1.injLayout == INJ_SEQUENTIAL)
|
|
{
|
|
injector3StartAngle = (configPage1.inj3Ang + channel3InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector3StartAngle > CRANK_ANGLE_MAX_INJ) {injector3StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
injector4StartAngle = (configPage1.inj4Ang + channel4InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector4StartAngle > CRANK_ANGLE_MAX_INJ) {injector4StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
|
|
if(configPage3.fuelTrimEnabled)
|
|
{
|
|
unsigned long pw1percent = 100 + (byte)get3DTableValue(&trim1Table, currentStatus.MAP, currentStatus.RPM) - OFFSET_FUELTRIM;
|
|
unsigned long pw2percent = 100 + (byte)get3DTableValue(&trim2Table, currentStatus.MAP, currentStatus.RPM) - OFFSET_FUELTRIM;
|
|
unsigned long pw3percent = 100 + (byte)get3DTableValue(&trim3Table, currentStatus.MAP, currentStatus.RPM) - OFFSET_FUELTRIM;
|
|
unsigned long pw4percent = 100 + (byte)get3DTableValue(&trim4Table, currentStatus.MAP, currentStatus.RPM) - OFFSET_FUELTRIM;
|
|
|
|
if (pw1percent != 100) { currentStatus.PW1 = (pw1percent * currentStatus.PW1) / 100; }
|
|
if (pw2percent != 100) { currentStatus.PW2 = (pw2percent * currentStatus.PW2) / 100; }
|
|
if (pw3percent != 100) { currentStatus.PW3 = (pw3percent * currentStatus.PW3) / 100; }
|
|
if (pw4percent != 100) { currentStatus.PW4 = (pw4percent * currentStatus.PW4) / 100; }
|
|
}
|
|
}
|
|
break;
|
|
//5 cylinders
|
|
case 5:
|
|
injector2StartAngle = (configPage1.inj2Ang + channel2InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector2StartAngle > CRANK_ANGLE_MAX_INJ) {injector2StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
injector3StartAngle = (configPage1.inj3Ang + channel3InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector3StartAngle > CRANK_ANGLE_MAX_INJ) {injector3StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
injector4StartAngle = (configPage1.inj4Ang + channel4InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector4StartAngle > CRANK_ANGLE_MAX_INJ) {injector4StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
injector5StartAngle = (configPage1.inj1Ang + channel5InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector5StartAngle > CRANK_ANGLE_MAX_INJ) {injector5StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
break;
|
|
//6 cylinders
|
|
case 6:
|
|
injector2StartAngle = (configPage1.inj2Ang + channel2InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector2StartAngle > CRANK_ANGLE_MAX_INJ) {injector2StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
injector3StartAngle = (configPage1.inj3Ang + channel3InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector3StartAngle > CRANK_ANGLE_MAX_INJ) {injector3StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
break;
|
|
//8 cylinders
|
|
case 8:
|
|
injector2StartAngle = (configPage1.inj2Ang + channel2InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector2StartAngle > CRANK_ANGLE_MAX_INJ) {injector2StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
injector3StartAngle = (configPage1.inj3Ang + channel3InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector3StartAngle > CRANK_ANGLE_MAX_INJ) {injector3StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
injector4StartAngle = (configPage1.inj4Ang + channel4InjDegrees - ( PWdivTimerPerDegree ));
|
|
if(injector4StartAngle > CRANK_ANGLE_MAX_INJ) {injector4StartAngle -= CRANK_ANGLE_MAX_INJ;}
|
|
break;
|
|
//Will hit the default case on 1 cylinder or >8 cylinders. Do nothing in these cases
|
|
default:
|
|
break;
|
|
}
|
|
|
|
//***********************************************************************************************
|
|
//| BEGIN IGNITION CALCULATIONS
|
|
BIT_CLEAR(currentStatus.spark, BIT_SPARK_HRDLIM);
|
|
if (currentStatus.RPM > ((unsigned int)(configPage2.HardRevLim) * 100) ) { BIT_SET(currentStatus.spark, BIT_SPARK_HRDLIM); } //Hardcut RPM limit
|
|
|
|
|
|
//Set dwell
|
|
//Dwell is stored as ms * 10. ie Dwell of 4.3ms would be 43 in configPage2. This number therefore needs to be multiplied by 100 to get dwell in uS
|
|
if ( BIT_CHECK(currentStatus.engine, BIT_ENGINE_CRANK) ) { currentStatus.dwell = (configPage2.dwellCrank * 100); }
|
|
else { currentStatus.dwell = (configPage2.dwellRun * 100); }
|
|
//Pull battery voltage based dwell correction and apply if needed
|
|
currentStatus.dwellCorrection = table2D_getValue(&dwellVCorrectionTable, currentStatus.battery10);
|
|
if (currentStatus.dwellCorrection != 100) { currentStatus.dwell = divs100(currentStatus.dwell) * currentStatus.dwellCorrection; }
|
|
int dwellAngle = (div(currentStatus.dwell, timePerDegree).quot ); //Convert the dwell time to dwell angle based on the current engine speed
|
|
|
|
//Calculate start angle for each channel
|
|
//1 cylinder (Everyone gets this)
|
|
ignition1StartAngle = CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle; // 360 - desired advance angle - number of degrees the dwell will take
|
|
if(ignition1StartAngle < 0) {ignition1StartAngle += CRANK_ANGLE_MAX_IGN;}
|
|
|
|
//This test for more cylinders and do the same thing
|
|
switch (configPage1.nCylinders)
|
|
{
|
|
//2 cylinders
|
|
case 2:
|
|
ignition2StartAngle = channel2IgnDegrees + CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle;
|
|
if(ignition2StartAngle > CRANK_ANGLE_MAX_IGN) {ignition2StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
break;
|
|
//3 cylinders
|
|
case 3:
|
|
ignition2StartAngle = channel2IgnDegrees + CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle;
|
|
if(ignition2StartAngle > CRANK_ANGLE_MAX_IGN) {ignition2StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
ignition3StartAngle = channel3IgnDegrees + 360 - currentStatus.advance - dwellAngle;
|
|
if(ignition3StartAngle > CRANK_ANGLE_MAX_IGN) {ignition3StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
break;
|
|
//4 cylinders
|
|
case 4:
|
|
ignition2StartAngle = channel2IgnDegrees + CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle;
|
|
if(ignition2StartAngle > CRANK_ANGLE_MAX_IGN) {ignition2StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
if(ignition2StartAngle < 0) {ignition2StartAngle += CRANK_ANGLE_MAX_IGN;}
|
|
|
|
if(configPage2.sparkMode == IGN_MODE_SEQUENTIAL)
|
|
{
|
|
ignition3StartAngle = channel3IgnDegrees + CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle;
|
|
if(ignition3StartAngle > CRANK_ANGLE_MAX_IGN) {ignition3StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
ignition4StartAngle = channel4IgnDegrees + CRANK_ANGLE_MAX - currentStatus.advance - dwellAngle;
|
|
if(ignition4StartAngle > CRANK_ANGLE_MAX_IGN) {ignition4StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
}
|
|
break;
|
|
//5 cylinders
|
|
case 5:
|
|
ignition2StartAngle = channel2IgnDegrees + CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle;
|
|
if(ignition2StartAngle > CRANK_ANGLE_MAX_IGN) {ignition2StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
if(ignition2StartAngle < 0) {ignition2StartAngle += CRANK_ANGLE_MAX_IGN;}
|
|
|
|
ignition3StartAngle = channel3IgnDegrees + CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle;
|
|
if(ignition3StartAngle > CRANK_ANGLE_MAX_IGN) {ignition3StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
|
|
ignition4StartAngle = channel4IgnDegrees + CRANK_ANGLE_MAX - currentStatus.advance - dwellAngle;
|
|
if(ignition4StartAngle > CRANK_ANGLE_MAX_IGN) {ignition4StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
|
|
ignition5StartAngle = channel5IgnDegrees + CRANK_ANGLE_MAX - currentStatus.advance - dwellAngle;
|
|
if(ignition5StartAngle > CRANK_ANGLE_MAX_IGN) {ignition5StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
|
|
break;
|
|
//6 cylinders
|
|
case 6:
|
|
ignition2StartAngle = channel2IgnDegrees + CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle;
|
|
if(ignition2StartAngle > CRANK_ANGLE_MAX_IGN) {ignition2StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
ignition3StartAngle = channel3IgnDegrees + CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle;
|
|
if(ignition3StartAngle > CRANK_ANGLE_MAX_IGN) {ignition3StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
break;
|
|
//8 cylinders
|
|
case 8:
|
|
ignition2StartAngle = channel2IgnDegrees + CRANK_ANGLE_MAX_IGN - currentStatus.advance - dwellAngle;
|
|
if(ignition2StartAngle > CRANK_ANGLE_MAX_IGN) {ignition2StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
ignition3StartAngle = channel3IgnDegrees + CRANK_ANGLE_MAX - currentStatus.advance - dwellAngle;
|
|
if(ignition3StartAngle > CRANK_ANGLE_MAX_IGN) {ignition3StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
ignition4StartAngle = channel4IgnDegrees + CRANK_ANGLE_MAX - currentStatus.advance - dwellAngle;
|
|
if(ignition4StartAngle > CRANK_ANGLE_MAX_IGN) {ignition4StartAngle -= CRANK_ANGLE_MAX_IGN;}
|
|
break;
|
|
|
|
//Will hit the default case on 1 cylinder or >8 cylinders. Do nothing in these cases
|
|
default:
|
|
break;
|
|
}
|
|
|
|
//***********************************************************************************************
|
|
//| BEGIN FUEL SCHEDULES
|
|
//Finally calculate the time (uS) until we reach the firing angles and set the schedules
|
|
//We only need to set the shcedule if we're BEFORE the open angle
|
|
//This may potentially be called a number of times as we get closer and closer to the opening time
|
|
|
|
//Determine the current crank angle
|
|
int crankAngle = getCrankAngle(timePerDegree);
|
|
if (crankAngle > CRANK_ANGLE_MAX_INJ ) { crankAngle -= 360; }
|
|
|
|
if (fuelOn && currentStatus.PW1 > 0 && !BIT_CHECK(currentStatus.squirt, BIT_SQUIRT_BOOSTCUT))
|
|
{
|
|
if (injector1StartAngle <= crankAngle && fuelSchedule1.schedulesSet == 0) { injector1StartAngle += CRANK_ANGLE_MAX_INJ; }
|
|
if (injector1StartAngle > crankAngle)
|
|
{
|
|
if (configPage1.injLayout == INJ_SEMISEQUENTIAL)
|
|
{
|
|
setFuelSchedule1(openInjector1and4,
|
|
((unsigned long)(injector1StartAngle - crankAngle) * (unsigned long)timePerDegree),
|
|
(unsigned long)currentStatus.PW1,
|
|
closeInjector1and4
|
|
);
|
|
}
|
|
else
|
|
{
|
|
setFuelSchedule1(openInjector1,
|
|
((unsigned long)(injector1StartAngle - crankAngle) * (unsigned long)timePerDegree),
|
|
(unsigned long)currentStatus.PW1,
|
|
closeInjector1
|
|
);
|
|
}
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------------------------
|
|
| A Note on tempCrankAngle and tempStartAngle:
|
|
| The use of tempCrankAngle/tempStartAngle is described below. It is then used in the same way for channels 2, 3 and 4 on both injectors and ignition
|
|
| Essentially, these 2 variables are used to realign the current crank angle and the desired start angle around 0 degrees for the given cylinder/output
|
|
| Eg: If cylinder 2 TDC is 180 degrees after cylinder 1 (Eg a standard 4 cylidner engine), then tempCrankAngle is 180* less than the current crank angle and
|
|
| tempStartAngle is the desired open time less 180*. Thus the cylinder is being treated relative to its own TDC, regardless of its offset
|
|
|
|
|
| This is done to avoid problems with very short of very long times until tempStartAngle.
|
|
| This will very likely need to be rewritten when sequential is enabled
|
|
|------------------------------------------------------------------------------------------
|
|
*/
|
|
if(channel2InjEnabled)
|
|
{
|
|
tempCrankAngle = crankAngle - channel2InjDegrees;
|
|
if( tempCrankAngle < 0) { tempCrankAngle += CRANK_ANGLE_MAX_INJ; }
|
|
tempStartAngle = injector2StartAngle - channel2InjDegrees;
|
|
if ( tempStartAngle < 0) { tempStartAngle += CRANK_ANGLE_MAX_INJ; }
|
|
if (tempStartAngle <= tempCrankAngle && fuelSchedule2.schedulesSet == 0) { tempStartAngle += CRANK_ANGLE_MAX_INJ; }
|
|
if ( tempStartAngle > tempCrankAngle )
|
|
{
|
|
if (configPage1.injLayout == 1)
|
|
{
|
|
setFuelSchedule2(openInjector2and3,
|
|
((unsigned long)(tempStartAngle - tempCrankAngle) * (unsigned long)timePerDegree),
|
|
(unsigned long)currentStatus.PW2,
|
|
closeInjector2and3
|
|
);
|
|
}
|
|
else
|
|
{
|
|
setFuelSchedule2(openInjector2,
|
|
((unsigned long)(tempStartAngle - tempCrankAngle) * (unsigned long)timePerDegree),
|
|
(unsigned long)currentStatus.PW2,
|
|
closeInjector2
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(channel3InjEnabled)
|
|
{
|
|
tempCrankAngle = crankAngle - channel3InjDegrees;
|
|
if( tempCrankAngle < 0) { tempCrankAngle += CRANK_ANGLE_MAX_INJ; }
|
|
tempStartAngle = injector3StartAngle - channel3InjDegrees;
|
|
if ( tempStartAngle < 0) { tempStartAngle += CRANK_ANGLE_MAX_INJ; }
|
|
if (tempStartAngle <= tempCrankAngle && fuelSchedule3.schedulesSet == 0) { tempStartAngle += CRANK_ANGLE_MAX_INJ; }
|
|
if ( tempStartAngle > tempCrankAngle )
|
|
{
|
|
setFuelSchedule3(openInjector3,
|
|
((unsigned long)(tempStartAngle - tempCrankAngle) * (unsigned long)timePerDegree),
|
|
(unsigned long)currentStatus.PW3,
|
|
closeInjector3
|
|
);
|
|
}
|
|
}
|
|
|
|
if(channel4InjEnabled)
|
|
{
|
|
tempCrankAngle = crankAngle - channel4InjDegrees;
|
|
if( tempCrankAngle < 0) { tempCrankAngle += CRANK_ANGLE_MAX_INJ; }
|
|
tempStartAngle = injector4StartAngle - channel4InjDegrees;
|
|
if ( tempStartAngle < 0) { tempStartAngle += CRANK_ANGLE_MAX_INJ; }
|
|
if (tempStartAngle <= tempCrankAngle && fuelSchedule4.schedulesSet == 0) { tempStartAngle += CRANK_ANGLE_MAX_INJ; }
|
|
if ( tempStartAngle > tempCrankAngle )
|
|
{
|
|
setFuelSchedule4(openInjector4,
|
|
((unsigned long)(tempStartAngle - tempCrankAngle) * (unsigned long)timePerDegree),
|
|
(unsigned long)currentStatus.PW4,
|
|
closeInjector4
|
|
);
|
|
}
|
|
}
|
|
|
|
if(channel5InjEnabled)
|
|
{
|
|
tempCrankAngle = crankAngle - channel5InjDegrees;
|
|
if( tempCrankAngle < 0) { tempCrankAngle += CRANK_ANGLE_MAX_INJ; }
|
|
tempStartAngle = injector5StartAngle - channel5InjDegrees;
|
|
if ( tempStartAngle < 0) { tempStartAngle += CRANK_ANGLE_MAX_INJ; }
|
|
if (tempStartAngle <= tempCrankAngle && fuelSchedule5.schedulesSet == 0) { tempStartAngle += CRANK_ANGLE_MAX_INJ; }
|
|
if ( tempStartAngle > tempCrankAngle )
|
|
{
|
|
//Note the hacky use of fuel schedule 3 below
|
|
setFuelSchedule3(openInjector3and5,
|
|
((unsigned long)(tempStartAngle - tempCrankAngle) * (unsigned long)timePerDegree),
|
|
(unsigned long)currentStatus.PW1,
|
|
closeInjector3and5
|
|
);
|
|
}
|
|
}
|
|
}
|
|
//***********************************************************************************************
|
|
//| BEGIN IGNITION SCHEDULES
|
|
//Likewise for the ignition
|
|
crankAngle = getCrankAngle(timePerDegree); //Refresh with the latest crank angle
|
|
if (crankAngle > CRANK_ANGLE_MAX_IGN ) { crankAngle -= 360; }
|
|
|
|
//fixedCrankingOverride is used to extend the dwell during cranking so that the decoder can trigger the spark upon seeing a certain tooth. Currently only available on the basic distributor and 4g63 decoders.
|
|
if ( configPage2.ignCranklock && BIT_CHECK(currentStatus.engine, BIT_ENGINE_CRANK)) { fixedCrankingOverride = currentStatus.dwell * 2; }
|
|
else { fixedCrankingOverride = 0; }
|
|
|
|
//Perform an initial check to see if the ignition is turned on (Ignition only turns on after a preset number of cranking revolutions and:
|
|
//Check for hard cut rev limit (If we're above the hardcut limit, we simply don't set a spark schedule)
|
|
if(ignitionOn && !currentStatus.launchingHard && !BIT_CHECK(currentStatus.spark, BIT_SPARK_BOOSTCUT) && !BIT_CHECK(currentStatus.spark, BIT_SPARK_HRDLIM))
|
|
{
|
|
|
|
//if (ignition1StartAngle <= crankAngle && ignition1.schedulesSet == 0) { ignition1StartAngle += CRANK_ANGLE_MAX_IGN; }
|
|
if (ignition1StartAngle > crankAngle)
|
|
{
|
|
setIgnitionSchedule1(ign1StartFunction,
|
|
((unsigned long)(ignition1StartAngle - crankAngle) * (unsigned long)timePerDegree),
|
|
currentStatus.dwell + fixedCrankingOverride,
|
|
ign1EndFunction
|
|
);
|
|
}
|
|
|
|
tempCrankAngle = crankAngle - channel2IgnDegrees;
|
|
if( tempCrankAngle < 0) { tempCrankAngle += CRANK_ANGLE_MAX_IGN; }
|
|
tempStartAngle = ignition2StartAngle - channel2IgnDegrees;
|
|
if ( tempStartAngle < 0) { tempStartAngle += CRANK_ANGLE_MAX_IGN; }
|
|
//if ( (tempStartAngle > tempCrankAngle) && ign2LastRev != startRevolutions)
|
|
//if ( ign2LastRev != startRevolutions )
|
|
{
|
|
unsigned long ignition2StartTime = 0;
|
|
if(tempStartAngle > tempCrankAngle) { ignition2StartTime = ((unsigned long)(tempStartAngle - tempCrankAngle) * (unsigned long)timePerDegree); }
|
|
//else if (tempStartAngle < tempCrankAngle) { ignition2StartTime = ((long)(360 - tempCrankAngle + tempStartAngle) * (long)timePerDegree); }
|
|
else { ignition2StartTime = 0; }
|
|
|
|
if(ignition2StartTime > 0) {
|
|
setIgnitionSchedule2(ign2StartFunction,
|
|
ignition2StartTime,
|
|
currentStatus.dwell + fixedCrankingOverride,
|
|
ign2EndFunction
|
|
);
|
|
}
|
|
}
|
|
|
|
tempCrankAngle = crankAngle - channel3IgnDegrees;
|
|
if( tempCrankAngle < 0) { tempCrankAngle += CRANK_ANGLE_MAX_IGN; }
|
|
tempStartAngle = ignition3StartAngle - channel3IgnDegrees;
|
|
if ( tempStartAngle < 0) { tempStartAngle += CRANK_ANGLE_MAX_IGN; }
|
|
//if (tempStartAngle > tempCrankAngle)
|
|
{
|
|
long ignition3StartTime = 0;
|
|
if(tempStartAngle > tempCrankAngle) { ignition3StartTime = ((unsigned long)(tempStartAngle - tempCrankAngle) * (unsigned long)timePerDegree); }
|
|
//else if (tempStartAngle < tempCrankAngle) { ignition4StartTime = ((long)(360 - tempCrankAngle + tempStartAngle) * (long)timePerDegree); }
|
|
else { ignition3StartTime = 0; }
|
|
|
|
if(ignition3StartTime > 0) {
|
|
setIgnitionSchedule3(ign3StartFunction,
|
|
ignition3StartTime,
|
|
currentStatus.dwell + fixedCrankingOverride,
|
|
ign3EndFunction
|
|
);
|
|
}
|
|
}
|
|
|
|
tempCrankAngle = crankAngle - channel4IgnDegrees;
|
|
if( tempCrankAngle < 0) { tempCrankAngle += CRANK_ANGLE_MAX_IGN; }
|
|
tempStartAngle = ignition4StartAngle - channel4IgnDegrees;
|
|
if ( tempStartAngle < 0) { tempStartAngle += CRANK_ANGLE_MAX_IGN; }
|
|
//if (tempStartAngle > tempCrankAngle)
|
|
{
|
|
|
|
long ignition4StartTime = 0;
|
|
if(tempStartAngle > tempCrankAngle) { ignition4StartTime = ((unsigned long)(tempStartAngle - tempCrankAngle) * (unsigned long)timePerDegree); }
|
|
//else if (tempStartAngle < tempCrankAngle) { ignition4StartTime = ((long)(360 - tempCrankAngle + tempStartAngle) * (long)timePerDegree); }
|
|
else { ignition4StartTime = 0; }
|
|
|
|
if(ignition4StartTime > 0) {
|
|
setIgnitionSchedule4(ign4StartFunction,
|
|
ignition4StartTime,
|
|
currentStatus.dwell + fixedCrankingOverride,
|
|
ign4EndFunction
|
|
);
|
|
}
|
|
}
|
|
|
|
tempCrankAngle = crankAngle - channel5IgnDegrees;
|
|
if( tempCrankAngle < 0) { tempCrankAngle += CRANK_ANGLE_MAX_IGN; }
|
|
tempStartAngle = ignition5StartAngle - channel5IgnDegrees;
|
|
if ( tempStartAngle < 0) { tempStartAngle += CRANK_ANGLE_MAX_IGN; }
|
|
//if (tempStartAngle > tempCrankAngle)
|
|
{
|
|
|
|
long ignition5StartTime = 0;
|
|
if(tempStartAngle > tempCrankAngle) { ignition5StartTime = ((unsigned long)(tempStartAngle - tempCrankAngle) * (unsigned long)timePerDegree); }
|
|
//else if (tempStartAngle < tempCrankAngle) { ignition4StartTime = ((long)(360 - tempCrankAngle + tempStartAngle) * (long)timePerDegree); }
|
|
else { ignition5StartTime = 0; }
|
|
|
|
if(ignition5StartTime > 0) {
|
|
setIgnitionSchedule5(ign5StartFunction,
|
|
ignition5StartTime,
|
|
currentStatus.dwell + fixedCrankingOverride,
|
|
ign5EndFunction
|
|
);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
//These functions simply trigger the injector/coil driver off or on.
|
|
//NOTE: squirt status is changed as per http://www.msextra.com/doc/ms1extra/COM_RS232.htm#Acmd
|
|
/*
|
|
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
|
//For the AVR chips, use the faster bit flipping method of switching pins
|
|
void ignitionSetter(byte *port, bool startCharge)
|
|
{
|
|
if(
|
|
}
|
|
|
|
void openInjector1() { *inj1_pin_port |= (inj1_pin_mask); ; BIT_SET(currentStatus.squirt, BIT_SQUIRT_INJ1); }
|
|
void closeInjector1() { *inj1_pin_port &= ~(inj1_pin_mask); BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_INJ1); }
|
|
void beginCoil1Charge() { *ign1_pin_port |= (ign1_pin_mask); BIT_SET(currentStatus.spark, 0); digitalWrite(pinTachOut, LOW); }
|
|
void endCoil1Charge() { *ign1_pin_port &= ~(ign1_pin_mask); BIT_CLEAR(currentStatus.spark, 0); }
|
|
|
|
void openInjector2() { *inj2_pin_port |= (inj2_pin_mask); ; BIT_SET(currentStatus.squirt, BIT_SQUIRT_INJ2); }
|
|
void closeInjector2() { *inj2_pin_port &= ~(inj2_pin_mask); BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_INJ2); }
|
|
void beginCoil2Charge() { *ign2_pin_port |= (ign2_pin_mask); BIT_SET(currentStatus.spark, 1); digitalWrite(pinTachOut, LOW); }
|
|
void endCoil2Charge() { *ign2_pin_port &= ~(ign2_pin_mask); BIT_CLEAR(currentStatus.spark, 1);}
|
|
|
|
void openInjector3() { *inj3_pin_port |= (inj3_pin_mask); ; BIT_SET(currentStatus.squirt, BIT_SQUIRT_INJ3); }
|
|
void closeInjector3() { *inj3_pin_port &= ~(inj3_pin_mask); BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_INJ3); }
|
|
void beginCoil3Charge() { *ign3_pin_port |= (ign3_pin_mask); BIT_SET(currentStatus.spark, 2); digitalWrite(pinTachOut, LOW); }
|
|
void endCoil3Charge() { *ign3_pin_port &= ~(ign3_pin_mask); BIT_CLEAR(currentStatus.spark, 2);}
|
|
|
|
void openInjector4() { *inj4_pin_port |= (inj4_pin_mask); ; BIT_SET(currentStatus.squirt, BIT_SQUIRT_INJ4); }
|
|
void closeInjector4() { *inj4_pin_port &= ~(inj4_pin_mask); BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_INJ4); }
|
|
void beginCoil4Charge() { *ign4_pin_port |= (ign4_pin_mask); BIT_SET(currentStatus.spark, 3); digitalWrite(pinTachOut, LOW); }
|
|
void endCoil4Charge() { *ign4_pin_port &= ~(ign4_pin_mask); BIT_CLEAR(currentStatus.spark, 3);}
|
|
|
|
#else */
|
|
inline void openInjector1() { digitalWrite(pinInjector1, HIGH); BIT_SET(currentStatus.squirt, BIT_SQUIRT_INJ1); }
|
|
inline void closeInjector1() { digitalWrite(pinInjector1, LOW); BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_INJ1); }
|
|
inline void beginCoil1Charge() { digitalWrite(pinCoil1, coilHIGH); digitalWrite(pinTachOut, LOW); }
|
|
inline void endCoil1Charge() { digitalWrite(pinCoil1, coilLOW); }
|
|
|
|
inline void openInjector2() { digitalWrite(pinInjector2, HIGH); BIT_SET(currentStatus.squirt, BIT_SQUIRT_INJ2); } //Sets the relevant pin HIGH and changes the current status bit for injector 2 (2nd bit of currentStatus.squirt)
|
|
inline void closeInjector2() { digitalWrite(pinInjector2, LOW); BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_INJ2); }
|
|
inline void beginCoil2Charge() { digitalWrite(pinCoil2, coilHIGH); digitalWrite(pinTachOut, LOW); }
|
|
inline void endCoil2Charge() { digitalWrite(pinCoil2, coilLOW); }
|
|
|
|
inline void openInjector3() { digitalWrite(pinInjector3, HIGH); BIT_SET(currentStatus.squirt, BIT_SQUIRT_INJ3); } //Sets the relevant pin HIGH and changes the current status bit for injector 3 (3rd bit of currentStatus.squirt)
|
|
inline void closeInjector3() { digitalWrite(pinInjector3, LOW); BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_INJ3); }
|
|
inline void beginCoil3Charge() { digitalWrite(pinCoil3, coilHIGH); digitalWrite(pinTachOut, LOW); }
|
|
inline void endCoil3Charge() { digitalWrite(pinCoil3, coilLOW); }
|
|
|
|
inline void openInjector4() { digitalWrite(pinInjector4, HIGH); BIT_SET(currentStatus.squirt, BIT_SQUIRT_INJ4); } //Sets the relevant pin HIGH and changes the current status bit for injector 4 (4th bit of currentStatus.squirt)
|
|
inline void closeInjector4() { digitalWrite(pinInjector4, LOW); BIT_CLEAR(currentStatus.squirt, BIT_SQUIRT_INJ4); }
|
|
inline void beginCoil4Charge() { digitalWrite(pinCoil4, coilHIGH); digitalWrite(pinTachOut, LOW); }
|
|
inline void endCoil4Charge() { digitalWrite(pinCoil4, coilLOW); }
|
|
|
|
inline void openInjector5() { digitalWrite(pinInjector5, HIGH); }
|
|
inline void closeInjector5() { digitalWrite(pinInjector5, LOW); }
|
|
inline void beginCoil5Charge() { digitalWrite(pinCoil5, coilHIGH); digitalWrite(pinTachOut, LOW); }
|
|
inline void endCoil5Charge() { digitalWrite(pinCoil5, coilLOW); }
|
|
|
|
//#endif
|
|
|
|
|
|
//Combination functions for semi-sequential injection
|
|
void openInjector1and4() { digitalWrite(pinInjector1, HIGH); digitalWrite(pinInjector4, HIGH); BIT_SET(currentStatus.squirt, 0); }
|
|
void closeInjector1and4() { digitalWrite(pinInjector1, LOW); digitalWrite(pinInjector4, LOW);BIT_CLEAR(currentStatus.squirt, 0); }
|
|
void openInjector2and3() { digitalWrite(pinInjector2, HIGH); digitalWrite(pinInjector3, HIGH); BIT_SET(currentStatus.squirt, 1); }
|
|
void closeInjector2and3() { digitalWrite(pinInjector2, LOW); digitalWrite(pinInjector3, LOW); BIT_CLEAR(currentStatus.squirt, 1); }
|
|
//Below functions are used for 5 cylinder support
|
|
void openInjector3and5() { digitalWrite(pinInjector3, HIGH); digitalWrite(pinInjector5, HIGH); BIT_SET(currentStatus.squirt, 0); }
|
|
void closeInjector3and5() { digitalWrite(pinInjector3, LOW); digitalWrite(pinInjector5, LOW);BIT_CLEAR(currentStatus.squirt, 0); }
|
|
|
|
//As above but for ignition (Wasted COP mode)
|
|
void beginCoil1and3Charge() { digitalWrite(pinCoil1, coilHIGH); digitalWrite(pinCoil3, coilHIGH); digitalWrite(pinTachOut, LOW); }
|
|
void endCoil1and3Charge() { digitalWrite(pinCoil1, coilLOW); digitalWrite(pinCoil3, coilLOW); }
|
|
void beginCoil2and4Charge() { digitalWrite(pinCoil2, coilHIGH); digitalWrite(pinCoil4, coilHIGH); digitalWrite(pinTachOut, LOW); }
|
|
void endCoil2and4Charge() { digitalWrite(pinCoil2, coilLOW); digitalWrite(pinCoil4, coilLOW); }
|
|
|
|
void nullCallback() { return; }
|
|
|
|
|
|
|