quorum/core/chain_makers_test.go

101 lines
3.8 KiB
Go
Raw Normal View History

2015-07-06 17:54:22 -07:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-06 17:54:22 -07:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-06 17:54:22 -07:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-06 17:54:22 -07:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-06 17:54:22 -07:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-06 17:54:22 -07:00
package core
import (
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/params"
)
func ExampleGenerateChain() {
var (
key1, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291")
key2, _ = crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a")
key3, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee")
addr1 = crypto.PubkeyToAddress(key1.PublicKey)
addr2 = crypto.PubkeyToAddress(key2.PublicKey)
addr3 = crypto.PubkeyToAddress(key3.PublicKey)
2018-05-23 22:32:26 -07:00
db = ethdb.NewMemDatabase()
)
// Ensure that key1 has some funds in the genesis block.
gspec := &Genesis{
Config: &params.ChainConfig{HomesteadBlock: new(big.Int)},
Alloc: GenesisAlloc{addr1: {Balance: big.NewInt(1000000)}},
}
genesis := gspec.MustCommit(db)
// This call generates a chain of 5 blocks. The function runs for
// each block and adds different features to gen based on the
// block index.
signer := types.HomesteadSigner{}
2018-05-23 22:32:26 -07:00
chain, _ := GenerateChain(gspec.Config, genesis, ethash.NewFaker(), db, 5, func(i int, gen *BlockGen) {
switch i {
case 0:
// In block 1, addr1 sends addr2 some ether.
2018-05-23 22:32:26 -07:00
tx, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(10000), params.TxGas, nil, nil), signer, key1)
gen.AddTx(tx)
case 1:
// In block 2, addr1 sends some more ether to addr2.
// addr2 passes it on to addr3.
2018-05-23 22:32:26 -07:00
tx1, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(1000), params.TxGas, nil, nil), signer, key1)
tx2, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr2), addr3, big.NewInt(1000), params.TxGas, nil, nil), signer, key2)
gen.AddTx(tx1)
gen.AddTx(tx2)
case 2:
// Block 3 is empty but was mined by addr3.
gen.SetCoinbase(addr3)
gen.SetExtra([]byte("yeehaw"))
case 3:
// Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data).
b2 := gen.PrevBlock(1).Header()
b2.Extra = []byte("foo")
gen.AddUncle(b2)
b3 := gen.PrevBlock(2).Header()
b3.Extra = []byte("foo")
gen.AddUncle(b3)
}
})
// Import the chain. This runs all block validation rules.
2018-05-23 22:32:26 -07:00
blockchain, _ := NewBlockChain(db, nil, gspec.Config, ethash.NewFaker(), vm.Config{})
defer blockchain.Stop()
if i, err := blockchain.InsertChain(chain); err != nil {
fmt.Printf("insert error (block %d): %v\n", chain[i].NumberU64(), err)
return
}
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
state, _, _ := blockchain.State()
fmt.Printf("last block: #%d\n", blockchain.CurrentBlock().Number())
fmt.Println("balance of addr1:", state.GetBalance(addr1))
fmt.Println("balance of addr2:", state.GetBalance(addr2))
fmt.Println("balance of addr3:", state.GetBalance(addr3))
// Output:
// last block: #5
// balance of addr1: 989000
// balance of addr2: 10000
2015-07-25 03:06:17 -07:00
// balance of addr3: 19687500000000001000
}