quorum/core/blockchain.go

1367 lines
46 KiB
Go
Raw Normal View History

2015-07-06 17:54:22 -07:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-06 17:54:22 -07:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-06 17:54:22 -07:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-06 17:54:22 -07:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-06 17:54:22 -07:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-06 17:54:22 -07:00
2015-07-06 20:08:16 -07:00
// Package core implements the Ethereum consensus protocol.
2014-12-04 01:28:02 -08:00
package core
2014-02-14 14:56:09 -08:00
import (
"errors"
2014-09-24 02:39:17 -07:00
"fmt"
"io"
"math/big"
mrand "math/rand"
"runtime"
"sync"
"sync/atomic"
"time"
2015-03-16 03:27:38 -07:00
"github.com/ethereum/go-ethereum/common"
2015-03-23 14:59:19 -07:00
"github.com/ethereum/go-ethereum/core/state"
2015-03-16 15:48:18 -07:00
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
2014-12-03 05:05:19 -08:00
"github.com/ethereum/go-ethereum/event"
2014-10-31 04:56:05 -07:00
"github.com/ethereum/go-ethereum/logger"
2015-04-04 03:40:11 -07:00
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/pow"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
2015-06-19 07:48:55 -07:00
"github.com/hashicorp/golang-lru"
2014-02-14 14:56:09 -08:00
)
var (
chainlogger = logger.NewLogger("CHAIN")
jsonlogger = logger.NewJsonLogger()
blockInsertTimer = metrics.NewTimer("chain/inserts")
ErrNoGenesis = errors.New("Genesis not found in chain")
)
2015-04-20 11:37:40 -07:00
const (
bodyCacheLimit = 256
2015-06-19 09:16:09 -07:00
blockCacheLimit = 256
2015-06-05 05:07:49 -07:00
maxFutureBlocks = 256
maxTimeFutureBlocks = 30
// must be bumped when consensus algorithm is changed, this forces the upgradedb
// command to be run (forces the blocks to be imported again using the new algorithm)
BlockChainVersion = 3
2015-04-20 11:37:40 -07:00
)
// BlockChain represents the canonical chain given a database with a genesis
// block. The Blockchain manages chain imports, reverts, chain reorganisations.
//
// Importing blocks in to the block chain happens according to the set of rules
// defined by the two stage Validator. Processing of blocks is done using the
// Processor which processes the included transaction. The validation of the state
// is done in the second part of the Validator. Failing results in aborting of
// the import.
//
// The BlockChain also helps in returning blocks from **any** chain included
// in the database as well as blocks that represents the canonical chain. It's
// important to note that GetBlock can return any block and does not need to be
// included in the canonical one where as GetBlockByNumber always represents the
// canonical chain.
type BlockChain struct {
config *ChainConfig // chain & network configuration
hc *HeaderChain
chainDb ethdb.Database
2014-12-03 05:05:19 -08:00
eventMux *event.TypeMux
genesisBlock *types.Block
mu sync.RWMutex // global mutex for locking chain operations
chainmu sync.RWMutex // blockchain insertion lock
procmu sync.RWMutex // block processor lock
checkpoint int // checkpoint counts towards the new checkpoint
currentBlock *types.Block // Current head of the block chain
currentFastBlock *types.Block // Current head of the fast-sync chain (may be above the block chain!)
2014-02-14 14:56:09 -08:00
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
publicStateCache *state.StateDB // Public state database to reuse between imports (contains state cache)
privateStateCache *state.StateDB // Private state database to reuse between imports (contains state cache)
bodyCache *lru.Cache // Cache for the most recent block bodies
bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format
blockCache *lru.Cache // Cache for the most recent entire blocks
futureBlocks *lru.Cache // future blocks are blocks added for later processing
quit chan struct{} // blockchain quit channel
2016-03-15 09:12:03 -07:00
running int32 // running must be called atomically
// procInterrupt must be atomically called
procInterrupt int32 // interrupt signaler for block processing
wg sync.WaitGroup // chain processing wait group for shutting down
pow pow.PoW
processor Processor // block processor interface
validator Validator // block and state validator interface
chainEvents chan interface{} // Serialized chain insertion events
}
2014-02-14 14:56:09 -08:00
// NewBlockChain returns a fully initialised block chain using information
// available in the database. It initialiser the default Ethereum Validator and
// Processor.
2016-10-09 08:10:48 -07:00
func NewBlockChain(chainDb ethdb.Database, config *ChainConfig, pow pow.PoW, mux *event.TypeMux, enableQuorumChecks bool) (*BlockChain, error) {
bodyCache, _ := lru.New(bodyCacheLimit)
bodyRLPCache, _ := lru.New(bodyCacheLimit)
blockCache, _ := lru.New(blockCacheLimit)
futureBlocks, _ := lru.New(maxFutureBlocks)
bc := &BlockChain{
config: config,
chainDb: chainDb,
eventMux: mux,
quit: make(chan struct{}),
bodyCache: bodyCache,
bodyRLPCache: bodyRLPCache,
blockCache: blockCache,
futureBlocks: futureBlocks,
pow: pow,
chainEvents: make(chan interface{}, 20), // Buffered for async publishing
2015-04-20 11:37:40 -07:00
}
2016-10-09 08:10:48 -07:00
bc.SetValidator(NewBlockValidator(chainDb, config, bc, enableQuorumChecks))
bc.SetProcessor(NewStateProcessor(config, bc))
gv := func() HeaderValidator { return bc.Validator() }
var err error
bc.hc, err = NewHeaderChain(chainDb, config, gv, bc.getProcInterrupt)
if err != nil {
return nil, err
}
bc.genesisBlock = bc.GetBlockByNumber(0)
if bc.genesisBlock == nil {
return nil, ErrNoGenesis
}
if err := bc.loadLastState(); err != nil {
return nil, err
}
// Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain
for hash, _ := range BadHashes {
if header := bc.GetHeaderByHash(hash); header != nil {
glog.V(logger.Error).Infof("Found bad hash, rewinding chain to block #%d [%x…]", header.Number, header.ParentHash[:4])
bc.SetHead(header.Number.Uint64() - 1)
glog.V(logger.Error).Infoln("Chain rewind was successful, resuming normal operation")
}
}
// Take ownership of this particular state
go bc.update()
go bc.chainEventsLoop()
return bc, nil
2015-02-18 04:14:21 -08:00
}
func (self *BlockChain) getProcInterrupt() bool {
return atomic.LoadInt32(&self.procInterrupt) == 1
}
// loadLastState loads the last known chain state from the database. This method
// assumes that the chain manager mutex is held.
func (self *BlockChain) loadLastState() error {
// Restore the last known head block
head := GetHeadBlockHash(self.chainDb)
if head == (common.Hash{}) {
// Corrupt or empty database, init from scratch
self.Reset()
} else {
if block := self.GetBlockByHash(head); block != nil {
// Block found, set as the current head
self.currentBlock = block
} else {
// Corrupt or empty database, init from scratch
self.Reset()
}
}
// Restore the last known head header
currentHeader := self.currentBlock.Header()
if head := GetHeadHeaderHash(self.chainDb); head != (common.Hash{}) {
if header := self.GetHeaderByHash(head); header != nil {
currentHeader = header
}
}
self.hc.SetCurrentHeader(currentHeader)
// Restore the last known head fast block
self.currentFastBlock = self.currentBlock
if head := GetHeadFastBlockHash(self.chainDb); head != (common.Hash{}) {
if block := self.GetBlockByHash(head); block != nil {
self.currentFastBlock = block
}
}
// Initialize a statedb cache to ensure singleton account bloom filter generation
statedb, err := state.New(self.currentBlock.Root(), self.chainDb)
if err != nil {
return err
}
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
self.publicStateCache = statedb
self.publicStateCache.GetAccount(common.Address{})
// Initialize a statedb cache to ensure singleton account bloom filter generation
self.privateStateCache, err = state.New(GetPrivateStateRoot(self.chainDb, self.currentBlock.Hash()), self.chainDb)
if err != nil {
return err
}
self.privateStateCache.GetAccount(common.Address{})
// Issue a status log for the user
headerTd := self.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64())
blockTd := self.GetTd(self.currentBlock.Hash(), self.currentBlock.NumberU64())
fastTd := self.GetTd(self.currentFastBlock.Hash(), self.currentFastBlock.NumberU64())
glog.V(logger.Info).Infof("Last header: #%d [%x…] TD=%v", currentHeader.Number, currentHeader.Hash().Bytes()[:4], headerTd)
glog.V(logger.Info).Infof("Last block: #%d [%x…] TD=%v", self.currentBlock.Number(), self.currentBlock.Hash().Bytes()[:4], blockTd)
glog.V(logger.Info).Infof("Fast block: #%d [%x…] TD=%v", self.currentFastBlock.Number(), self.currentFastBlock.Hash().Bytes()[:4], fastTd)
return nil
}
// SetHead rewinds the local chain to a new head. In the case of headers, everything
// above the new head will be deleted and the new one set. In the case of blocks
// though, the head may be further rewound if block bodies are missing (non-archive
// nodes after a fast sync).
func (bc *BlockChain) SetHead(head uint64) {
bc.mu.Lock()
defer bc.mu.Unlock()
delFn := func(hash common.Hash, num uint64) {
DeleteBody(bc.chainDb, hash, num)
}
bc.hc.SetHead(head, delFn)
// Clear out any stale content from the caches
bc.bodyCache.Purge()
bc.bodyRLPCache.Purge()
bc.blockCache.Purge()
bc.futureBlocks.Purge()
// Update all computed fields to the new head
currentHeader := bc.hc.CurrentHeader()
if bc.currentBlock != nil && currentHeader.Number.Uint64() < bc.currentBlock.NumberU64() {
bc.currentBlock = bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64())
}
if bc.currentFastBlock != nil && currentHeader.Number.Uint64() < bc.currentFastBlock.NumberU64() {
bc.currentFastBlock = bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64())
}
if bc.currentBlock == nil {
bc.currentBlock = bc.genesisBlock
}
if bc.currentFastBlock == nil {
bc.currentFastBlock = bc.genesisBlock
}
if err := WriteHeadBlockHash(bc.chainDb, bc.currentBlock.Hash()); err != nil {
glog.Fatalf("failed to reset head block hash: %v", err)
}
if err := WriteHeadFastBlockHash(bc.chainDb, bc.currentFastBlock.Hash()); err != nil {
glog.Fatalf("failed to reset head fast block hash: %v", err)
}
bc.loadLastState()
}
// FastSyncCommitHead sets the current head block to the one defined by the hash
// irrelevant what the chain contents were prior.
func (self *BlockChain) FastSyncCommitHead(hash common.Hash) error {
// Make sure that both the block as well at its state trie exists
block := self.GetBlockByHash(hash)
if block == nil {
return fmt.Errorf("non existent block [%x…]", hash[:4])
}
if _, err := trie.NewSecure(block.Root(), self.chainDb, 0); err != nil {
return err
}
// If all checks out, manually set the head block
self.mu.Lock()
self.currentBlock = block
self.mu.Unlock()
glog.V(logger.Info).Infof("committed block #%d [%x…] as new head", block.Number(), hash[:4])
return nil
}
// GasLimit returns the gas limit of the current HEAD block.
func (self *BlockChain) GasLimit() *big.Int {
self.mu.RLock()
defer self.mu.RUnlock()
2014-12-10 10:59:12 -08:00
return self.currentBlock.GasLimit()
}
// LastBlockHash return the hash of the HEAD block.
func (self *BlockChain) LastBlockHash() common.Hash {
self.mu.RLock()
defer self.mu.RUnlock()
return self.currentBlock.Hash()
}
// CurrentBlock retrieves the current head block of the canonical chain. The
// block is retrieved from the blockchain's internal cache.
func (self *BlockChain) CurrentBlock() *types.Block {
self.mu.RLock()
defer self.mu.RUnlock()
return self.currentBlock
2014-02-14 14:56:09 -08:00
}
// CurrentFastBlock retrieves the current fast-sync head block of the canonical
// chain. The block is retrieved from the blockchain's internal cache.
func (self *BlockChain) CurrentFastBlock() *types.Block {
self.mu.RLock()
defer self.mu.RUnlock()
return self.currentFastBlock
}
// Status returns status information about the current chain such as the HEAD Td,
// the HEAD hash and the hash of the genesis block.
func (self *BlockChain) Status() (td *big.Int, currentBlock common.Hash, genesisBlock common.Hash) {
2014-12-18 04:22:59 -08:00
self.mu.RLock()
defer self.mu.RUnlock()
return self.GetTd(self.currentBlock.Hash(), self.currentBlock.NumberU64()), self.currentBlock.Hash(), self.genesisBlock.Hash()
}
// SetProcessor sets the processor required for making state modifications.
func (self *BlockChain) SetProcessor(processor Processor) {
self.procmu.Lock()
defer self.procmu.Unlock()
self.processor = processor
}
// SetValidator sets the validator which is used to validate incoming blocks.
func (self *BlockChain) SetValidator(validator Validator) {
self.procmu.Lock()
defer self.procmu.Unlock()
self.validator = validator
}
// Validator returns the current validator.
func (self *BlockChain) Validator() Validator {
self.procmu.RLock()
defer self.procmu.RUnlock()
return self.validator
}
// Processor returns the current processor.
func (self *BlockChain) Processor() Processor {
self.procmu.RLock()
defer self.procmu.RUnlock()
return self.processor
}
// State returns a new mutable state based on the current HEAD block.
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
func (self *BlockChain) State() (*state.StateDB, *state.StateDB, error) {
return self.StateAt(self.CurrentBlock().Root())
}
// StateAt returns a new mutable state based on a particular point in time.
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
func (self *BlockChain) StateAt(root common.Hash) (*state.StateDB, *state.StateDB, error) {
publicStateDb, publicStateDbErr := self.publicStateCache.New(root)
if publicStateDbErr != nil {
return nil, nil, publicStateDbErr
}
privateStateDb, privateStateDbErr := self.privateStateCache.New(GetPrivateStateRoot(self.chainDb, root))
if privateStateDbErr != nil {
return nil, nil, privateStateDbErr
}
return publicStateDb, privateStateDb, nil
2014-12-10 10:59:12 -08:00
}
// Reset purges the entire blockchain, restoring it to its genesis state.
func (bc *BlockChain) Reset() {
bc.ResetWithGenesisBlock(bc.genesisBlock)
}
// ResetWithGenesisBlock purges the entire blockchain, restoring it to the
// specified genesis state.
func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) {
// Dump the entire block chain and purge the caches
bc.SetHead(0)
bc.mu.Lock()
defer bc.mu.Unlock()
// Prepare the genesis block and reinitialise the chain
if err := bc.hc.WriteTd(genesis.Hash(), genesis.NumberU64(), genesis.Difficulty()); err != nil {
glog.Fatalf("failed to write genesis block TD: %v", err)
}
if err := WriteBlock(bc.chainDb, genesis); err != nil {
glog.Fatalf("failed to write genesis block: %v", err)
}
bc.genesisBlock = genesis
bc.insert(bc.genesisBlock)
bc.currentBlock = bc.genesisBlock
bc.hc.SetGenesis(bc.genesisBlock.Header())
bc.hc.SetCurrentHeader(bc.genesisBlock.Header())
bc.currentFastBlock = bc.genesisBlock
}
// Export writes the active chain to the given writer.
func (self *BlockChain) Export(w io.Writer) error {
2015-06-06 07:59:56 -07:00
if err := self.ExportN(w, uint64(0), self.currentBlock.NumberU64()); err != nil {
2015-06-05 20:01:54 -07:00
return err
}
return nil
}
// ExportN writes a subset of the active chain to the given writer.
func (self *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
self.mu.RLock()
defer self.mu.RUnlock()
2015-04-04 14:04:19 -07:00
2015-06-05 20:01:54 -07:00
if first > last {
return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last)
}
2015-06-06 06:50:23 -07:00
glog.V(logger.Info).Infof("exporting %d blocks...\n", last-first+1)
2015-06-05 20:01:54 -07:00
for nr := first; nr <= last; nr++ {
block := self.GetBlockByNumber(nr)
if block == nil {
return fmt.Errorf("export failed on #%d: not found", nr)
}
if err := block.EncodeRLP(w); err != nil {
return err
}
2014-12-17 03:57:35 -08:00
}
return nil
2014-12-17 03:57:35 -08:00
}
// insert injects a new head block into the current block chain. This method
// assumes that the block is indeed a true head. It will also reset the head
// header and the head fast sync block to this very same block if they are older
// or if they are on a different side chain.
//
// Note, this function assumes that the `mu` mutex is held!
func (bc *BlockChain) insert(block *types.Block) {
// If the block is on a side chain or an unknown one, force other heads onto it too
updateHeads := GetCanonicalHash(bc.chainDb, block.NumberU64()) != block.Hash()
// Add the block to the canonical chain number scheme and mark as the head
if err := WriteCanonicalHash(bc.chainDb, block.Hash(), block.NumberU64()); err != nil {
glog.Fatalf("failed to insert block number: %v", err)
}
if err := WriteHeadBlockHash(bc.chainDb, block.Hash()); err != nil {
glog.Fatalf("failed to insert head block hash: %v", err)
}
bc.currentBlock = block
// If the block is better than out head or is on a different chain, force update heads
if updateHeads {
bc.hc.SetCurrentHeader(block.Header())
if err := WriteHeadFastBlockHash(bc.chainDb, block.Hash()); err != nil {
glog.Fatalf("failed to insert head fast block hash: %v", err)
}
bc.currentFastBlock = block
}
}
2014-11-17 03:12:55 -08:00
// Accessors
func (bc *BlockChain) Genesis() *types.Block {
2014-02-14 14:56:09 -08:00
return bc.genesisBlock
}
// GetBody retrieves a block body (transactions and uncles) from the database by
// hash, caching it if found.
func (self *BlockChain) GetBody(hash common.Hash) *types.Body {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := self.bodyCache.Get(hash); ok {
body := cached.(*types.Body)
return body
}
body := GetBody(self.chainDb, hash, self.hc.GetBlockNumber(hash))
if body == nil {
return nil
}
// Cache the found body for next time and return
self.bodyCache.Add(hash, body)
return body
}
2015-01-28 12:12:26 -08:00
// GetBodyRLP retrieves a block body in RLP encoding from the database by hash,
// caching it if found.
func (self *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue {
// Short circuit if the body's already in the cache, retrieve otherwise
if cached, ok := self.bodyRLPCache.Get(hash); ok {
return cached.(rlp.RawValue)
}
body := GetBodyRLP(self.chainDb, hash, self.hc.GetBlockNumber(hash))
if len(body) == 0 {
return nil
}
// Cache the found body for next time and return
self.bodyRLPCache.Add(hash, body)
return body
}
// HasBlock checks if a block is fully present in the database or not, caching
// it if present.
func (bc *BlockChain) HasBlock(hash common.Hash) bool {
return bc.GetBlockByHash(hash) != nil
}
// HasBlockAndState checks if a block and associated state trie is fully present
// in the database or not, caching it if present.
func (bc *BlockChain) HasBlockAndState(hash common.Hash) bool {
// Check first that the block itself is known
block := bc.GetBlockByHash(hash)
if block == nil {
return false
}
// Ensure the associated state is also present
_, err := state.New(block.Root(), bc.chainDb)
return err == nil
}
// GetBlock retrieves a block from the database by hash and number,
// caching it if found.
func (self *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
// Short circuit if the block's already in the cache, retrieve otherwise
if block, ok := self.blockCache.Get(hash); ok {
return block.(*types.Block)
}
block := GetBlock(self.chainDb, hash, number)
if block == nil {
return nil
}
// Cache the found block for next time and return
self.blockCache.Add(block.Hash(), block)
return block
2014-02-14 14:56:09 -08:00
}
// GetBlockByHash retrieves a block from the database by hash, caching it if found.
func (self *BlockChain) GetBlockByHash(hash common.Hash) *types.Block {
return self.GetBlock(hash, self.hc.GetBlockNumber(hash))
}
// GetBlockByNumber retrieves a block from the database by number, caching it
// (associated with its hash) if found.
func (self *BlockChain) GetBlockByNumber(number uint64) *types.Block {
hash := GetCanonicalHash(self.chainDb, number)
if hash == (common.Hash{}) {
return nil
}
return self.GetBlock(hash, number)
}
// [deprecated by eth/62]
2015-06-16 03:41:50 -07:00
// GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors.
func (self *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) {
number := self.hc.GetBlockNumber(hash)
2015-06-16 03:41:50 -07:00
for i := 0; i < n; i++ {
block := self.GetBlock(hash, number)
2015-06-16 03:41:50 -07:00
if block == nil {
break
}
blocks = append(blocks, block)
hash = block.ParentHash()
number--
2015-06-16 03:41:50 -07:00
}
return
}
// GetUnclesInChain retrieves all the uncles from a given block backwards until
// a specific distance is reached.
func (self *BlockChain) GetUnclesInChain(block *types.Block, length int) []*types.Header {
uncles := []*types.Header{}
for i := 0; block != nil && i < length; i++ {
uncles = append(uncles, block.Uncles()...)
block = self.GetBlock(block.ParentHash(), block.NumberU64()-1)
}
return uncles
2014-11-17 03:12:55 -08:00
}
2014-09-26 04:32:54 -07:00
// Stop stops the blockchain service. If any imports are currently in progress
// it will abort them using the procInterrupt.
func (bc *BlockChain) Stop() {
if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) {
return
}
close(bc.quit)
atomic.StoreInt32(&bc.procInterrupt, 1)
bc.wg.Wait()
glog.V(logger.Info).Infoln("Chain manager stopped")
}
func (self *BlockChain) procFutureBlocks() {
blocks := make([]*types.Block, 0, self.futureBlocks.Len())
for _, hash := range self.futureBlocks.Keys() {
if block, exist := self.futureBlocks.Get(hash); exist {
blocks = append(blocks, block.(*types.Block))
}
}
if len(blocks) > 0 {
types.BlockBy(types.Number).Sort(blocks)
self.InsertChain(blocks)
}
}
type WriteStatus byte
const (
NonStatTy WriteStatus = iota
CanonStatTy
SplitStatTy
SideStatTy
)
// Rollback is designed to remove a chain of links from the database that aren't
// certain enough to be valid.
func (self *BlockChain) Rollback(chain []common.Hash) {
self.mu.Lock()
defer self.mu.Unlock()
for i := len(chain) - 1; i >= 0; i-- {
hash := chain[i]
currentHeader := self.hc.CurrentHeader()
if currentHeader.Hash() == hash {
self.hc.SetCurrentHeader(self.GetHeader(currentHeader.ParentHash, currentHeader.Number.Uint64()-1))
}
if self.currentFastBlock.Hash() == hash {
self.currentFastBlock = self.GetBlock(self.currentFastBlock.ParentHash(), self.currentFastBlock.NumberU64()-1)
WriteHeadFastBlockHash(self.chainDb, self.currentFastBlock.Hash())
}
if self.currentBlock.Hash() == hash {
self.currentBlock = self.GetBlock(self.currentBlock.ParentHash(), self.currentBlock.NumberU64()-1)
WriteHeadBlockHash(self.chainDb, self.currentBlock.Hash())
}
}
}
// InsertReceiptChain attempts to complete an already existing header chain with
// transaction and receipt data.
func (self *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) {
self.wg.Add(1)
defer self.wg.Done()
// Collect some import statistics to report on
stats := struct{ processed, ignored int32 }{}
start := time.Now()
// Create the block importing task queue and worker functions
tasks := make(chan int, len(blockChain))
for i := 0; i < len(blockChain) && i < len(receiptChain); i++ {
tasks <- i
}
close(tasks)
errs, failed := make([]error, len(tasks)), int32(0)
process := func(worker int) {
for index := range tasks {
block, receipts := blockChain[index], receiptChain[index]
// Short circuit insertion if shutting down or processing failed
if atomic.LoadInt32(&self.procInterrupt) == 1 {
return
}
if atomic.LoadInt32(&failed) > 0 {
return
}
// Short circuit if the owner header is unknown
if !self.HasHeader(block.Hash()) {
errs[index] = fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4])
atomic.AddInt32(&failed, 1)
return
}
// Skip if the entire data is already known
if self.HasBlock(block.Hash()) {
atomic.AddInt32(&stats.ignored, 1)
continue
}
// Compute all the non-consensus fields of the receipts
transactions, logIndex := block.Transactions(), uint(0)
for j := 0; j < len(receipts); j++ {
// The transaction hash can be retrieved from the transaction itself
receipts[j].TxHash = transactions[j].Hash()
// The contract address can be derived from the transaction itself
if MessageCreatesContract(transactions[j]) {
from, _ := transactions[j].From()
receipts[j].ContractAddress = crypto.CreateAddress(from, transactions[j].Nonce())
}
// The used gas can be calculated based on previous receipts
if j == 0 {
receipts[j].GasUsed = new(big.Int).Set(receipts[j].CumulativeGasUsed)
} else {
receipts[j].GasUsed = new(big.Int).Sub(receipts[j].CumulativeGasUsed, receipts[j-1].CumulativeGasUsed)
}
// The derived log fields can simply be set from the block and transaction
for k := 0; k < len(receipts[j].Logs); k++ {
receipts[j].Logs[k].BlockNumber = block.NumberU64()
receipts[j].Logs[k].BlockHash = block.Hash()
receipts[j].Logs[k].TxHash = receipts[j].TxHash
receipts[j].Logs[k].TxIndex = uint(j)
receipts[j].Logs[k].Index = logIndex
logIndex++
}
}
// Write all the data out into the database
if err := WriteBody(self.chainDb, block.Hash(), block.NumberU64(), block.Body()); err != nil {
errs[index] = fmt.Errorf("failed to write block body: %v", err)
atomic.AddInt32(&failed, 1)
glog.Fatal(errs[index])
return
}
if err := WriteBlockReceipts(self.chainDb, block.Hash(), block.NumberU64(), receipts); err != nil {
errs[index] = fmt.Errorf("failed to write block receipts: %v", err)
atomic.AddInt32(&failed, 1)
glog.Fatal(errs[index])
return
}
if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil {
errs[index] = fmt.Errorf("failed to write log blooms: %v", err)
atomic.AddInt32(&failed, 1)
glog.Fatal(errs[index])
return
}
if err := WriteTransactions(self.chainDb, block); err != nil {
errs[index] = fmt.Errorf("failed to write individual transactions: %v", err)
atomic.AddInt32(&failed, 1)
glog.Fatal(errs[index])
return
}
if err := WriteReceipts(self.chainDb, receipts); err != nil {
errs[index] = fmt.Errorf("failed to write individual receipts: %v", err)
atomic.AddInt32(&failed, 1)
glog.Fatal(errs[index])
return
}
atomic.AddInt32(&stats.processed, 1)
}
}
// Start as many worker threads as goroutines allowed
pending := new(sync.WaitGroup)
for i := 0; i < runtime.GOMAXPROCS(0); i++ {
pending.Add(1)
go func(id int) {
defer pending.Done()
process(id)
}(i)
}
pending.Wait()
// If anything failed, report
if failed > 0 {
for i, err := range errs {
if err != nil {
return i, err
}
}
}
if atomic.LoadInt32(&self.procInterrupt) == 1 {
glog.V(logger.Debug).Infoln("premature abort during receipt chain processing")
return 0, nil
}
// Update the head fast sync block if better
self.mu.Lock()
head := blockChain[len(errs)-1]
if self.GetTd(self.currentFastBlock.Hash(), self.currentFastBlock.NumberU64()).Cmp(self.GetTd(head.Hash(), head.NumberU64())) < 0 {
if err := WriteHeadFastBlockHash(self.chainDb, head.Hash()); err != nil {
glog.Fatalf("failed to update head fast block hash: %v", err)
}
self.currentFastBlock = head
}
self.mu.Unlock()
// Report some public statistics so the user has a clue what's going on
first, last := blockChain[0], blockChain[len(blockChain)-1]
ignored := ""
if stats.ignored > 0 {
ignored = fmt.Sprintf(" (%d ignored)", stats.ignored)
}
glog.V(logger.Info).Infof("imported %d receipts in %9v. #%d [%x… / %x…]%s", stats.processed, common.PrettyDuration(time.Since(start)), last.Number(), first.Hash().Bytes()[:4], last.Hash().Bytes()[:4], ignored)
return 0, nil
}
// WriteBlock writes the block to the chain.
func (self *BlockChain) WriteBlock(block *types.Block) (status WriteStatus, err error) {
self.wg.Add(1)
defer self.wg.Done()
// Calculate the total difficulty of the block
ptd := self.GetTd(block.ParentHash(), block.NumberU64()-1)
if ptd == nil {
return NonStatTy, ParentError(block.ParentHash())
}
// Make sure no inconsistent state is leaked during insertion
self.mu.Lock()
defer self.mu.Unlock()
localTd := self.GetTd(self.currentBlock.Hash(), self.currentBlock.NumberU64())
externTd := new(big.Int).Add(block.Difficulty(), ptd)
// Irrelevant of the canonical status, write the block itself to the database
if err := self.hc.WriteTd(block.Hash(), block.NumberU64(), externTd); err != nil {
glog.Fatalf("failed to write block total difficulty: %v", err)
}
if err := WriteBlock(self.chainDb, block); err != nil {
glog.Fatalf("failed to write block contents: %v", err)
}
// If the total difficulty is higher than our known, add it to the canonical chain
// Second clause in the if statement reduces the vulnerability to selfish mining.
// Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf
if externTd.Cmp(localTd) > 0 || (externTd.Cmp(localTd) == 0 && mrand.Float64() < 0.5) {
// Reorganise the chain if the parent is not the head block
if block.ParentHash() != self.currentBlock.Hash() {
if err := self.reorg(self.currentBlock, block); err != nil {
return NonStatTy, err
}
}
self.insert(block) // Insert the block as the new head of the chain
status = CanonStatTy
} else {
status = SideStatTy
}
self.futureBlocks.Remove(block.Hash())
return
}
// InsertChain will attempt to insert the given chain in to the canonical chain or, otherwise, create a fork. It an error is returned
// it will return the index number of the failing block as well an error describing what went wrong (for possible errors see core/errors.go).
func (self *BlockChain) InsertChain(chain types.Blocks) (int, error) {
self.wg.Add(1)
defer self.wg.Done()
2015-05-16 15:55:02 -07:00
self.chainmu.Lock()
defer self.chainmu.Unlock()
// A queued approach to delivering events. This is generally
// faster than direct delivery and requires much less mutex
// acquiring.
2015-04-04 14:04:19 -07:00
var (
stats = insertStats{startTime: time.Now()}
events = make([]interface{}, 0, len(chain))
coalescedLogs vm.Logs
2015-04-04 14:04:19 -07:00
)
for i, block := range chain {
if atomic.LoadInt32(&self.procInterrupt) == 1 {
glog.V(logger.Debug).Infoln("Premature abort during block chain processing")
break
}
bstart := time.Now()
if BadHashes[block.Hash()] {
err := BadHashError(block.Hash())
reportBlock(block, err)
return i, err
}
// Stage 1 validation of the block using the chain's validator
// interface.
err := self.Validator().ValidateBlock(block)
if err != nil {
if IsKnownBlockErr(err) {
stats.ignored++
continue
}
if err == BlockFutureErr {
// Allow up to MaxFuture second in the future blocks. If this limit
// is exceeded the chain is discarded and processed at a later time
// if given.
max := big.NewInt(time.Now().Unix() + maxTimeFutureBlocks)
if block.Time().Cmp(max) == 1 {
return i, fmt.Errorf("%v: BlockFutureErr, %v > %v", BlockFutureErr, block.Time(), max)
}
2015-03-23 08:14:33 -07:00
self.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
}
2015-04-04 14:04:19 -07:00
if IsParentErr(err) && self.futureBlocks.Contains(block.ParentHash()) {
self.futureBlocks.Add(block.Hash(), block)
stats.queued++
continue
}
reportBlock(block, err)
return i, err
}
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
// Create a new public statedb using the parent block and report an
// error if it fails.
switch {
case i == 0:
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
err = self.publicStateCache.Reset(self.GetBlock(block.ParentHash(), block.NumberU64()-1).Root())
default:
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
err = self.publicStateCache.Reset(chain[i-1].Root())
}
if err != nil {
reportBlock(block, err)
return i, err
}
// Create a new private statedb using the parent block and report an
// error if it fails.
switch {
case i == 0:
privateRoot := GetPrivateStateRoot(self.chainDb, self.GetBlock(block.ParentHash(), block.NumberU64()-1).Root())
err = self.privateStateCache.Reset(privateRoot)
default:
privateRoot := GetPrivateStateRoot(self.chainDb, chain[i-1].Root())
err = self.privateStateCache.Reset(privateRoot)
}
if err != nil {
reportBlock(block, err)
return i, err
}
// Process block using the parent state as reference point.
publicReceipts, privateReceipts, logs, usedGas, err := self.processor.Process(block, self.publicStateCache, self.privateStateCache, self.config.VmConfig)
if err != nil {
reportBlock(block, err)
return i, err
}
// Validate the state using the default validator
err = self.Validator().ValidateState(block, self.GetBlock(block.ParentHash(), block.NumberU64()-1), self.publicStateCache, publicReceipts, usedGas)
if err != nil {
reportBlock(block, err)
return i, err
}
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
// Write public state changes to database
_, err = self.publicStateCache.Commit()
if err != nil {
return i, err
}
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
// Write private state changes to database
privateStateRoot, err := self.privateStateCache.Commit()
if err != nil {
return i, err
}
if err := WritePrivateStateRoot(self.chainDb, block.Root(), privateStateRoot); err != nil {
return i, err
}
// coalesce logs for later processing
coalescedLogs = append(coalescedLogs, logs...)
allReceipts := append(publicReceipts, privateReceipts...)
if err := WriteBlockReceipts(self.chainDb, block.Hash(), block.NumberU64(), allReceipts); err != nil {
return i, err
}
// write the block to the chain and get the status
status, err := self.WriteBlock(block)
if err != nil {
return i, err
}
switch status {
case CanonStatTy:
if glog.V(logger.Debug) {
glog.Infof("inserted block #%d [%x…] in %9v: %3d txs %7v gas %d uncles.", block.Number(), block.Hash().Bytes()[0:4], common.PrettyDuration(time.Since(bstart)), len(block.Transactions()), block.GasUsed(), len(block.Uncles()))
}
blockInsertTimer.UpdateSince(bstart)
events = append(events, ChainEvent{block, block.Hash(), logs})
// This puts transactions in a extra db for rpc
if err := WriteTransactions(self.chainDb, block); err != nil {
return i, err
}
// store the receipts
if err := WriteReceipts(self.chainDb, allReceipts); err != nil {
return i, err
}
// Write map map bloom filters
if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), allReceipts); err != nil {
return i, err
}
// Write private block bloom
if err := WritePrivateBlockBloom(self.chainDb, block.NumberU64(), privateReceipts); err != nil {
return i, err
}
case SideStatTy:
if glog.V(logger.Detail) {
glog.Infof("inserted forked block #%d [%x…] (TD=%v) in %9v: %3d txs %d uncles.", block.Number(), block.Hash().Bytes()[0:4], block.Difficulty(), common.PrettyDuration(time.Since(bstart)), len(block.Transactions()), len(block.Uncles()))
2015-05-16 15:55:02 -07:00
}
blockInsertTimer.UpdateSince(bstart)
events = append(events, ChainSideEvent{block, logs})
case SplitStatTy:
events = append(events, ChainSplitEvent{block, logs})
}
stats.processed++
if glog.V(logger.Info) {
stats.usedGas += usedGas.Uint64()
stats.report(chain, i)
}
}
//
// This should remain *synchronous* so that we can control ordering of
// ChainHeadEvents. This is important for supporting low latency
// (non-Proof-of-Work) consensus mechanisms.
//
self.postChainEvents(events, coalescedLogs)
return 0, nil
2014-11-17 03:12:55 -08:00
}
// insertStats tracks and reports on block insertion.
type insertStats struct {
queued, processed, ignored int
usedGas uint64
lastIndex int
startTime time.Time
}
// statsReportLimit is the time limit during import after which we always print
// out progress. This avoids the user wondering what's going on.
const statsReportLimit = 8 * time.Second
// report prints statistics if some number of blocks have been processed
// or more than a few seconds have passed since the last message.
func (st *insertStats) report(chain []*types.Block, index int) {
// Fetch the timings for the batch
var (
now = time.Now()
elapsed = now.Sub(st.startTime)
)
if elapsed == 0 { // Yes Windows, I'm looking at you
elapsed = 1
}
// If we're at the last block of the batch or report period reached, log
if index == len(chain)-1 || elapsed >= statsReportLimit {
start, end := chain[st.lastIndex], chain[index]
2016-10-10 15:16:08 -07:00
txcount := countTransactions(chain[st.lastIndex : index+1])
extra := ""
if st.queued > 0 || st.ignored > 0 {
extra = fmt.Sprintf(" (%d queued %d ignored)", st.queued, st.ignored)
}
hashes := ""
if st.processed > 1 {
hashes = fmt.Sprintf("%x… / %x…", start.Hash().Bytes()[:4], end.Hash().Bytes()[:4])
} else {
hashes = fmt.Sprintf("%x…", end.Hash().Bytes()[:4])
}
glog.Infof("imported %d blocks, %5d txs (%7.3f Mg) in %9v (%6.3f Mg/s). #%v [%s]%s", st.processed, txcount, float64(st.usedGas)/1000000, common.PrettyDuration(elapsed), float64(st.usedGas)*1000/float64(elapsed), end.Number(), hashes, extra)
*st = insertStats{startTime: now, lastIndex: index}
}
}
func countTransactions(chain []*types.Block) (c int) {
for _, b := range chain {
c += len(b.Transactions())
}
return c
}
// reorgs takes two blocks, an old chain and a new chain and will reconstruct the blocks and inserts them
// to be part of the new canonical chain and accumulates potential missing transactions and post an
// event about them
func (self *BlockChain) reorg(oldBlock, newBlock *types.Block) error {
var (
newChain types.Blocks
oldChain types.Blocks
commonBlock *types.Block
oldStart = oldBlock
newStart = newBlock
deletedTxs types.Transactions
deletedLogs vm.Logs
deletedLogsByHash = make(map[common.Hash]vm.Logs)
// collectLogs collects the logs that were generated during the
// processing of the block that corresponds with the given hash.
// These logs are later announced as deleted.
collectLogs = func(h common.Hash) {
// Coalesce logs
receipts := GetBlockReceipts(self.chainDb, h, self.hc.GetBlockNumber(h))
for _, receipt := range receipts {
deletedLogs = append(deletedLogs, receipt.Logs...)
deletedLogsByHash[h] = receipt.Logs
}
}
)
// first reduce whoever is higher bound
if oldBlock.NumberU64() > newBlock.NumberU64() {
// reduce old chain
for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = self.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) {
oldChain = append(oldChain, oldBlock)
deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
collectLogs(oldBlock.Hash())
}
} else {
// reduce new chain and append new chain blocks for inserting later on
for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = self.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) {
newChain = append(newChain, newBlock)
}
}
2015-05-28 09:18:23 -07:00
if oldBlock == nil {
return fmt.Errorf("Invalid old chain")
2015-05-28 09:18:23 -07:00
}
if newBlock == nil {
return fmt.Errorf("Invalid new chain")
2015-05-28 09:18:23 -07:00
}
numSplit := newBlock.Number()
for {
if oldBlock.Hash() == newBlock.Hash() {
commonBlock = oldBlock
break
}
oldChain = append(oldChain, oldBlock)
newChain = append(newChain, newBlock)
deletedTxs = append(deletedTxs, oldBlock.Transactions()...)
collectLogs(oldBlock.Hash())
oldBlock, newBlock = self.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1), self.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1)
if oldBlock == nil {
return fmt.Errorf("Invalid old chain")
}
if newBlock == nil {
return fmt.Errorf("Invalid new chain")
}
}
if glog.V(logger.Debug) {
commonHash := commonBlock.Hash()
glog.Infof("Chain split detected @ %x. Reorganising chain from #%v %x to %x", commonHash[:4], numSplit, oldStart.Hash().Bytes()[:4], newStart.Hash().Bytes()[:4])
}
var addedTxs types.Transactions
// insert blocks. Order does not matter. Last block will be written in ImportChain itself which creates the new head properly
for _, block := range newChain {
// insert the block in the canonical way, re-writing history
self.insert(block)
// write canonical receipts and transactions
if err := WriteTransactions(self.chainDb, block); err != nil {
return err
}
receipts := GetBlockReceipts(self.chainDb, block.Hash(), block.NumberU64())
// write receipts
if err := WriteReceipts(self.chainDb, receipts); err != nil {
return err
}
// Write map map bloom filters
if err := WriteMipmapBloom(self.chainDb, block.NumberU64(), receipts); err != nil {
return err
}
addedTxs = append(addedTxs, block.Transactions()...)
}
// calculate the difference between deleted and added transactions
diff := types.TxDifference(deletedTxs, addedTxs)
// When transactions get deleted from the database that means the
// receipts that were created in the fork must also be deleted
for _, tx := range diff {
DeleteReceipt(self.chainDb, tx.Hash())
DeleteTransaction(self.chainDb, tx.Hash())
}
// Must be posted in a goroutine because of the transaction pool trying
// to acquire the chain manager lock
if len(diff) > 0 {
go self.eventMux.Post(RemovedTransactionEvent{diff})
}
if len(deletedLogs) > 0 {
go self.eventMux.Post(RemovedLogsEvent{deletedLogs})
}
if len(oldChain) > 0 {
go func() {
for _, block := range oldChain {
self.eventMux.Post(ChainSideEvent{Block: block, Logs: deletedLogsByHash[block.Hash()]})
}
}()
}
return nil
}
// When we insert into the blockchain we must publish logs, chain head events,
// and contract events. `eventMux.Post` cannot be called while we are holding
// `mu`, and we need to maintain a correct ordering of these events for
// correctness, so they are published into the `chainEvents` channel, and
// a goroutine running this loop performs the `Post`.
func (self *BlockChain) chainEventsLoop() {
for e := range self.chainEvents {
self.eventMux.Post(e)
}
}
// postChainEvents iterates over the events generated by a chain insertion and
// posts them.
//
// Assumes mu is held, and that this is called synchronously (not with `go`).
//
// Unlike vanilla Ethereum, we require this method is called synchronously, so
// that we can control the order that we publish `ChainHeadEvent`s in
// low-latency, non-PoW settings. To avoid impacting performance, we post the
// events into a buffered intermediary channel `chainEvents`. From there,
// `chainEventsLoop` will publish into the `eventMux`. Because `chainEvents`
// is buffered, writes into that channel will be asynchronous (until the
// channel is full).
func (self *BlockChain) postChainEvents(events []interface{}, logs vm.Logs) {
// Requires mu:
currBlockHash := self.currentBlock.Hash()
// post event logs for further processing
self.chainEvents <- logs
for _, event := range events {
if event, ok := event.(ChainEvent); ok {
if currBlockHash == event.Hash {
self.chainEvents <- ChainHeadEvent{event.Block}
}
}
// Fire the insertion events individually too
self.chainEvents <- event
}
}
func (self *BlockChain) update() {
2015-05-01 07:30:02 -07:00
futureTimer := time.Tick(5 * time.Second)
for {
select {
2015-05-01 07:30:02 -07:00
case <-futureTimer:
self.procFutureBlocks()
case <-self.quit:
return
}
}
}
// reportBlock logs a bad block error.
func reportBlock(block *types.Block, err error) {
if glog.V(logger.Error) {
glog.Errorf("Bad block #%v (%s)\n", block.Number(), block.Hash().Hex())
glog.Errorf(" %v", err)
}
}
// InsertHeaderChain attempts to insert the given header chain in to the local
// chain, possibly creating a reorg. If an error is returned, it will return the
// index number of the failing header as well an error describing what went wrong.
//
// The verify parameter can be used to fine tune whether nonce verification
// should be done or not. The reason behind the optional check is because some
2016-03-15 09:12:03 -07:00
// of the header retrieval mechanisms already need to verify nonces, as well as
// because nonces can be verified sparsely, not needing to check each.
func (self *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) {
// Make sure only one thread manipulates the chain at once
self.chainmu.Lock()
defer self.chainmu.Unlock()
self.wg.Add(1)
defer self.wg.Done()
whFunc := func(header *types.Header) error {
self.mu.Lock()
defer self.mu.Unlock()
_, err := self.hc.WriteHeader(header)
return err
}
return self.hc.InsertHeaderChain(chain, checkFreq, whFunc)
}
// writeHeader writes a header into the local chain, given that its parent is
// already known. If the total difficulty of the newly inserted header becomes
// greater than the current known TD, the canonical chain is re-routed.
//
// Note: This method is not concurrent-safe with inserting blocks simultaneously
// into the chain, as side effects caused by reorganisations cannot be emulated
// without the real blocks. Hence, writing headers directly should only be done
// in two scenarios: pure-header mode of operation (light clients), or properly
// separated header/block phases (non-archive clients).
func (self *BlockChain) writeHeader(header *types.Header) error {
self.wg.Add(1)
defer self.wg.Done()
self.mu.Lock()
defer self.mu.Unlock()
_, err := self.hc.WriteHeader(header)
return err
}
// CurrentHeader retrieves the current head header of the canonical chain. The
// header is retrieved from the HeaderChain's internal cache.
func (self *BlockChain) CurrentHeader() *types.Header {
self.mu.RLock()
defer self.mu.RUnlock()
return self.hc.CurrentHeader()
}
// GetTd retrieves a block's total difficulty in the canonical chain from the
// database by hash and number, caching it if found.
func (self *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int {
return self.hc.GetTd(hash, number)
}
// GetTdByHash retrieves a block's total difficulty in the canonical chain from the
// database by hash, caching it if found.
func (self *BlockChain) GetTdByHash(hash common.Hash) *big.Int {
return self.hc.GetTdByHash(hash)
}
// GetHeader retrieves a block header from the database by hash and number,
// caching it if found.
func (self *BlockChain) GetHeader(hash common.Hash, number uint64) *types.Header {
return self.hc.GetHeader(hash, number)
}
// GetHeaderByHash retrieves a block header from the database by hash, caching it if
// found.
func (self *BlockChain) GetHeaderByHash(hash common.Hash) *types.Header {
return self.hc.GetHeaderByHash(hash)
}
// HasHeader checks if a block header is present in the database or not, caching
// it if present.
func (bc *BlockChain) HasHeader(hash common.Hash) bool {
return bc.hc.HasHeader(hash)
}
// GetBlockHashesFromHash retrieves a number of block hashes starting at a given
// hash, fetching towards the genesis block.
func (self *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash {
return self.hc.GetBlockHashesFromHash(hash, max)
}
// GetHeaderByNumber retrieves a block header from the database by number,
// caching it (associated with its hash) if found.
func (self *BlockChain) GetHeaderByNumber(number uint64) *types.Header {
return self.hc.GetHeaderByNumber(number)
}
// Config retrieves the blockchain's chain configuration.
func (self *BlockChain) Config() *ChainConfig { return self.config }