quorum/core/vm/analysis.go

93 lines
2.8 KiB
Go
Raw Normal View History

2015-07-06 17:54:22 -07:00
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-06 17:54:22 -07:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-06 17:54:22 -07:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-06 17:54:22 -07:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-06 17:54:22 -07:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-06 17:54:22 -07:00
2014-11-04 09:17:38 -08:00
package vm
import (
"math/big"
2014-11-04 09:17:38 -08:00
"github.com/ethereum/go-ethereum/common"
)
// destinations stores one map per contract (keyed by hash of code).
// The maps contain an entry for each location of a JUMPDEST
// instruction.
2017-08-14 01:57:54 -07:00
type destinations map[common.Hash]bitvec
// has checks whether code has a JUMPDEST at dest.
func (d destinations) has(codehash common.Hash, code []byte, dest *big.Int) bool {
// PC cannot go beyond len(code) and certainly can't be bigger than 63bits.
// Don't bother checking for JUMPDEST in that case.
udest := dest.Uint64()
if dest.BitLen() >= 63 || udest >= uint64(len(code)) {
return false
}
m, analysed := d[codehash]
if !analysed {
m = jumpdests(code)
d[codehash] = m
}
2017-08-14 01:57:54 -07:00
return OpCode(code[udest]) == JUMPDEST && m.codeSegment(udest)
2017-06-03 10:01:22 -07:00
// return (m[udest/8] & (1 << (udest % 8))) != 0
}
2017-08-14 01:57:54 -07:00
// bitvec is a bit vector which maps bytes in a program
// An unset bit means the byte is a code-segemnt, a set bit means it's data-segment
type bitvec []byte
2017-06-03 10:01:22 -07:00
2017-08-14 01:57:54 -07:00
func (bits *bitvec) set(pos uint64) {
(*bits)[pos/8] |= 0x80 >> (pos % 8)
}
func (bits *bitvec) set8(pos uint64) {
(*bits)[pos/8] |= 0xFF >> (pos % 8)
(*bits)[pos/8+1] |= ^(0xFF >> (pos % 8))
2017-06-03 10:01:22 -07:00
}
2017-08-14 01:57:54 -07:00
// codeSegment checks if the position is in a code segment
func (bits *bitvec) codeSegment(pos uint64) bool {
return ((*bits)[pos/8] & (0x80 >> (pos % 8))) == 0
}
// jumpdests creates a map that contains an entry for each
// PC location that is a JUMPDEST instruction.
func jumpdests(code []byte) []byte {
2017-06-03 10:01:22 -07:00
//The map is 4 bytes longer than necessary, in case the code
// ends with a PUSH32, the algorithm will push zeroes onto the
// bitvector outside the bounds of the actual code.
m := make([]byte, len(code)/8+1+4)
2017-08-14 01:57:54 -07:00
bits := bitvec(m)
2017-06-03 10:01:22 -07:00
for pc := uint64(0); pc < uint64(len(code)); {
op := OpCode(code[pc])
2017-06-03 10:01:22 -07:00
if op >= PUSH1 && op <= PUSH32 {
numbits := op - PUSH1 + 1
pc++
for ; numbits >= 8; numbits -= 8 {
2017-08-14 01:57:54 -07:00
bits.set8(pc) // 8
2017-06-03 10:01:22 -07:00
pc += 8
}
for ; numbits > 0; numbits-- {
2017-08-14 01:57:54 -07:00
bits.set(pc)
2017-06-03 10:01:22 -07:00
pc++
}
} else {
pc++
2014-11-04 09:17:38 -08:00
}
}
2017-08-14 01:57:54 -07:00
return bits
2014-11-04 09:17:38 -08:00
}