quorum/core/block_validator.go

491 lines
18 KiB
Go
Raw Normal View History

2016-04-14 09:18:24 -07:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"fmt"
"math/big"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
2016-10-09 08:10:48 -07:00
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/params"
"gopkg.in/fatih/set.v0"
)
var (
ExpDiffPeriod = big.NewInt(100000)
big10 = big.NewInt(10)
bigMinus99 = big.NewInt(-99)
)
// BlockValidator is responsible for validating block headers, uncles and
// processed state.
//
// BlockValidator implements Validator.
type BlockValidator struct {
2016-10-09 08:10:48 -07:00
chaindb ethdb.Database
config *ChainConfig // Chain configuration options
bc *BlockChain // Canonical block chain
enableQuorumChecks bool // indication if the signature and vote count is checked (disabled for testing puposes)
}
// NewBlockValidator returns a new block validator which is safe for re-use
2016-10-09 08:10:48 -07:00
func NewBlockValidator(chaindb ethdb.Database, config *ChainConfig, blockchain *BlockChain, enableQuorumChecks bool) *BlockValidator {
validator := &BlockValidator{
2016-10-09 08:10:48 -07:00
chaindb: chaindb,
config: config,
bc: blockchain,
enableQuorumChecks: enableQuorumChecks,
}
return validator
}
// ValidateBlock validates the given block's header and uncles and verifies the
// the block header's transaction and uncle roots.
//
2016-10-09 08:10:48 -07:00
// ValidateBlock does not validate the header's finaliser. The finaliser work validated
2016-03-15 11:08:18 -07:00
// separately so we can process them in parallel.
//
// ValidateBlock also validates and makes sure that any previous state (or present)
// state that might or might not be present is checked to make sure that fast
2016-10-09 08:10:48 -07:00
// sync has done it's job proper. This prevents the block validator form accepting
// false positives where a header is present but the state is not.
func (v *BlockValidator) ValidateBlock(block *types.Block) error {
if v.bc.HasBlock(block.Hash()) {
if _, err := state.New(block.Root(), v.bc.chainDb); err == nil {
return &KnownBlockError{block.Number(), block.Hash()}
}
}
parent := v.bc.GetBlock(block.ParentHash(), block.NumberU64()-1)
if parent == nil {
return ParentError(block.ParentHash())
}
if _, err := state.New(parent.Root(), v.bc.chainDb); err != nil {
return ParentError(block.ParentHash())
}
header := block.Header()
// validate the block header
2016-10-09 08:10:48 -07:00
if err := ValidateHeader(v.chaindb, v.bc, v.config, header, parent.Header(), false, v.enableQuorumChecks); err != nil {
return err
}
// verify the uncles are correctly rewarded
if err := v.VerifyUncles(block, parent); err != nil {
return err
}
// Verify UncleHash before running other uncle validations
unclesSha := types.CalcUncleHash(block.Uncles())
if unclesSha != header.UncleHash {
return fmt.Errorf("invalid uncles root hash. received=%x calculated=%x", header.UncleHash, unclesSha)
}
// The transactions Trie's root (R = (Tr [[i, RLP(T1)], [i, RLP(T2)], ... [n, RLP(Tn)]]))
// can be used by light clients to make sure they've received the correct Txs
txSha := types.DeriveSha(block.Transactions())
if txSha != header.TxHash {
return fmt.Errorf("invalid transaction root hash. received=%x calculated=%x", header.TxHash, txSha)
}
return nil
}
2016-10-09 08:10:48 -07:00
// callmsg is the message type used for call transactions.
type callmsg struct {
from *state.StateObject
to *common.Address
gas, gasPrice *big.Int
value *big.Int
data []byte
}
// accessor boilerplate to implement core.Message
func (m callmsg) From() (common.Address, error) { return m.from.Address(), nil }
func (m callmsg) FromFrontier() (common.Address, error) { return m.from.Address(), nil }
func (m callmsg) Nonce() uint64 { return m.from.Nonce() }
func (m callmsg) To() *common.Address { return m.to }
func (m callmsg) GasPrice() *big.Int { return m.gasPrice }
func (m callmsg) Gas() *big.Int { return m.gas }
func (m callmsg) Value() *big.Int { return m.value }
func (m callmsg) Data() []byte { return m.data }
func (m callmsg) CheckNonce() bool { return true }
// ValidateState validates the various changes that happen after a state
// transition, such as amount of used gas, the receipt roots and the state root
2016-10-09 08:10:48 -07:00
// itself. For quorum it also verifies if the canonical hash in the blocks state
// points to a valid parent hash.
//
// ValidateState returns a database batch if the validation was a success
// otherwise nil and an error is returned.
func (v *BlockValidator) ValidateState(block, parent *types.Block, statedb *state.StateDB, receipts types.Receipts, usedGas *big.Int) (err error) {
header := block.Header()
if block.GasUsed().Cmp(usedGas) != 0 {
return ValidationError(fmt.Sprintf("gas used error (%v / %v)", block.GasUsed(), usedGas))
}
// Validate the received block's bloom with the one derived from the generated receipts.
// For valid blocks this should always validate to true.
rbloom := types.CreateBloom(receipts)
if rbloom != header.Bloom {
return fmt.Errorf("unable to replicate block's bloom=%x vs calculated bloom=%x", header.Bloom, rbloom)
}
// Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, R1]]))
receiptSha := types.DeriveSha(receipts)
if receiptSha != header.ReceiptHash {
return fmt.Errorf("invalid receipt root hash. received=%x calculated=%x", header.ReceiptHash, receiptSha)
}
2016-10-09 08:10:48 -07:00
// Validate the state root against the received state root and throw
// an error if they don't match.
if root := statedb.IntermediateRoot(); header.Root != root {
return fmt.Errorf("invalid merkle root: header=%x computed=%x", header.Root, root)
}
2016-10-09 08:10:48 -07:00
if v.enableQuorumChecks {
// Ensure that the parent block was indeed the one that was voted for in the state of this block.
// The contract enforces that there are enough votes and only votes from parties that are allowed to vote.
var (
gp = new(GasPool).AddGas(common.MaxBig)
to = common.HexToAddress("0x0000000000000000000000000000000000000020")
stateCopy = statedb.Copy()
msg = callmsg{
from: stateCopy.GetOrNewStateObject(common.HexToAddress("0x0000000000000000000000000000000000000000")),
to: &to,
gas: big.NewInt(500000),
gasPrice: common.Big0,
value: common.Big0,
data: common.Hex2Bytes(fmt.Sprintf("559c390c%064x", block.Number())), // call getCanonHash(uint256)
}
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
vmenv = NewEnv(stateCopy, stateCopy, v.config, v.bc, msg, block.Header(), v.config.VmConfig)
2016-10-09 08:10:48 -07:00
)
result, _, _, err := NewStateTransition(vmenv, msg, gp).TransitionDb()
if err != nil {
return err
}
// result holds the hash that was the winning hash according the voting contract
parentHash := common.BytesToHash(result)
if parentHash == (common.Hash{}) {
// too little votes
return fmt.Errorf("block parent could not be verified, ignore block (%d)", block.Number())
}
if block.ParentHash() != parentHash {
return fmt.Errorf("build on top of unexpected parent, expected %s, got %s", parentHash.Hex(), block.ParentHash().Hex())
}
}
return nil
}
// VerifyUncles verifies the given block's uncles and applies the Ethereum
// consensus rules to the various block headers included; it will return an
// error if any of the included uncle headers were invalid. It returns an error
// if the validation failed.
func (v *BlockValidator) VerifyUncles(block, parent *types.Block) error {
2016-10-09 08:10:48 -07:00
// validate that there at most 2 uncles included in this block
if len(block.Uncles()) > 2 {
return ValidationError("Block can only contain maximum 2 uncles (contained %v)", len(block.Uncles()))
}
uncles := set.New()
ancestors := make(map[common.Hash]*types.Block)
for _, ancestor := range v.bc.GetBlocksFromHash(block.ParentHash(), 7) {
ancestors[ancestor.Hash()] = ancestor
// Include ancestors uncles in the uncle set. Uncles must be unique.
for _, uncle := range ancestor.Uncles() {
uncles.Add(uncle.Hash())
}
}
ancestors[block.Hash()] = block
uncles.Add(block.Hash())
for i, uncle := range block.Uncles() {
hash := uncle.Hash()
if uncles.Has(hash) {
// Error not unique
return UncleError("uncle[%d](%x) not unique", i, hash[:4])
}
uncles.Add(hash)
if ancestors[hash] != nil {
branch := fmt.Sprintf(" O - %x\n |\n", block.Hash())
for h := range ancestors {
branch += fmt.Sprintf(" O - %x\n |\n", h)
}
glog.Infoln(branch)
return UncleError("uncle[%d](%x) is ancestor", i, hash[:4])
}
if ancestors[uncle.ParentHash] == nil || uncle.ParentHash == parent.Hash() {
return UncleError("uncle[%d](%x)'s parent is not ancestor (%x)", i, hash[:4], uncle.ParentHash[0:4])
}
2016-10-09 08:10:48 -07:00
if err := ValidateHeader(v.chaindb, v.bc, v.config, uncle, ancestors[uncle.ParentHash].Header(), true, v.enableQuorumChecks); err != nil {
return ValidationError(fmt.Sprintf("uncle[%d](%x) header invalid: %v", i, hash[:4], err))
}
}
return nil
}
2016-10-09 08:10:48 -07:00
// ValidateHeader validates the given header and, depending on the finaliser arg,
// checks the proof of work of the given header. Returns an error if the
// validation failed.
2016-10-09 08:10:48 -07:00
func (v *BlockValidator) ValidateHeader(chaindb ethdb.Database, header, parent *types.Header) error {
// Short circuit if the parent is missing.
if parent == nil {
return ParentError(header.ParentHash)
}
2016-10-09 08:10:48 -07:00
// Short circuit if the header's already known or its parent missing
if v.bc.HasHeader(header.Hash()) {
return nil
}
2016-10-09 08:10:48 -07:00
return ValidateHeader(chaindb, v.bc, v.config, header, parent, false, v.enableQuorumChecks)
}
2016-10-09 08:10:48 -07:00
// Validates a header. Returns an error if the header is invalid and verify if the
// block signature is from an allowed block creator.
//
// See YP section 4.3.4. "Block Header Validity"
2016-10-09 08:10:48 -07:00
func ValidateHeader(chaindb ethdb.Database, bc *BlockChain, config *ChainConfig, header *types.Header, parent *types.Header, uncle, validateSignature bool) error {
if big.NewInt(int64(len(header.Extra))).Cmp(params.MaximumExtraDataSize) == 1 {
return fmt.Errorf("Header extra data too long (%d)", len(header.Extra))
}
if uncle {
if header.Time.Cmp(common.MaxBig) == 1 {
return BlockTSTooBigErr
}
} else {
if header.Time.Cmp(big.NewInt(time.Now().Unix())) == 1 {
return BlockFutureErr
}
}
if header.Time.Cmp(parent.Time) != 1 {
return BlockEqualTSErr
}
expd := CalcDifficulty(config, header.Time.Uint64(), parent.Time.Uint64(), parent.Number, parent.Difficulty)
if expd.Cmp(header.Difficulty) != 0 {
return fmt.Errorf("Difficulty check failed for header %v, %v", header.Difficulty, expd)
}
a := new(big.Int).Set(parent.GasLimit)
a = a.Sub(a, header.GasLimit)
a.Abs(a)
b := new(big.Int).Set(parent.GasLimit)
b = b.Div(b, params.GasLimitBoundDivisor)
if !(a.Cmp(b) < 0) || (header.GasLimit.Cmp(params.MinGasLimit) == -1) {
return fmt.Errorf("GasLimit check failed for header %v (%v > %v)", header.GasLimit, a, b)
}
num := new(big.Int).Set(parent.Number)
num.Sub(header.Number, num)
if num.Cmp(big.NewInt(1)) != 0 {
return BlockNumberErr
}
2016-10-09 08:10:48 -07:00
if validateSignature {
return ValidateExtraData(chaindb, bc, config, parent, header)
}
2016-10-09 08:10:48 -07:00
return nil
}
// ValidateExtraData verifies the signature in the extra data field and ensures the signer is allowed to create blocks.
//
// In Quorum blocks the Extra data field contains a signature created by the block creator.
// This signature is used to verify that the block is created by a party that is allowed to create blocks.
func ValidateExtraData(chaindb ethdb.Database, bc *BlockChain, config *ChainConfig, parent, header *types.Header) error {
var (
hash = header.QuorumHash()
signature = header.Extra
addr = header.Coinbase
)
pubKey, err := crypto.SigToPub(hash.Bytes(), signature)
if err != nil {
return err
}
signerAddr := crypto.PubkeyToAddress(*pubKey)
if signerAddr != addr {
return fmt.Errorf("invalid header signature %s != %s", signerAddr.Hex(), addr.Hex())
}
// Ensure that the recovered address belongs to an account this is allowed to create blocks.
var (
state, _ = state.New(parent.Root, chaindb)
gp = new(GasPool).AddGas(common.MaxBig)
to = common.HexToAddress("0x0000000000000000000000000000000000000020")
msg = callmsg{
from: state.GetOrNewStateObject(common.HexToAddress("0x0000000000000000000000000000000000000000")),
to: &to,
gas: big.NewInt(500000),
gasPrice: common.Big0,
value: common.Big0,
data: common.Hex2Bytes(fmt.Sprintf("e814d1c7%064x", signerAddr.Bytes())), // call isBlockMaker(address)
}
core, core/vm: dual state & read only EVM This commit implements a dual state approach. The dual state approach separates public and private state by making the core vm environment context aware. Although not currently implemented it will need to prohibit value transfers and it must initialise all transactions from accounts on the public state. This means that sending transactions increments the account nonce on the public state and contract addresses are derived from the public state when initialised by a transaction. For obvious reasons, contract created by private contracts are still derived from public state. This is required in order to have consensus over the public state at all times as non-private participants would still process the transaction on the public state even though private payload can not be decrypted. This means that participants of a private group must do the same in order to have public consensus. However the creation of the contract and interaction still occurs on the private state. It implements support for the following calling model: S: sender, (X): private, X: public, ->: direction, [ ]: read only mode 1. S -> A -> B 2. S -> (A) -> (B) 3. S -> (A) -> [ B -> C ] It does not support 1. (S) -> A 2. (S) -> (A) 3. S -> (A) -> B Implemented "read only" mode for the EVM. Read only mode is checked during any opcode that could potentially modify the state. If such an opcode is encountered during "read only", it throws an exception. The EVM is flagged "read only" when a private contract calls in to public state.
2016-10-31 04:46:40 -07:00
vmenv = NewEnv(state, state, config, bc, msg, header, config.VmConfig)
2016-10-09 08:10:48 -07:00
)
result, _, _, err := NewStateTransition(vmenv, msg, gp).TransitionDb()
if err != nil {
return err
}
2016-10-09 08:10:48 -07:00
if config.HomesteadGasRepriceBlock != nil && config.HomesteadGasRepriceBlock.Cmp(header.Number) == 0 {
if config.HomesteadGasRepriceHash != (common.Hash{}) && config.HomesteadGasRepriceHash != header.Hash() {
return ValidationError("Homestead gas reprice fork hash mismatch: have 0x%x, want 0x%x", header.Hash(), config.HomesteadGasRepriceHash)
}
}
2016-10-09 08:10:48 -07:00
if new(big.Int).SetBytes(result).Cmp(common.Big1) == 0 {
return nil
}
return fmt.Errorf("Invalid header: %s isn't allowed to create blocks", signerAddr.Hex())
}
// CalcDifficulty is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time
// given the parent block's time and difficulty.
func CalcDifficulty(config *ChainConfig, time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
if config.IsHomestead(new(big.Int).Add(parentNumber, common.Big1)) {
return calcDifficultyHomestead(time, parentTime, parentNumber, parentDiff)
} else {
return calcDifficultyFrontier(time, parentTime, parentNumber, parentDiff)
}
}
func calcDifficultyHomestead(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki
// algorithm:
// diff = (parent_diff +
// (parent_diff / 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
// ) + 2^(periodCount - 2)
bigTime := new(big.Int).SetUint64(time)
bigParentTime := new(big.Int).SetUint64(parentTime)
// holds intermediate values to make the algo easier to read & audit
x := new(big.Int)
y := new(big.Int)
// 1 - (block_timestamp -parent_timestamp) // 10
x.Sub(bigTime, bigParentTime)
x.Div(x, big10)
x.Sub(common.Big1, x)
// max(1 - (block_timestamp - parent_timestamp) // 10, -99)))
if x.Cmp(bigMinus99) < 0 {
x.Set(bigMinus99)
}
// (parent_diff + parent_diff // 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
y.Div(parentDiff, params.DifficultyBoundDivisor)
x.Mul(y, x)
x.Add(parentDiff, x)
// minimum difficulty can ever be (before exponential factor)
if x.Cmp(params.MinimumDifficulty) < 0 {
x.Set(params.MinimumDifficulty)
}
// for the exponential factor
periodCount := new(big.Int).Add(parentNumber, common.Big1)
periodCount.Div(periodCount, ExpDiffPeriod)
2016-03-15 11:08:18 -07:00
// the exponential factor, commonly referred to as "the bomb"
// diff = diff + 2^(periodCount - 2)
if periodCount.Cmp(common.Big1) > 0 {
y.Sub(periodCount, common.Big2)
y.Exp(common.Big2, y, nil)
x.Add(x, y)
}
return x
}
func calcDifficultyFrontier(time, parentTime uint64, parentNumber, parentDiff *big.Int) *big.Int {
diff := new(big.Int)
adjust := new(big.Int).Div(parentDiff, params.DifficultyBoundDivisor)
bigTime := new(big.Int)
bigParentTime := new(big.Int)
bigTime.SetUint64(time)
bigParentTime.SetUint64(parentTime)
if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 {
diff.Add(parentDiff, adjust)
} else {
diff.Sub(parentDiff, adjust)
}
if diff.Cmp(params.MinimumDifficulty) < 0 {
diff.Set(params.MinimumDifficulty)
}
periodCount := new(big.Int).Add(parentNumber, common.Big1)
periodCount.Div(periodCount, ExpDiffPeriod)
if periodCount.Cmp(common.Big1) > 0 {
// diff = diff + 2^(periodCount - 2)
expDiff := periodCount.Sub(periodCount, common.Big2)
expDiff.Exp(common.Big2, expDiff, nil)
diff.Add(diff, expDiff)
diff = common.BigMax(diff, params.MinimumDifficulty)
}
return diff
}
// CalcGasLimit computes the gas limit of the next block after parent.
// The result may be modified by the caller.
// This is miner strategy, not consensus protocol.
func CalcGasLimit(parent *types.Block) *big.Int {
// contrib = (parentGasUsed * 3 / 2) / 1024
contrib := new(big.Int).Mul(parent.GasUsed(), big.NewInt(3))
contrib = contrib.Div(contrib, big.NewInt(2))
contrib = contrib.Div(contrib, params.GasLimitBoundDivisor)
// decay = parentGasLimit / 1024 -1
decay := new(big.Int).Div(parent.GasLimit(), params.GasLimitBoundDivisor)
decay.Sub(decay, big.NewInt(1))
/*
strategy: gasLimit of block-to-mine is set based on parent's
gasUsed value. if parentGasUsed > parentGasLimit * (2/3) then we
increase it, otherwise lower it (or leave it unchanged if it's right
at that usage) the amount increased/decreased depends on how far away
from parentGasLimit * (2/3) parentGasUsed is.
*/
gl := new(big.Int).Sub(parent.GasLimit(), decay)
gl = gl.Add(gl, contrib)
gl.Set(common.BigMax(gl, params.MinGasLimit))
// however, if we're now below the target (TargetGasLimit) we increase the
// limit as much as we can (parentGasLimit / 1024 -1)
if gl.Cmp(params.TargetGasLimit) < 0 {
gl.Add(parent.GasLimit(), decay)
gl.Set(common.BigMin(gl, params.TargetGasLimit))
}
return gl
}