// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package abi import ( "errors" "fmt" "reflect" "regexp" "strconv" "strings" ) // Type enumerator const ( IntTy byte = iota UintTy BoolTy StringTy SliceTy ArrayTy TupleTy AddressTy FixedBytesTy BytesTy HashTy FixedPointTy FunctionTy ) // Type is the reflection of the supported argument type type Type struct { Elem *Type Kind reflect.Kind Type reflect.Type Size int T byte // Our own type checking stringKind string // holds the unparsed string for deriving signatures // Tuple relative fields TupleRawName string // Raw struct name defined in source code, may be empty. TupleElems []*Type // Type information of all tuple fields TupleRawNames []string // Raw field name of all tuple fields } var ( // typeRegex parses the abi sub types typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?") ) // NewType creates a new reflection type of abi type given in t. func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) { // check that array brackets are equal if they exist if strings.Count(t, "[") != strings.Count(t, "]") { return Type{}, fmt.Errorf("invalid arg type in abi") } typ.stringKind = t // if there are brackets, get ready to go into slice/array mode and // recursively create the type if strings.Count(t, "[") != 0 { // Note internalType can be empty here. subInternal := internalType if i := strings.LastIndex(internalType, "["); i != -1 { subInternal = subInternal[:i] } // recursively embed the type i := strings.LastIndex(t, "[") embeddedType, err := NewType(t[:i], subInternal, components) if err != nil { return Type{}, err } // grab the last cell and create a type from there sliced := t[i:] // grab the slice size with regexp re := regexp.MustCompile("[0-9]+") intz := re.FindAllString(sliced, -1) if len(intz) == 0 { // is a slice typ.T = SliceTy typ.Kind = reflect.Slice typ.Elem = &embeddedType typ.Type = reflect.SliceOf(embeddedType.Type) typ.stringKind = embeddedType.stringKind + sliced } else if len(intz) == 1 { // is a array typ.T = ArrayTy typ.Kind = reflect.Array typ.Elem = &embeddedType typ.Size, err = strconv.Atoi(intz[0]) if err != nil { return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) } typ.Type = reflect.ArrayOf(typ.Size, embeddedType.Type) typ.stringKind = embeddedType.stringKind + sliced } else { return Type{}, fmt.Errorf("invalid formatting of array type") } return typ, err } // parse the type and size of the abi-type. matches := typeRegex.FindAllStringSubmatch(t, -1) if len(matches) == 0 { return Type{}, fmt.Errorf("invalid type '%v'", t) } parsedType := matches[0] // varSize is the size of the variable var varSize int if len(parsedType[3]) > 0 { var err error varSize, err = strconv.Atoi(parsedType[2]) if err != nil { return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) } } else { if parsedType[0] == "uint" || parsedType[0] == "int" { // this should fail because it means that there's something wrong with // the abi type (the compiler should always format it to the size...always) return Type{}, fmt.Errorf("unsupported arg type: %s", t) } } // varType is the parsed abi type switch varType := parsedType[1]; varType { case "int": typ.Kind, typ.Type = reflectIntKindAndType(false, varSize) typ.Size = varSize typ.T = IntTy case "uint": typ.Kind, typ.Type = reflectIntKindAndType(true, varSize) typ.Size = varSize typ.T = UintTy case "bool": typ.Kind = reflect.Bool typ.T = BoolTy typ.Type = reflect.TypeOf(bool(false)) case "address": typ.Kind = reflect.Array typ.Type = addressT typ.Size = 20 typ.T = AddressTy case "string": typ.Kind = reflect.String typ.Type = reflect.TypeOf("") typ.T = StringTy case "bytes": if varSize == 0 { typ.T = BytesTy typ.Kind = reflect.Slice typ.Type = reflect.SliceOf(reflect.TypeOf(byte(0))) } else { typ.T = FixedBytesTy typ.Kind = reflect.Array typ.Size = varSize typ.Type = reflect.ArrayOf(varSize, reflect.TypeOf(byte(0))) } case "tuple": var ( fields []reflect.StructField elems []*Type names []string expression string // canonical parameter expression ) expression += "(" for idx, c := range components { cType, err := NewType(c.Type, c.InternalType, c.Components) if err != nil { return Type{}, err } if ToCamelCase(c.Name) == "" { return Type{}, errors.New("abi: purely anonymous or underscored field is not supported") } fields = append(fields, reflect.StructField{ Name: ToCamelCase(c.Name), // reflect.StructOf will panic for any exported field. Type: cType.Type, Tag: reflect.StructTag("json:\"" + c.Name + "\""), }) elems = append(elems, &cType) names = append(names, c.Name) expression += cType.stringKind if idx != len(components)-1 { expression += "," } } expression += ")" typ.Kind = reflect.Struct typ.Type = reflect.StructOf(fields) typ.TupleElems = elems typ.TupleRawNames = names typ.T = TupleTy typ.stringKind = expression const structPrefix = "struct " // After solidity 0.5.10, a new field of abi "internalType" // is introduced. From that we can obtain the struct name // user defined in the source code. if internalType != "" && strings.HasPrefix(internalType, structPrefix) { // Foo.Bar type definition is not allowed in golang, // convert the format to FooBar typ.TupleRawName = strings.Replace(internalType[len(structPrefix):], ".", "", -1) } case "function": typ.Kind = reflect.Array typ.T = FunctionTy typ.Size = 24 typ.Type = reflect.ArrayOf(24, reflect.TypeOf(byte(0))) default: return Type{}, fmt.Errorf("unsupported arg type: %s", t) } return } // String implements Stringer func (t Type) String() (out string) { return t.stringKind } func (t Type) pack(v reflect.Value) ([]byte, error) { // dereference pointer first if it's a pointer v = indirect(v) if err := typeCheck(t, v); err != nil { return nil, err } switch t.T { case SliceTy, ArrayTy: var ret []byte if t.requiresLengthPrefix() { // append length ret = append(ret, packNum(reflect.ValueOf(v.Len()))...) } // calculate offset if any offset := 0 offsetReq := isDynamicType(*t.Elem) if offsetReq { offset = getTypeSize(*t.Elem) * v.Len() } var tail []byte for i := 0; i < v.Len(); i++ { val, err := t.Elem.pack(v.Index(i)) if err != nil { return nil, err } if !offsetReq { ret = append(ret, val...) continue } ret = append(ret, packNum(reflect.ValueOf(offset))...) offset += len(val) tail = append(tail, val...) } return append(ret, tail...), nil case TupleTy: // (T1,...,Tk) for k >= 0 and any types T1, …, Tk // enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k)) // where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static // type as // head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string) // and as // head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1)))) // tail(X(i)) = enc(X(i)) // otherwise, i.e. if Ti is a dynamic type. fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v) if err != nil { return nil, err } // Calculate prefix occupied size. offset := 0 for _, elem := range t.TupleElems { offset += getTypeSize(*elem) } var ret, tail []byte for i, elem := range t.TupleElems { field := v.FieldByName(fieldmap[t.TupleRawNames[i]]) if !field.IsValid() { return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i]) } val, err := elem.pack(field) if err != nil { return nil, err } if isDynamicType(*elem) { ret = append(ret, packNum(reflect.ValueOf(offset))...) tail = append(tail, val...) offset += len(val) } else { ret = append(ret, val...) } } return append(ret, tail...), nil default: return packElement(t, v), nil } } // requireLengthPrefix returns whether the type requires any sort of length // prefixing. func (t Type) requiresLengthPrefix() bool { return t.T == StringTy || t.T == BytesTy || t.T == SliceTy } // isDynamicType returns true if the type is dynamic. // The following types are called “dynamic”: // * bytes // * string // * T[] for any T // * T[k] for any dynamic T and any k >= 0 // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k func isDynamicType(t Type) bool { if t.T == TupleTy { for _, elem := range t.TupleElems { if isDynamicType(*elem) { return true } } return false } return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem)) } // getTypeSize returns the size that this type needs to occupy. // We distinguish static and dynamic types. Static types are encoded in-place // and dynamic types are encoded at a separately allocated location after the // current block. // So for a static variable, the size returned represents the size that the // variable actually occupies. // For a dynamic variable, the returned size is fixed 32 bytes, which is used // to store the location reference for actual value storage. func getTypeSize(t Type) int { if t.T == ArrayTy && !isDynamicType(*t.Elem) { // Recursively calculate type size if it is a nested array if t.Elem.T == ArrayTy { return t.Size * getTypeSize(*t.Elem) } return t.Size * 32 } else if t.T == TupleTy && !isDynamicType(t) { total := 0 for _, elem := range t.TupleElems { total += getTypeSize(*elem) } return total } return 32 }