package ethutil import ( "fmt" "reflect" ) // TODO // A StateObject is an object that has a state root // This is goig to be the object for the second level caching (the caching of object which have a state such as contracts) type StateObject interface { State() *Trie Sync() Undo() } type Node struct { Key []byte Value *Value Dirty bool } func NewNode(key []byte, val *Value, dirty bool) *Node { return &Node{Key: key, Value: val, Dirty: dirty} } func (n *Node) Copy() *Node { return NewNode(n.Key, n.Value, n.Dirty) } type Cache struct { nodes map[string]*Node db Database IsDirty bool } func NewCache(db Database) *Cache { return &Cache{db: db, nodes: make(map[string]*Node)} } func (cache *Cache) Put(v interface{}) interface{} { value := NewValue(v) enc := value.Encode() if len(enc) >= 32 { sha := Sha3Bin(enc) cache.nodes[string(sha)] = NewNode(sha, value, true) cache.IsDirty = true return sha } return v } func (cache *Cache) Get(key []byte) *Value { // First check if the key is the cache if cache.nodes[string(key)] != nil { return cache.nodes[string(key)].Value } // Get the key of the database instead and cache it data, _ := cache.db.Get(key) // Create the cached value value := NewValueFromBytes(data) // Create caching node cache.nodes[string(key)] = NewNode(key, value, false) return value } func (cache *Cache) Commit() { // Don't try to commit if it isn't dirty if !cache.IsDirty { return } for key, node := range cache.nodes { if node.Dirty { cache.db.Put([]byte(key), node.Value.Encode()) node.Dirty = false } } cache.IsDirty = false // If the nodes grows beyond the 200 entries we simple empty it // FIXME come up with something better if len(cache.nodes) > 200 { cache.nodes = make(map[string]*Node) } } func (cache *Cache) Undo() { for key, node := range cache.nodes { if node.Dirty { delete(cache.nodes, key) } } cache.IsDirty = false } // A (modified) Radix Trie implementation. The Trie implements // a caching mechanism and will used cached values if they are // present. If a node is not present in the cache it will try to // fetch it from the database and store the cached value. // Please note that the data isn't persisted unless `Sync` is // explicitly called. type Trie struct { prevRoot interface{} Root interface{} //db Database cache *Cache } func NewTrie(db Database, Root interface{}) *Trie { return &Trie{cache: NewCache(db), Root: Root, prevRoot: Root} } // Save the cached value to the database. func (t *Trie) Sync() { t.cache.Commit() t.prevRoot = t.Root } func (t *Trie) Undo() { t.cache.Undo() t.Root = t.prevRoot } func (t *Trie) Cache() *Cache { return t.cache } /* * Public (query) interface functions */ func (t *Trie) Update(key string, value string) { k := CompactHexDecode(key) t.Root = t.UpdateState(t.Root, k, value) } func (t *Trie) Get(key string) string { k := CompactHexDecode(key) c := NewValue(t.GetState(t.Root, k)) return c.Str() } func (t *Trie) Delete(key string) { t.Update(key, "") } func (t *Trie) GetState(node interface{}, key []int) interface{} { n := NewValue(node) // Return the node if key is empty (= found) if len(key) == 0 || n.IsNil() || n.Len() == 0 { return node } currentNode := t.GetNode(node) length := currentNode.Len() if length == 0 { return "" } else if length == 2 { // Decode the key k := CompactDecode(currentNode.Get(0).Str()) v := currentNode.Get(1).Raw() if len(key) >= len(k) && CompareIntSlice(k, key[:len(k)]) { return t.GetState(v, key[len(k):]) } else { return "" } } else if length == 17 { return t.GetState(currentNode.Get(key[0]).Raw(), key[1:]) } // It shouldn't come this far fmt.Println("GetState unexpected return") return "" } func (t *Trie) GetNode(node interface{}) *Value { n := NewValue(node) if !n.Get(0).IsNil() { return n } str := n.Str() if len(str) == 0 { return n } else if len(str) < 32 { return NewValueFromBytes([]byte(str)) } return t.cache.Get(n.Bytes()) } func (t *Trie) UpdateState(node interface{}, key []int, value string) interface{} { if value != "" { return t.InsertState(node, key, value) } else { // delete it return t.DeleteState(node, key) } return t.Root } func (t *Trie) Put(node interface{}) interface{} { /* enc := Encode(node) if len(enc) >= 32 { var sha []byte sha = Sha3Bin(enc) //t.db.Put([]byte(sha), enc) return sha } return node */ /* TODO? c := Conv(t.Root) fmt.Println(c.Type(), c.Length()) if c.Type() == reflect.String && c.AsString() == "" { return enc } */ return t.cache.Put(node) } func EmptyStringSlice(l int) []interface{} { slice := make([]interface{}, l) for i := 0; i < l; i++ { slice[i] = "" } return slice } func (t *Trie) InsertState(node interface{}, key []int, value interface{}) interface{} { if len(key) == 0 { return value } // New node n := NewValue(node) if node == nil || (n.Type() == reflect.String && (n.Str() == "" || n.Get(0).IsNil())) || n.Len() == 0 { newNode := []interface{}{CompactEncode(key), value} return t.Put(newNode) } currentNode := t.GetNode(node) // Check for "special" 2 slice type node if currentNode.Len() == 2 { // Decode the key k := CompactDecode(currentNode.Get(0).Str()) v := currentNode.Get(1).Raw() // Matching key pair (ie. there's already an object with this key) if CompareIntSlice(k, key) { newNode := []interface{}{CompactEncode(key), value} return t.Put(newNode) } var newHash interface{} matchingLength := MatchingNibbleLength(key, k) if matchingLength == len(k) { // Insert the hash, creating a new node newHash = t.InsertState(v, key[matchingLength:], value) } else { // Expand the 2 length slice to a 17 length slice oldNode := t.InsertState("", k[matchingLength+1:], v) newNode := t.InsertState("", key[matchingLength+1:], value) // Create an expanded slice scaledSlice := EmptyStringSlice(17) // Set the copied and new node scaledSlice[k[matchingLength]] = oldNode scaledSlice[key[matchingLength]] = newNode newHash = t.Put(scaledSlice) } if matchingLength == 0 { // End of the chain, return return newHash } else { newNode := []interface{}{CompactEncode(key[:matchingLength]), newHash} return t.Put(newNode) } } else { // Copy the current node over to the new node and replace the first nibble in the key newNode := EmptyStringSlice(17) for i := 0; i < 17; i++ { cpy := currentNode.Get(i).Raw() if cpy != nil { newNode[i] = cpy } } newNode[key[0]] = t.InsertState(currentNode.Get(key[0]).Raw(), key[1:], value) return t.Put(newNode) } return "" } func (t *Trie) DeleteState(node interface{}, key []int) interface{} { if len(key) == 0 { return "" } // New node n := NewValue(node) if node == nil || (n.Type() == reflect.String && (n.Str() == "" || n.Get(0).IsNil())) || n.Len() == 0 { return "" } currentNode := t.GetNode(node) // Check for "special" 2 slice type node if currentNode.Len() == 2 { // Decode the key k := CompactDecode(currentNode.Get(0).Str()) v := currentNode.Get(1).Raw() // Matching key pair (ie. there's already an object with this key) if CompareIntSlice(k, key) { return "" } else if CompareIntSlice(key[:len(k)], k) { hash := t.DeleteState(v, key[len(k):]) child := t.GetNode(hash) var newNode []interface{} if child.Len() == 2 { newKey := append(k, CompactDecode(child.Get(0).Str())...) newNode = []interface{}{CompactEncode(newKey), child.Get(1).Raw()} } else { newNode = []interface{}{currentNode.Get(0).Str(), hash} } return t.Put(newNode) } else { return node } } else { // Copy the current node over to the new node and replace the first nibble in the key n := EmptyStringSlice(17) var newNode []interface{} for i := 0; i < 17; i++ { cpy := currentNode.Get(i).Raw() if cpy != nil { n[i] = cpy } } n[key[0]] = t.DeleteState(n[key[0]], key[1:]) amount := -1 for i := 0; i < 17; i++ { if n[i] != "" { if amount == -1 { amount = i } else { amount = -2 } } } if amount == 16 { newNode = []interface{}{CompactEncode([]int{16}), n[amount]} } else if amount >= 0 { child := t.GetNode(n[amount]) if child.Len() == 17 { newNode = []interface{}{CompactEncode([]int{amount}), n[amount]} } else if child.Len() == 2 { key := append([]int{amount}, CompactDecode(child.Get(0).Str())...) newNode = []interface{}{CompactEncode(key), child.Get(1).Str()} } } else { newNode = n } return t.Put(newNode) } return "" } // Simple compare function which creates a rlp value out of the evaluated objects func (t *Trie) Cmp(trie *Trie) bool { return NewValue(t.Root).Cmp(NewValue(trie.Root)) } // Returns a copy of this trie func (t *Trie) Copy() *Trie { trie := NewTrie(t.cache.db, t.Root) for key, node := range t.cache.nodes { trie.cache.nodes[key] = node.Copy() } return trie }