// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "crypto/ecdsa" "math/big" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" ) func transaction(nonce uint64, gaslimit *big.Int, key *ecdsa.PrivateKey) *types.Transaction { tx, _ := types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, big.NewInt(1), nil).SignECDSA(key) return tx } func setupTxPool() (*TxPool, *ecdsa.PrivateKey) { db, _ := ethdb.NewMemDatabase() statedb, _ := state.New(common.Hash{}, db) var m event.TypeMux key, _ := crypto.GenerateKey() newPool := NewTxPool(&m, func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) }) newPool.resetState() return newPool, key } func TestInvalidTransactions(t *testing.T) { pool, key := setupTxPool() tx := transaction(0, big.NewInt(100), key) if err := pool.Add(tx); err != ErrNonExistentAccount { t.Error("expected", ErrNonExistentAccount) } from, _ := tx.From() currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1)) if err := pool.Add(tx); err != ErrInsufficientFunds { t.Error("expected", ErrInsufficientFunds) } balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(tx.Gas(), tx.GasPrice())) currentState.AddBalance(from, balance) if err := pool.Add(tx); err != ErrIntrinsicGas { t.Error("expected", ErrIntrinsicGas, "got", err) } currentState.SetNonce(from, 1) currentState.AddBalance(from, big.NewInt(0xffffffffffffff)) tx = transaction(0, big.NewInt(100000), key) if err := pool.Add(tx); err != ErrNonce { t.Error("expected", ErrNonce) } tx = transaction(1, big.NewInt(100000), key) pool.minGasPrice = big.NewInt(1000) if err := pool.Add(tx); err != ErrCheap { t.Error("expected", ErrCheap, "got", err) } pool.SetLocal(tx) if err := pool.Add(tx); err != nil { t.Error("expected", nil, "got", err) } } func TestTransactionQueue(t *testing.T) { pool, key := setupTxPool() tx := transaction(0, big.NewInt(100), key) from, _ := tx.From() currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1000)) pool.queueTx(tx.Hash(), tx) pool.checkQueue() if len(pool.pending) != 1 { t.Error("expected valid txs to be 1 is", len(pool.pending)) } tx = transaction(1, big.NewInt(100), key) from, _ = tx.From() currentState.SetNonce(from, 2) pool.queueTx(tx.Hash(), tx) pool.checkQueue() if _, ok := pool.pending[tx.Hash()]; ok { t.Error("expected transaction to be in tx pool") } if len(pool.queue[from]) > 0 { t.Error("expected transaction queue to be empty. is", len(pool.queue[from])) } pool, key = setupTxPool() tx1 := transaction(0, big.NewInt(100), key) tx2 := transaction(10, big.NewInt(100), key) tx3 := transaction(11, big.NewInt(100), key) from, _ = tx1.From() currentState, _ = pool.currentState() currentState.AddBalance(from, big.NewInt(1000)) pool.queueTx(tx1.Hash(), tx1) pool.queueTx(tx2.Hash(), tx2) pool.queueTx(tx3.Hash(), tx3) pool.checkQueue() if len(pool.pending) != 1 { t.Error("expected tx pool to be 1, got", len(pool.pending)) } if len(pool.queue[from]) != 2 { t.Error("expected len(queue) == 2, got", len(pool.queue[from])) } } func TestRemoveTx(t *testing.T) { pool, key := setupTxPool() tx := transaction(0, big.NewInt(100), key) from, _ := tx.From() currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1)) pool.queueTx(tx.Hash(), tx) pool.addTx(tx.Hash(), from, tx) if len(pool.queue) != 1 { t.Error("expected queue to be 1, got", len(pool.queue)) } if len(pool.pending) != 1 { t.Error("expected txs to be 1, got", len(pool.pending)) } pool.RemoveTx(tx.Hash()) if len(pool.queue) > 0 { t.Error("expected queue to be 0, got", len(pool.queue)) } if len(pool.pending) > 0 { t.Error("expected txs to be 0, got", len(pool.pending)) } } func TestNegativeValue(t *testing.T) { pool, key := setupTxPool() tx, _ := types.NewTransaction(0, common.Address{}, big.NewInt(-1), big.NewInt(100), big.NewInt(1), nil).SignECDSA(key) from, _ := tx.From() currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1)) if err := pool.Add(tx); err != ErrNegativeValue { t.Error("expected", ErrNegativeValue, "got", err) } } func TestTransactionChainFork(t *testing.T) { pool, key := setupTxPool() addr := crypto.PubkeyToAddress(key.PublicKey) resetState := func() { db, _ := ethdb.NewMemDatabase() statedb, _ := state.New(common.Hash{}, db) pool.currentState = func() (*state.StateDB, error) { return statedb, nil } currentState, _ := pool.currentState() currentState.AddBalance(addr, big.NewInt(100000000000000)) pool.resetState() } resetState() tx := transaction(0, big.NewInt(100000), key) if err := pool.add(tx); err != nil { t.Error("didn't expect error", err) } pool.RemoveTransactions([]*types.Transaction{tx}) // reset the pool's internal state resetState() if err := pool.add(tx); err != nil { t.Error("didn't expect error", err) } } func TestTransactionDoubleNonce(t *testing.T) { pool, key := setupTxPool() addr := crypto.PubkeyToAddress(key.PublicKey) resetState := func() { db, _ := ethdb.NewMemDatabase() statedb, _ := state.New(common.Hash{}, db) pool.currentState = func() (*state.StateDB, error) { return statedb, nil } currentState, _ := pool.currentState() currentState.AddBalance(addr, big.NewInt(100000000000000)) pool.resetState() } resetState() tx := transaction(0, big.NewInt(100000), key) tx2 := transaction(0, big.NewInt(1000000), key) if err := pool.add(tx); err != nil { t.Error("didn't expect error", err) } if err := pool.add(tx2); err != nil { t.Error("didn't expect error", err) } pool.checkQueue() if len(pool.pending) != 2 { t.Error("expected 2 pending txs. Got", len(pool.pending)) } } func TestMissingNonce(t *testing.T) { pool, key := setupTxPool() addr := crypto.PubkeyToAddress(key.PublicKey) currentState, _ := pool.currentState() currentState.AddBalance(addr, big.NewInt(100000000000000)) tx := transaction(1, big.NewInt(100000), key) if err := pool.add(tx); err != nil { t.Error("didn't expect error", err) } if len(pool.pending) != 0 { t.Error("expected 0 pending transactions, got", len(pool.pending)) } if len(pool.queue[addr]) != 1 { t.Error("expected 1 queued transaction, got", len(pool.queue[addr])) } } func TestNonceRecovery(t *testing.T) { const n = 10 pool, key := setupTxPool() addr := crypto.PubkeyToAddress(key.PublicKey) currentState, _ := pool.currentState() currentState.SetNonce(addr, n) currentState.AddBalance(addr, big.NewInt(100000000000000)) pool.resetState() tx := transaction(n, big.NewInt(100000), key) if err := pool.Add(tx); err != nil { t.Error(err) } // simulate some weird re-order of transactions and missing nonce(s) currentState.SetNonce(addr, n-1) pool.resetState() if fn := pool.pendingState.GetNonce(addr); fn != n+1 { t.Errorf("expected nonce to be %d, got %d", n+1, fn) } } func TestRemovedTxEvent(t *testing.T) { pool, key := setupTxPool() tx := transaction(0, big.NewInt(1000000), key) from, _ := tx.From() currentState, _ := pool.currentState() currentState.AddBalance(from, big.NewInt(1000000000000)) pool.eventMux.Post(RemovedTransactionEvent{types.Transactions{tx}}) pool.eventMux.Post(ChainHeadEvent{nil}) if len(pool.pending) != 1 { t.Error("expected 1 pending tx, got", len(pool.pending)) } } // Tests that if an account runs out of funds, any pending and queued transactions // are dropped. func TestTransactionDropping(t *testing.T) { // Create a test account and fund it pool, key := setupTxPool() account, _ := transaction(0, big.NewInt(0), key).From() state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000)) // Add some pending and some queued transactions var ( tx0 = transaction(0, big.NewInt(100), key) tx1 = transaction(1, big.NewInt(200), key) tx10 = transaction(10, big.NewInt(100), key) tx11 = transaction(11, big.NewInt(200), key) ) pool.addTx(tx0.Hash(), account, tx0) pool.addTx(tx1.Hash(), account, tx1) pool.queueTx(tx10.Hash(), tx10) pool.queueTx(tx11.Hash(), tx11) // Check that pre and post validations leave the pool as is if len(pool.pending) != 2 { t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), 2) } if len(pool.queue[account]) != 2 { t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 2) } pool.resetState() if len(pool.pending) != 2 { t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), 2) } if len(pool.queue[account]) != 2 { t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 2) } // Reduce the balance of the account, and check that invalidated transactions are dropped state.AddBalance(account, big.NewInt(-750)) pool.resetState() if _, ok := pool.pending[tx0.Hash()]; !ok { t.Errorf("funded pending transaction missing: %v", tx0) } if _, ok := pool.pending[tx1.Hash()]; ok { t.Errorf("out-of-fund pending transaction present: %v", tx1) } if _, ok := pool.queue[account][tx10.Hash()]; !ok { t.Errorf("funded queued transaction missing: %v", tx10) } if _, ok := pool.queue[account][tx11.Hash()]; ok { t.Errorf("out-of-fund queued transaction present: %v", tx11) } } // Tests that if a transaction is dropped from the current pending pool (e.g. out // of fund), all consecutive (still valid, but not executable) transactions are // postponed back into the future queue to prevent broadcating them. func TestTransactionPostponing(t *testing.T) { // Create a test account and fund it pool, key := setupTxPool() account, _ := transaction(0, big.NewInt(0), key).From() state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000)) // Add a batch consecutive pending transactions for validation txns := []*types.Transaction{} for i := 0; i < 100; i++ { var tx *types.Transaction if i%2 == 0 { tx = transaction(uint64(i), big.NewInt(100), key) } else { tx = transaction(uint64(i), big.NewInt(500), key) } pool.addTx(tx.Hash(), account, tx) txns = append(txns, tx) } // Check that pre and post validations leave the pool as is if len(pool.pending) != len(txns) { t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), len(txns)) } if len(pool.queue[account]) != 0 { t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 0) } pool.resetState() if len(pool.pending) != len(txns) { t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending), len(txns)) } if len(pool.queue[account]) != 0 { t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue), 0) } // Reduce the balance of the account, and check that transactions are reorganized state.AddBalance(account, big.NewInt(-750)) pool.resetState() if _, ok := pool.pending[txns[0].Hash()]; !ok { t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0]) } if _, ok := pool.queue[account][txns[0].Hash()]; ok { t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0]) } for i, tx := range txns[1:] { if i%2 == 1 { if _, ok := pool.pending[tx.Hash()]; ok { t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx) } if _, ok := pool.queue[account][tx.Hash()]; !ok { t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx) } } else { if _, ok := pool.pending[tx.Hash()]; ok { t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx) } if _, ok := pool.queue[account][tx.Hash()]; ok { t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx) } } } } // Tests that if the transaction count belonging to a single account goes above // some threshold, the higher transactions are dropped to prevent DOS attacks. func TestTransactionQueueLimiting(t *testing.T) { // Create a test account and fund it pool, key := setupTxPool() account, _ := transaction(0, big.NewInt(0), key).From() state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) // Keep queuing up transactions and make sure all above a limit are dropped for i := uint64(1); i <= maxQueued+5; i++ { if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } if len(pool.pending) != 0 { t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0) } if i <= maxQueued { if len(pool.queue[account]) != int(i) { t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, len(pool.queue[account]), i) } } else { if len(pool.queue[account]) != maxQueued { t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, len(pool.queue[account]), maxQueued) } } } } // Tests that even if the transaction count belonging to a single account goes // above some threshold, as long as the transactions are executable, they are // accepted. func TestTransactionPendingLimiting(t *testing.T) { // Create a test account and fund it pool, key := setupTxPool() account, _ := transaction(0, big.NewInt(0), key).From() state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) // Keep queuing up transactions and make sure all above a limit are dropped for i := uint64(0); i < maxQueued+5; i++ { if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } if len(pool.pending) != int(i)+1 { t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), i+1) } if len(pool.queue[account]) != 0 { t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, len(pool.queue[account]), 0) } } } // Tests that the transaction limits are enforced the same way irrelevant whether // the transactions are added one by one or in batches. func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) } func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) } func testTransactionLimitingEquivalency(t *testing.T, origin uint64) { // Add a batch of transactions to a pool one by one pool1, key1 := setupTxPool() account1, _ := transaction(0, big.NewInt(0), key1).From() state1, _ := pool1.currentState() state1.AddBalance(account1, big.NewInt(1000000)) for i := uint64(0); i < maxQueued+5; i++ { if err := pool1.Add(transaction(origin+i, big.NewInt(100000), key1)); err != nil { t.Fatalf("tx %d: failed to add transaction: %v", i, err) } } // Add a batch of transactions to a pool in one bit batch pool2, key2 := setupTxPool() account2, _ := transaction(0, big.NewInt(0), key2).From() state2, _ := pool2.currentState() state2.AddBalance(account2, big.NewInt(1000000)) txns := []*types.Transaction{} for i := uint64(0); i < maxQueued+5; i++ { txns = append(txns, transaction(origin+i, big.NewInt(100000), key2)) } pool2.AddTransactions(txns) // Ensure the batch optimization honors the same pool mechanics if len(pool1.pending) != len(pool2.pending) { t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending)) } if len(pool1.queue[account1]) != len(pool2.queue[account2]) { t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue[account1]), len(pool2.queue[account2])) } } // Benchmarks the speed of validating the contents of the pending queue of the // transaction pool. func BenchmarkValidatePool100(b *testing.B) { benchmarkValidatePool(b, 100) } func BenchmarkValidatePool1000(b *testing.B) { benchmarkValidatePool(b, 1000) } func BenchmarkValidatePool10000(b *testing.B) { benchmarkValidatePool(b, 10000) } func benchmarkValidatePool(b *testing.B, size int) { // Add a batch of transactions to a pool one by one pool, key := setupTxPool() account, _ := transaction(0, big.NewInt(0), key).From() state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) for i := 0; i < size; i++ { tx := transaction(uint64(i), big.NewInt(100000), key) pool.addTx(tx.Hash(), account, tx) } // Benchmark the speed of pool validation b.ResetTimer() for i := 0; i < b.N; i++ { pool.validatePool() } } // Benchmarks the speed of scheduling the contents of the future queue of the // transaction pool. func BenchmarkCheckQueue100(b *testing.B) { benchmarkCheckQueue(b, 100) } func BenchmarkCheckQueue1000(b *testing.B) { benchmarkCheckQueue(b, 1000) } func BenchmarkCheckQueue10000(b *testing.B) { benchmarkCheckQueue(b, 10000) } func benchmarkCheckQueue(b *testing.B, size int) { // Add a batch of transactions to a pool one by one pool, key := setupTxPool() account, _ := transaction(0, big.NewInt(0), key).From() state, _ := pool.currentState() state.AddBalance(account, big.NewInt(1000000)) for i := 0; i < size; i++ { tx := transaction(uint64(1+i), big.NewInt(100000), key) pool.queueTx(tx.Hash(), tx) } // Benchmark the speed of pool validation b.ResetTimer() for i := 0; i < b.N; i++ { pool.checkQueue() } }