// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package storage import ( "context" "encoding/binary" "errors" "io" "io/ioutil" "sync" "time" ch "github.com/ethereum/go-ethereum/swarm/chunk" "github.com/ethereum/go-ethereum/swarm/log" ) /* The main idea of a pyramid chunker is to process the input data without knowing the entire size apriori. For this to be achieved, the chunker tree is built from the ground up until the data is exhausted. This opens up new aveneus such as easy append and other sort of modifications to the tree thereby avoiding duplication of data chunks. Below is an example of a two level chunks tree. The leaf chunks are called data chunks and all the above chunks are called tree chunks. The tree chunk above data chunks is level 0 and so on until it reaches the root tree chunk. T10 <- Tree chunk lvl1 | __________________________|_____________________________ / | | \ / | \ \ __T00__ ___T01__ ___T02__ ___T03__ <- Tree chunks lvl 0 / / \ / / \ / / \ / / \ / / \ / / \ / / \ / / \ D1 D2 ... D128 D1 D2 ... D128 D1 D2 ... D128 D1 D2 ... D128 <- Data Chunks The split function continuously read the data and creates data chunks and send them to storage. When certain no of data chunks are created (defaultBranches), a signal is sent to create a tree entry. When the level 0 tree entries reaches certain threshold (defaultBranches), another signal is sent to a tree entry one level up.. and so on... until only the data is exhausted AND only one tree entry is present in certain level. The key of tree entry is given out as the rootAddress of the file. */ var ( errLoadingTreeRootChunk = errors.New("LoadTree Error: Could not load root chunk") errLoadingTreeChunk = errors.New("LoadTree Error: Could not load chunk") ) const ( ChunkProcessors = 8 splitTimeout = time.Minute * 5 ) const ( DataChunk = 0 TreeChunk = 1 ) type PyramidSplitterParams struct { SplitterParams getter Getter } func NewPyramidSplitterParams(addr Address, reader io.Reader, putter Putter, getter Getter, chunkSize int64) *PyramidSplitterParams { hashSize := putter.RefSize() return &PyramidSplitterParams{ SplitterParams: SplitterParams{ ChunkerParams: ChunkerParams{ chunkSize: chunkSize, hashSize: hashSize, }, reader: reader, putter: putter, addr: addr, }, getter: getter, } } /* When splitting, data is given as a SectionReader, and the key is a hashSize long byte slice (Address), the root hash of the entire content will fill this once processing finishes. New chunks to store are store using the putter which the caller provides. */ func PyramidSplit(ctx context.Context, reader io.Reader, putter Putter, getter Getter) (Address, func(context.Context) error, error) { return NewPyramidSplitter(NewPyramidSplitterParams(nil, reader, putter, getter, ch.DefaultSize)).Split(ctx) } func PyramidAppend(ctx context.Context, addr Address, reader io.Reader, putter Putter, getter Getter) (Address, func(context.Context) error, error) { return NewPyramidSplitter(NewPyramidSplitterParams(addr, reader, putter, getter, ch.DefaultSize)).Append(ctx) } // Entry to create a tree node type TreeEntry struct { level int branchCount int64 subtreeSize uint64 chunk []byte key []byte index int // used in append to indicate the index of existing tree entry updatePending bool // indicates if the entry is loaded from existing tree } func NewTreeEntry(pyramid *PyramidChunker) *TreeEntry { return &TreeEntry{ level: 0, branchCount: 0, subtreeSize: 0, chunk: make([]byte, pyramid.chunkSize+8), key: make([]byte, pyramid.hashSize), index: 0, updatePending: false, } } // Used by the hash processor to create a data/tree chunk and send to storage type chunkJob struct { key Address chunk []byte parentWg *sync.WaitGroup } type PyramidChunker struct { chunkSize int64 hashSize int64 branches int64 reader io.Reader putter Putter getter Getter key Address workerCount int64 workerLock sync.RWMutex jobC chan *chunkJob wg *sync.WaitGroup errC chan error quitC chan bool rootAddress []byte chunkLevel [][]*TreeEntry } func NewPyramidSplitter(params *PyramidSplitterParams) (pc *PyramidChunker) { pc = &PyramidChunker{} pc.reader = params.reader pc.hashSize = params.hashSize pc.branches = params.chunkSize / pc.hashSize pc.chunkSize = pc.hashSize * pc.branches pc.putter = params.putter pc.getter = params.getter pc.key = params.addr pc.workerCount = 0 pc.jobC = make(chan *chunkJob, 2*ChunkProcessors) pc.wg = &sync.WaitGroup{} pc.errC = make(chan error) pc.quitC = make(chan bool) pc.rootAddress = make([]byte, pc.hashSize) pc.chunkLevel = make([][]*TreeEntry, pc.branches) return } func (pc *PyramidChunker) Join(addr Address, getter Getter, depth int) LazySectionReader { return &LazyChunkReader{ addr: addr, depth: depth, chunkSize: pc.chunkSize, branches: pc.branches, hashSize: pc.hashSize, getter: getter, } } func (pc *PyramidChunker) incrementWorkerCount() { pc.workerLock.Lock() defer pc.workerLock.Unlock() pc.workerCount += 1 } func (pc *PyramidChunker) getWorkerCount() int64 { pc.workerLock.Lock() defer pc.workerLock.Unlock() return pc.workerCount } func (pc *PyramidChunker) decrementWorkerCount() { pc.workerLock.Lock() defer pc.workerLock.Unlock() pc.workerCount -= 1 } func (pc *PyramidChunker) Split(ctx context.Context) (k Address, wait func(context.Context) error, err error) { log.Debug("pyramid.chunker: Split()") pc.wg.Add(1) pc.prepareChunks(ctx, false) // closes internal error channel if all subprocesses in the workgroup finished go func() { // waiting for all chunks to finish pc.wg.Wait() //We close errC here because this is passed down to 8 parallel routines underneath. // if a error happens in one of them.. that particular routine raises error... // once they all complete successfully, the control comes back and we can safely close this here. close(pc.errC) }() defer close(pc.quitC) defer pc.putter.Close() select { case err := <-pc.errC: if err != nil { return nil, nil, err } case <-ctx.Done(): _ = pc.putter.Wait(ctx) //??? return nil, nil, ctx.Err() } return pc.rootAddress, pc.putter.Wait, nil } func (pc *PyramidChunker) Append(ctx context.Context) (k Address, wait func(context.Context) error, err error) { log.Debug("pyramid.chunker: Append()") // Load the right most unfinished tree chunks in every level pc.loadTree(ctx) pc.wg.Add(1) pc.prepareChunks(ctx, true) // closes internal error channel if all subprocesses in the workgroup finished go func() { // waiting for all chunks to finish pc.wg.Wait() close(pc.errC) }() defer close(pc.quitC) defer pc.putter.Close() select { case err := <-pc.errC: if err != nil { return nil, nil, err } case <-time.NewTimer(splitTimeout).C: } return pc.rootAddress, pc.putter.Wait, nil } func (pc *PyramidChunker) processor(ctx context.Context, id int64) { defer pc.decrementWorkerCount() for { select { case job, ok := <-pc.jobC: if !ok { return } pc.processChunk(ctx, id, job) case <-pc.quitC: return } } } func (pc *PyramidChunker) processChunk(ctx context.Context, id int64, job *chunkJob) { log.Debug("pyramid.chunker: processChunk()", "id", id) ref, err := pc.putter.Put(ctx, job.chunk) if err != nil { select { case pc.errC <- err: case <-pc.quitC: } } // report hash of this chunk one level up (keys corresponds to the proper subslice of the parent chunk) copy(job.key, ref) // send off new chunk to storage job.parentWg.Done() } func (pc *PyramidChunker) loadTree(ctx context.Context) error { log.Debug("pyramid.chunker: loadTree()") // Get the root chunk to get the total size chunkData, err := pc.getter.Get(ctx, Reference(pc.key)) if err != nil { return errLoadingTreeRootChunk } chunkSize := int64(chunkData.Size()) log.Trace("pyramid.chunker: root chunk", "chunk.Size", chunkSize, "pc.chunkSize", pc.chunkSize) //if data size is less than a chunk... add a parent with update as pending if chunkSize <= pc.chunkSize { newEntry := &TreeEntry{ level: 0, branchCount: 1, subtreeSize: uint64(chunkSize), chunk: make([]byte, pc.chunkSize+8), key: make([]byte, pc.hashSize), index: 0, updatePending: true, } copy(newEntry.chunk[8:], pc.key) pc.chunkLevel[0] = append(pc.chunkLevel[0], newEntry) return nil } var treeSize int64 var depth int treeSize = pc.chunkSize for ; treeSize < chunkSize; treeSize *= pc.branches { depth++ } log.Trace("pyramid.chunker", "depth", depth) // Add the root chunk entry branchCount := int64(len(chunkData)-8) / pc.hashSize newEntry := &TreeEntry{ level: depth - 1, branchCount: branchCount, subtreeSize: uint64(chunkSize), chunk: chunkData, key: pc.key, index: 0, updatePending: true, } pc.chunkLevel[depth-1] = append(pc.chunkLevel[depth-1], newEntry) // Add the rest of the tree for lvl := depth - 1; lvl >= 1; lvl-- { //TODO(jmozah): instead of loading finished branches and then trim in the end, //avoid loading them in the first place for _, ent := range pc.chunkLevel[lvl] { branchCount = int64(len(ent.chunk)-8) / pc.hashSize for i := int64(0); i < branchCount; i++ { key := ent.chunk[8+(i*pc.hashSize) : 8+((i+1)*pc.hashSize)] newChunkData, err := pc.getter.Get(ctx, Reference(key)) if err != nil { return errLoadingTreeChunk } newChunkSize := newChunkData.Size() bewBranchCount := int64(len(newChunkData)-8) / pc.hashSize newEntry := &TreeEntry{ level: lvl - 1, branchCount: bewBranchCount, subtreeSize: newChunkSize, chunk: newChunkData, key: key, index: 0, updatePending: true, } pc.chunkLevel[lvl-1] = append(pc.chunkLevel[lvl-1], newEntry) } // We need to get only the right most unfinished branch.. so trim all finished branches if int64(len(pc.chunkLevel[lvl-1])) >= pc.branches { pc.chunkLevel[lvl-1] = nil } } } return nil } func (pc *PyramidChunker) prepareChunks(ctx context.Context, isAppend bool) { log.Debug("pyramid.chunker: prepareChunks", "isAppend", isAppend) defer pc.wg.Done() chunkWG := &sync.WaitGroup{} pc.incrementWorkerCount() go pc.processor(ctx, pc.workerCount) parent := NewTreeEntry(pc) var unfinishedChunkData ChunkData var unfinishedChunkSize uint64 if isAppend && len(pc.chunkLevel[0]) != 0 { lastIndex := len(pc.chunkLevel[0]) - 1 ent := pc.chunkLevel[0][lastIndex] if ent.branchCount < pc.branches { parent = &TreeEntry{ level: 0, branchCount: ent.branchCount, subtreeSize: ent.subtreeSize, chunk: ent.chunk, key: ent.key, index: lastIndex, updatePending: true, } lastBranch := parent.branchCount - 1 lastAddress := parent.chunk[8+lastBranch*pc.hashSize : 8+(lastBranch+1)*pc.hashSize] var err error unfinishedChunkData, err = pc.getter.Get(ctx, lastAddress) if err != nil { pc.errC <- err } unfinishedChunkSize = unfinishedChunkData.Size() if unfinishedChunkSize < uint64(pc.chunkSize) { parent.subtreeSize = parent.subtreeSize - unfinishedChunkSize parent.branchCount = parent.branchCount - 1 } else { unfinishedChunkData = nil } } } for index := 0; ; index++ { var err error chunkData := make([]byte, pc.chunkSize+8) var readBytes int if unfinishedChunkData != nil { copy(chunkData, unfinishedChunkData) readBytes += int(unfinishedChunkSize) unfinishedChunkData = nil log.Trace("pyramid.chunker: found unfinished chunk", "readBytes", readBytes) } var res []byte res, err = ioutil.ReadAll(io.LimitReader(pc.reader, int64(len(chunkData)-(8+readBytes)))) // hack for ioutil.ReadAll: // a successful call to ioutil.ReadAll returns err == nil, not err == EOF, whereas we // want to propagate the io.EOF error if len(res) == 0 && err == nil { err = io.EOF } copy(chunkData[8+readBytes:], res) readBytes += len(res) log.Trace("pyramid.chunker: copied all data", "readBytes", readBytes) if err != nil { if err == io.EOF || err == io.ErrUnexpectedEOF { pc.cleanChunkLevels() // Check if we are appending or the chunk is the only one. if parent.branchCount == 1 && (pc.depth() == 0 || isAppend) { // Data is exactly one chunk.. pick the last chunk key as root chunkWG.Wait() lastChunksAddress := parent.chunk[8 : 8+pc.hashSize] copy(pc.rootAddress, lastChunksAddress) break } } else { close(pc.quitC) break } } // Data ended in chunk boundary.. just signal to start bulding tree if readBytes == 0 { pc.buildTree(isAppend, parent, chunkWG, true, nil) break } else { pkey := pc.enqueueDataChunk(chunkData, uint64(readBytes), parent, chunkWG) // update tree related parent data structures parent.subtreeSize += uint64(readBytes) parent.branchCount++ // Data got exhausted... signal to send any parent tree related chunks if int64(readBytes) < pc.chunkSize { pc.cleanChunkLevels() // only one data chunk .. so dont add any parent chunk if parent.branchCount <= 1 { chunkWG.Wait() if isAppend || pc.depth() == 0 { // No need to build the tree if the depth is 0 // or we are appending. // Just use the last key. copy(pc.rootAddress, pkey) } else { // We need to build the tree and and provide the lonely // chunk key to replace the last tree chunk key. pc.buildTree(isAppend, parent, chunkWG, true, pkey) } break } pc.buildTree(isAppend, parent, chunkWG, true, nil) break } if parent.branchCount == pc.branches { pc.buildTree(isAppend, parent, chunkWG, false, nil) parent = NewTreeEntry(pc) } } workers := pc.getWorkerCount() if int64(len(pc.jobC)) > workers && workers < ChunkProcessors { pc.incrementWorkerCount() go pc.processor(ctx, pc.workerCount) } } } func (pc *PyramidChunker) buildTree(isAppend bool, ent *TreeEntry, chunkWG *sync.WaitGroup, last bool, lonelyChunkKey []byte) { chunkWG.Wait() pc.enqueueTreeChunk(ent, chunkWG, last) compress := false endLvl := pc.branches for lvl := int64(0); lvl < pc.branches; lvl++ { lvlCount := int64(len(pc.chunkLevel[lvl])) if lvlCount >= pc.branches { endLvl = lvl + 1 compress = true break } } if !compress && !last { return } // Wait for all the keys to be processed before compressing the tree chunkWG.Wait() for lvl := int64(ent.level); lvl < endLvl; lvl++ { lvlCount := int64(len(pc.chunkLevel[lvl])) if lvlCount == 1 && last { copy(pc.rootAddress, pc.chunkLevel[lvl][0].key) return } for startCount := int64(0); startCount < lvlCount; startCount += pc.branches { endCount := startCount + pc.branches if endCount > lvlCount { endCount = lvlCount } var nextLvlCount int64 var tempEntry *TreeEntry if len(pc.chunkLevel[lvl+1]) > 0 { nextLvlCount = int64(len(pc.chunkLevel[lvl+1]) - 1) tempEntry = pc.chunkLevel[lvl+1][nextLvlCount] } if isAppend && tempEntry != nil && tempEntry.updatePending { updateEntry := &TreeEntry{ level: int(lvl + 1), branchCount: 0, subtreeSize: 0, chunk: make([]byte, pc.chunkSize+8), key: make([]byte, pc.hashSize), index: int(nextLvlCount), updatePending: true, } for index := int64(0); index < lvlCount; index++ { updateEntry.branchCount++ updateEntry.subtreeSize += pc.chunkLevel[lvl][index].subtreeSize copy(updateEntry.chunk[8+(index*pc.hashSize):8+((index+1)*pc.hashSize)], pc.chunkLevel[lvl][index].key[:pc.hashSize]) } pc.enqueueTreeChunk(updateEntry, chunkWG, last) } else { noOfBranches := endCount - startCount newEntry := &TreeEntry{ level: int(lvl + 1), branchCount: noOfBranches, subtreeSize: 0, chunk: make([]byte, (noOfBranches*pc.hashSize)+8), key: make([]byte, pc.hashSize), index: int(nextLvlCount), updatePending: false, } index := int64(0) for i := startCount; i < endCount; i++ { entry := pc.chunkLevel[lvl][i] newEntry.subtreeSize += entry.subtreeSize copy(newEntry.chunk[8+(index*pc.hashSize):8+((index+1)*pc.hashSize)], entry.key[:pc.hashSize]) index++ } // Lonely chunk key is the key of the last chunk that is only one on the last branch. // In this case, ignore the its tree chunk key and replace it with the lonely chunk key. if lonelyChunkKey != nil { // Overwrite the last tree chunk key with the lonely data chunk key. copy(newEntry.chunk[int64(len(newEntry.chunk))-pc.hashSize:], lonelyChunkKey[:pc.hashSize]) } pc.enqueueTreeChunk(newEntry, chunkWG, last) } } if !isAppend { chunkWG.Wait() if compress { pc.chunkLevel[lvl] = nil } } } } func (pc *PyramidChunker) enqueueTreeChunk(ent *TreeEntry, chunkWG *sync.WaitGroup, last bool) { if ent != nil && ent.branchCount > 0 { // wait for data chunks to get over before processing the tree chunk if last { chunkWG.Wait() } binary.LittleEndian.PutUint64(ent.chunk[:8], ent.subtreeSize) ent.key = make([]byte, pc.hashSize) chunkWG.Add(1) select { case pc.jobC <- &chunkJob{ent.key, ent.chunk[:ent.branchCount*pc.hashSize+8], chunkWG}: case <-pc.quitC: } // Update or append based on weather it is a new entry or being reused if ent.updatePending { chunkWG.Wait() pc.chunkLevel[ent.level][ent.index] = ent } else { pc.chunkLevel[ent.level] = append(pc.chunkLevel[ent.level], ent) } } } func (pc *PyramidChunker) enqueueDataChunk(chunkData []byte, size uint64, parent *TreeEntry, chunkWG *sync.WaitGroup) Address { binary.LittleEndian.PutUint64(chunkData[:8], size) pkey := parent.chunk[8+parent.branchCount*pc.hashSize : 8+(parent.branchCount+1)*pc.hashSize] chunkWG.Add(1) select { case pc.jobC <- &chunkJob{pkey, chunkData[:size+8], chunkWG}: case <-pc.quitC: } return pkey } // depth returns the number of chunk levels. // It is used to detect if there is only one data chunk // left for the last branch. func (pc *PyramidChunker) depth() (d int) { for _, l := range pc.chunkLevel { if l == nil { return } d++ } return } // cleanChunkLevels removes gaps (nil levels) between chunk levels // that are not nil. func (pc *PyramidChunker) cleanChunkLevels() { for i, l := range pc.chunkLevel { if l == nil { pc.chunkLevel = append(pc.chunkLevel[:i], append(pc.chunkLevel[i+1:], nil)...) } } }