// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/params" ) // Precompiled contract is the basic interface for native Go contracts. The implementation // requires a deterministic gas count based on the input size of the Run method of the // contract. type PrecompiledContract interface { RequiredGas(inputSize int) *big.Int // RequiredPrice calculates the contract gas use Run(input []byte) []byte // Run runs the precompiled contract } // Precompiled contains the default set of ethereum contracts var PrecompiledContracts = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{1}): &ecrecover{}, common.BytesToAddress([]byte{2}): &sha256{}, common.BytesToAddress([]byte{3}): &ripemd160{}, common.BytesToAddress([]byte{4}): &dataCopy{}, } // RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { gas := p.RequiredGas(len(input)) if contract.UseGas(gas) { ret = p.Run(input) return ret, nil } else { return nil, ErrOutOfGas } } // ECRECOVER implemented as a native contract type ecrecover struct{} func (c *ecrecover) RequiredGas(inputSize int) *big.Int { return params.EcrecoverGas } func (c *ecrecover) Run(in []byte) []byte { const ecRecoverInputLength = 128 in = common.RightPadBytes(in, ecRecoverInputLength) // "in" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := common.BytesToBig(in[64:96]) s := common.BytesToBig(in[96:128]) v := in[63] - 27 // tighter sig s values in homestead only apply to tx sigs if common.Bytes2Big(in[32:63]).BitLen() > 0 || !crypto.ValidateSignatureValues(v, r, s, false) { glog.V(logger.Detail).Infof("ECRECOVER error: v, r or s value invalid") return nil } // v needs to be at the end for libsecp256k1 pubKey, err := crypto.Ecrecover(in[:32], append(in[64:128], v)) // make sure the public key is a valid one if err != nil { glog.V(logger.Detail).Infoln("ECRECOVER error: ", err) return nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32) } // SHA256 implemented as a native contract type sha256 struct{} func (c *sha256) RequiredGas(inputSize int) *big.Int { n := big.NewInt(int64(inputSize+31) / 32) n.Mul(n, params.Sha256WordGas) return n.Add(n, params.Sha256Gas) } func (c *sha256) Run(in []byte) []byte { return crypto.Sha256(in) } // RIPMED160 implemented as a native contract type ripemd160 struct{} func (c *ripemd160) RequiredGas(inputSize int) *big.Int { n := big.NewInt(int64(inputSize+31) / 32) n.Mul(n, params.Ripemd160WordGas) return n.Add(n, params.Ripemd160Gas) } func (c *ripemd160) Run(in []byte) []byte { return common.LeftPadBytes(crypto.Ripemd160(in), 32) } // data copy implemented as a native contract type dataCopy struct{} func (c *dataCopy) RequiredGas(inputSize int) *big.Int { n := big.NewInt(int64(inputSize+31) / 32) n.Mul(n, params.IdentityWordGas) return n.Add(n, params.IdentityGas) } func (c *dataCopy) Run(in []byte) []byte { return in }