// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "crypto/sha256" "errors" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto/bn256" "github.com/ethereum/go-ethereum/params" "golang.org/x/crypto/ripemd160" ) var errBadPrecompileInput = errors.New("bad pre compile input") // Precompiled contract is the basic interface for native Go contracts. The implementation // requires a deterministic gas count based on the input size of the Run method of the // contract. type PrecompiledContract interface { RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use Run(input []byte) ([]byte, error) // Run runs the precompiled contract } // PrecompiledContracts contains the default set of ethereum contracts var PrecompiledContracts = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{1}): &ecrecover{}, common.BytesToAddress([]byte{2}): &sha256hash{}, common.BytesToAddress([]byte{3}): &ripemd160hash{}, common.BytesToAddress([]byte{4}): &dataCopy{}, } // PrecompiledContractsMetropolis contains the default set of ethereum contracts // for metropolis hardfork var PrecompiledContractsMetropolis = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{1}): &ecrecover{}, common.BytesToAddress([]byte{2}): &sha256hash{}, common.BytesToAddress([]byte{3}): &ripemd160hash{}, common.BytesToAddress([]byte{4}): &dataCopy{}, common.BytesToAddress([]byte{5}): &bigModexp{}, common.BytesToAddress([]byte{6}): &bn256Add{}, common.BytesToAddress([]byte{7}): &bn256ScalarMul{}, common.BytesToAddress([]byte{8}): &pairing{}, } // RunPrecompile runs and evaluate the output of a precompiled contract defined in contracts.go func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { gas := p.RequiredGas(input) if contract.UseGas(gas) { return p.Run(input) } else { return nil, ErrOutOfGas } } // ECRECOVER implemented as a native contract type ecrecover struct{} func (c *ecrecover) RequiredGas(input []byte) uint64 { return params.EcrecoverGas } func (c *ecrecover) Run(in []byte) ([]byte, error) { const ecRecoverInputLength = 128 in = common.RightPadBytes(in, ecRecoverInputLength) // "in" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := new(big.Int).SetBytes(in[64:96]) s := new(big.Int).SetBytes(in[96:128]) v := in[63] - 27 // tighter sig s values in homestead only apply to tx sigs if !allZero(in[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { return nil, nil } // v needs to be at the end for libsecp256k1 pubKey, err := crypto.Ecrecover(in[:32], append(in[64:128], v)) // make sure the public key is a valid one if err != nil { return nil, nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil } // SHA256 implemented as a native contract type sha256hash struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *sha256hash) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.Sha256WordGas + params.Sha256Gas } func (c *sha256hash) Run(in []byte) ([]byte, error) { h := sha256.Sum256(in) return h[:], nil } // RIPMED160 implemented as a native contract type ripemd160hash struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *ripemd160hash) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.Ripemd160WordGas + params.Ripemd160Gas } func (c *ripemd160hash) Run(in []byte) ([]byte, error) { ripemd := ripemd160.New() ripemd.Write(in) return common.LeftPadBytes(ripemd.Sum(nil), 32), nil } // data copy implemented as a native contract type dataCopy struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *dataCopy) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.IdentityWordGas + params.IdentityGas } func (c *dataCopy) Run(in []byte) ([]byte, error) { return in, nil } // bigModexp implements a native big integer exponential modular operation. type bigModexp struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *bigModexp) RequiredGas(input []byte) uint64 { // TODO reword required gas to have error reporting and convert arithmetic // to uint64. if len(input) < 3*32 { input = append(input, make([]byte, 3*32-len(input))...) } var ( baseLen = new(big.Int).SetBytes(input[:31]) expLen = math.BigMax(new(big.Int).SetBytes(input[32:64]), big.NewInt(1)) modLen = new(big.Int).SetBytes(input[65:97]) ) x := new(big.Int).Set(math.BigMax(baseLen, modLen)) x.Mul(x, x) x.Mul(x, expLen) x.Div(x, new(big.Int).SetUint64(params.QuadCoeffDiv)) return x.Uint64() } func (c *bigModexp) Run(input []byte) ([]byte, error) { if len(input) < 3*32 { input = append(input, make([]byte, 3*32-len(input))...) } // why 32-byte? These values won't fit anyway var ( baseLen = new(big.Int).SetBytes(input[:32]).Uint64() expLen = new(big.Int).SetBytes(input[32:64]).Uint64() modLen = new(big.Int).SetBytes(input[64:96]).Uint64() ) input = input[96:] if uint64(len(input)) < baseLen { input = append(input, make([]byte, baseLen-uint64(len(input)))...) } base := new(big.Int).SetBytes(input[:baseLen]) input = input[baseLen:] if uint64(len(input)) < expLen { input = append(input, make([]byte, expLen-uint64(len(input)))...) } exp := new(big.Int).SetBytes(input[:expLen]) input = input[expLen:] if uint64(len(input)) < modLen { input = append(input, make([]byte, modLen-uint64(len(input)))...) } mod := new(big.Int).SetBytes(input[:modLen]) return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), len(input[:modLen])), nil } type bn256Add struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *bn256Add) RequiredGas(input []byte) uint64 { return 0 // TODO } func (c *bn256Add) Run(in []byte) ([]byte, error) { in = common.RightPadBytes(in, 128) x, onCurve := new(bn256.G1).Unmarshal(in[:64]) if !onCurve { return nil, errNotOnCurve } gx, gy, _, _ := x.CurvePoints() if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 { return nil, errInvalidCurvePoint } y, onCurve := new(bn256.G1).Unmarshal(in[64:128]) if !onCurve { return nil, errNotOnCurve } gx, gy, _, _ = y.CurvePoints() if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 { return nil, errInvalidCurvePoint } x.Add(x, y) return x.Marshal(), nil } type bn256ScalarMul struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { return 0 // TODO } func (c *bn256ScalarMul) Run(in []byte) ([]byte, error) { in = common.RightPadBytes(in, 96) g1, onCurve := new(bn256.G1).Unmarshal(in[:64]) if !onCurve { return nil, errNotOnCurve } x, y, _, _ := g1.CurvePoints() if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 { return nil, errInvalidCurvePoint } g1.ScalarMult(g1, new(big.Int).SetBytes(in[64:96])) return g1.Marshal(), nil } // pairing implements a pairing pre-compile for the bn256 curve type pairing struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *pairing) RequiredGas(input []byte) uint64 { //return 0 // TODO k := (len(input) + 191) / pairSize return uint64(60000*k + 40000) } const pairSize = 192 var ( true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} fals32Byte = make([]byte, 32) errNotOnCurve = errors.New("point not on elliptic curve") errInvalidCurvePoint = errors.New("invalid elliptic curve point") ) func (c *pairing) Run(in []byte) ([]byte, error) { if len(in) == 0 { return true32Byte, nil } if len(in)%pairSize > 0 { return nil, errBadPrecompileInput } var ( g1s []*bn256.G1 g2s []*bn256.G2 ) for i := 0; i < len(in); i += pairSize { g1, onCurve := new(bn256.G1).Unmarshal(in[i : i+64]) if !onCurve { return nil, errNotOnCurve } x, y, _, _ := g1.CurvePoints() if x.Cmp(bn256.P) >= 0 || y.Cmp(bn256.P) >= 0 { return nil, errInvalidCurvePoint } g2, onCurve := new(bn256.G2).Unmarshal(in[i+64 : i+192]) if !onCurve { return nil, errNotOnCurve } x2, y2, _, _ := g2.CurvePoints() if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 || y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 { return nil, errInvalidCurvePoint } g1s = append(g1s, g1) g2s = append(g2s, g2) } isOne := bn256.PairingCheck(g1s, g2s) if isOne { return true32Byte, nil } return fals32Byte, nil }