// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package light import ( "fmt" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/rlp" "golang.org/x/net/context" ) // txPermanent is the number of mined blocks after a mined transaction is // considered permanent and no rollback is expected var txPermanent = uint64(500) // TxPool implements the transaction pool for light clients, which keeps track // of the status of locally created transactions, detecting if they are included // in a block (mined) or rolled back. There are no queued transactions since we // always receive all locally signed transactions in the same order as they are // created. type TxPool struct { config *core.ChainConfig quit chan bool eventMux *event.TypeMux events event.Subscription mu sync.RWMutex chain *LightChain odr OdrBackend chainDb ethdb.Database relay TxRelayBackend head common.Hash nonce map[common.Address]uint64 // "pending" nonce pending map[common.Hash]*types.Transaction // pending transactions by tx hash mined map[common.Hash][]*types.Transaction // mined transactions by block hash clearIdx uint64 // earliest block nr that can contain mined tx info homestead bool } // TxRelayBackend provides an interface to the mechanism that forwards transacions // to the ETH network. The implementations of the functions should be non-blocking. // // Send instructs backend to forward new transactions // NewHead notifies backend about a new head after processed by the tx pool, // including mined and rolled back transactions since the last event // Discard notifies backend about transactions that should be discarded either // because they have been replaced by a re-send or because they have been mined // long ago and no rollback is expected type TxRelayBackend interface { Send(txs types.Transactions) NewHead(head common.Hash, mined []common.Hash, rollback []common.Hash) Discard(hashes []common.Hash) } // NewTxPool creates a new light transaction pool func NewTxPool(config *core.ChainConfig, eventMux *event.TypeMux, chain *LightChain, relay TxRelayBackend) *TxPool { pool := &TxPool{ config: config, nonce: make(map[common.Address]uint64), pending: make(map[common.Hash]*types.Transaction), mined: make(map[common.Hash][]*types.Transaction), quit: make(chan bool), eventMux: eventMux, events: eventMux.Subscribe(core.ChainHeadEvent{}), chain: chain, relay: relay, odr: chain.Odr(), chainDb: chain.Odr().Database(), head: chain.CurrentHeader().Hash(), clearIdx: chain.CurrentHeader().Number.Uint64(), } go pool.eventLoop() return pool } // currentState returns the light state of the current head header func (pool *TxPool) currentState() *LightState { return NewLightState(StateTrieID(pool.chain.CurrentHeader()), pool.odr) } // GetNonce returns the "pending" nonce of a given address. It always queries // the nonce belonging to the latest header too in order to detect if another // client using the same key sent a transaction. func (pool *TxPool) GetNonce(ctx context.Context, addr common.Address) (uint64, error) { nonce, err := pool.currentState().GetNonce(ctx, addr) if err != nil { return 0, err } sn, ok := pool.nonce[addr] if ok && sn > nonce { nonce = sn } if !ok || sn < nonce { pool.nonce[addr] = nonce } return nonce, nil } type txBlockData struct { BlockHash common.Hash BlockIndex uint64 Index uint64 } // storeTxBlockData stores the block position of a mined tx in the local db func (pool *TxPool) storeTxBlockData(txh common.Hash, tbd txBlockData) { //fmt.Println("storeTxBlockData", txh, tbd) data, _ := rlp.EncodeToBytes(tbd) pool.chainDb.Put(append(txh[:], byte(1)), data) } // removeTxBlockData removes the stored block position of a rolled back tx func (pool *TxPool) removeTxBlockData(txh common.Hash) { //fmt.Println("removeTxBlockData", txh) pool.chainDb.Delete(append(txh[:], byte(1))) } // txStateChanges stores the recent changes between pending/mined states of // transactions. True means mined, false means rolled back, no entry means no change type txStateChanges map[common.Hash]bool // setState sets the status of a tx to either recently mined or recently rolled back func (txc txStateChanges) setState(txHash common.Hash, mined bool) { val, ent := txc[txHash] if ent && (val != mined) { delete(txc, txHash) } else { txc[txHash] = mined } } // getLists creates lists of mined and rolled back tx hashes func (txc txStateChanges) getLists() (mined []common.Hash, rollback []common.Hash) { for hash, val := range txc { if val { mined = append(mined, hash) } else { rollback = append(rollback, hash) } } return } // checkMinedTxs checks newly added blocks for the currently pending transactions // and marks them as mined if necessary. It also stores block position in the db // and adds them to the received txStateChanges map. func (pool *TxPool) checkMinedTxs(ctx context.Context, hash common.Hash, idx uint64, txc txStateChanges) error { //fmt.Println("checkMinedTxs") if len(pool.pending) == 0 { return nil } //fmt.Println("len(pool) =", len(pool.pending)) block, err := GetBlock(ctx, pool.odr, hash, idx) var receipts types.Receipts if err != nil { //fmt.Println(err) return err } //fmt.Println("len(block.Transactions()) =", len(block.Transactions())) list := pool.mined[hash] for i, tx := range block.Transactions() { txHash := tx.Hash() //fmt.Println(" txHash:", txHash) if tx, ok := pool.pending[txHash]; ok { //fmt.Println("TX FOUND") if receipts == nil { receipts, err = GetBlockReceipts(ctx, pool.odr, hash, idx) if err != nil { return err } if len(receipts) != len(block.Transactions()) { panic(nil) // should never happen if hashes did match } core.SetReceiptsData(block, receipts) } //fmt.Println("WriteReceipt", receipts[i].TxHash) core.WriteReceipt(pool.chainDb, receipts[i]) pool.storeTxBlockData(txHash, txBlockData{hash, idx, uint64(i)}) delete(pool.pending, txHash) list = append(list, tx) txc.setState(txHash, true) } } if list != nil { pool.mined[hash] = list } return nil } // rollbackTxs marks the transactions contained in recently rolled back blocks // as rolled back. It also removes block position info from the db and adds them // to the received txStateChanges map. func (pool *TxPool) rollbackTxs(hash common.Hash, txc txStateChanges) { if list, ok := pool.mined[hash]; ok { for _, tx := range list { txHash := tx.Hash() pool.removeTxBlockData(txHash) pool.pending[txHash] = tx txc.setState(txHash, false) } delete(pool.mined, hash) } } // setNewHead sets a new head header, processing (and rolling back if necessary) // the blocks since the last known head and returns a txStateChanges map containing // the recently mined and rolled back transaction hashes. If an error (context // timeout) occurs during checking new blocks, it leaves the locally known head // at the latest checked block and still returns a valid txStateChanges, making it // possible to continue checking the missing blocks at the next chain head event func (pool *TxPool) setNewHead(ctx context.Context, newHeader *types.Header) (txStateChanges, error) { txc := make(txStateChanges) oldh := pool.chain.GetHeaderByHash(pool.head) newh := newHeader // find common ancestor, create list of rolled back and new block hashes var oldHashes, newHashes []common.Hash for oldh.Hash() != newh.Hash() { if oldh.Number.Uint64() >= newh.Number.Uint64() { oldHashes = append(oldHashes, oldh.Hash()) oldh = pool.chain.GetHeader(oldh.ParentHash, oldh.Number.Uint64()-1) } if oldh.Number.Uint64() < newh.Number.Uint64() { newHashes = append(newHashes, newh.Hash()) newh = pool.chain.GetHeader(newh.ParentHash, newh.Number.Uint64()-1) if newh == nil { // happens when CHT syncing, nothing to do newh = oldh } } } if oldh.Number.Uint64() < pool.clearIdx { pool.clearIdx = oldh.Number.Uint64() } // roll back old blocks for _, hash := range oldHashes { pool.rollbackTxs(hash, txc) } pool.head = oldh.Hash() // check mined txs of new blocks (array is in reversed order) for i := len(newHashes) - 1; i >= 0; i-- { hash := newHashes[i] if err := pool.checkMinedTxs(ctx, hash, newHeader.Number.Uint64()-uint64(i), txc); err != nil { return txc, err } pool.head = hash } // clear old mined tx entries of old blocks if idx := newHeader.Number.Uint64(); idx > pool.clearIdx+txPermanent { idx2 := idx - txPermanent for i := pool.clearIdx; i < idx2; i++ { hash := core.GetCanonicalHash(pool.chainDb, i) if list, ok := pool.mined[hash]; ok { hashes := make([]common.Hash, len(list)) for i, tx := range list { hashes[i] = tx.Hash() } pool.relay.Discard(hashes) delete(pool.mined, hash) } } pool.clearIdx = idx2 } return txc, nil } // blockCheckTimeout is the time limit for checking new blocks for mined // transactions. Checking resumes at the next chain head event if timed out. const blockCheckTimeout = time.Second * 3 // eventLoop processes chain head events and also notifies the tx relay backend // about the new head hash and tx state changes func (pool *TxPool) eventLoop() { for ev := range pool.events.Chan() { switch ev.Data.(type) { case core.ChainHeadEvent: pool.mu.Lock() ctx, _ := context.WithTimeout(context.Background(), blockCheckTimeout) head := pool.chain.CurrentHeader() txc, _ := pool.setNewHead(ctx, head) m, r := txc.getLists() pool.relay.NewHead(pool.head, m, r) pool.homestead = pool.config.IsHomestead(head.Number) pool.mu.Unlock() } } } // Stop stops the light transaction pool func (pool *TxPool) Stop() { close(pool.quit) pool.events.Unsubscribe() glog.V(logger.Info).Infoln("Transaction pool stopped") } // Stats returns the number of currently pending (locally created) transactions func (pool *TxPool) Stats() (pending int) { pool.mu.RLock() defer pool.mu.RUnlock() pending = len(pool.pending) return } // validateTx checks whether a transaction is valid according to the consensus rules. func (pool *TxPool) validateTx(ctx context.Context, tx *types.Transaction) error { // Validate sender var ( from common.Address err error ) // Validate the transaction sender and it's sig. Throw // if the from fields is invalid. if from, err = tx.From(); err != nil { return core.ErrInvalidSender } // Make sure the account exist. Non existent accounts // haven't got funds and well therefor never pass. currentState := pool.currentState() if h, err := currentState.HasAccount(ctx, from); err == nil { if !h { return core.ErrNonExistentAccount } } else { return err } // Last but not least check for nonce errors if n, err := currentState.GetNonce(ctx, from); err == nil { if n > tx.Nonce() { return core.ErrNonce } } else { return err } // Check the transaction doesn't exceed the current // block limit gas. header := pool.chain.GetHeaderByHash(pool.head) if header.GasLimit.Cmp(tx.Gas()) < 0 { return core.ErrGasLimit } // Transactions can't be negative. This may never happen // using RLP decoded transactions but may occur if you create // a transaction using the RPC for example. if tx.Value().Cmp(common.Big0) < 0 { return core.ErrNegativeValue } // Transactor should have enough funds to cover the costs // cost == V + GP * GL if b, err := currentState.GetBalance(ctx, from); err == nil { if b.Cmp(tx.Cost()) < 0 { return core.ErrInsufficientFunds } } else { return err } // Should supply enough intrinsic gas if tx.Gas().Cmp(core.IntrinsicGas(tx.Data(), core.MessageCreatesContract(tx), pool.homestead)) < 0 { return core.ErrIntrinsicGas } return nil } // add validates a new transaction and sets its state pending if processable. // It also updates the locally stored nonce if necessary. func (self *TxPool) add(ctx context.Context, tx *types.Transaction) error { hash := tx.Hash() if self.pending[hash] != nil { return fmt.Errorf("Known transaction (%x)", hash[:4]) } err := self.validateTx(ctx, tx) if err != nil { return err } if _, ok := self.pending[hash]; !ok { self.pending[hash] = tx nonce := tx.Nonce() + 1 addr, _ := tx.From() if nonce > self.nonce[addr] { self.nonce[addr] = nonce } // Notify the subscribers. This event is posted in a goroutine // because it's possible that somewhere during the post "Remove transaction" // gets called which will then wait for the global tx pool lock and deadlock. go self.eventMux.Post(core.TxPreEvent{Tx: tx}) } if glog.V(logger.Debug) { var toname string if to := tx.To(); to != nil { toname = common.Bytes2Hex(to[:4]) } else { toname = "[NEW_CONTRACT]" } // we can ignore the error here because From is // verified in ValidateTransaction. f, _ := tx.From() from := common.Bytes2Hex(f[:4]) glog.Infof("(t) %x => %s (%v) %x\n", from, toname, tx.Value, hash) } return nil } // Add adds a transaction to the pool if valid and passes it to the tx relay // backend func (self *TxPool) Add(ctx context.Context, tx *types.Transaction) error { self.mu.Lock() defer self.mu.Unlock() data, err := rlp.EncodeToBytes(tx) if err != nil { return err } if err := self.add(ctx, tx); err != nil { return err } //fmt.Println("Send", tx.Hash()) self.relay.Send(types.Transactions{tx}) self.chainDb.Put(tx.Hash().Bytes(), data) return nil } // AddTransactions adds all valid transactions to the pool and passes them to // the tx relay backend func (self *TxPool) AddBatch(ctx context.Context, txs []*types.Transaction) { self.mu.Lock() defer self.mu.Unlock() var sendTx types.Transactions for _, tx := range txs { if err := self.add(ctx, tx); err != nil { glog.V(logger.Debug).Infoln("tx error:", err) } else { sendTx = append(sendTx, tx) h := tx.Hash() glog.V(logger.Debug).Infof("tx %x\n", h[:4]) } } if len(sendTx) > 0 { self.relay.Send(sendTx) } } // GetTransaction returns a transaction if it is contained in the pool // and nil otherwise. func (tp *TxPool) GetTransaction(hash common.Hash) *types.Transaction { // check the txs first if tx, ok := tp.pending[hash]; ok { return tx } return nil } // GetTransactions returns all currently processable transactions. // The returned slice may be modified by the caller. func (self *TxPool) GetTransactions() (txs types.Transactions) { self.mu.RLock() defer self.mu.RUnlock() txs = make(types.Transactions, len(self.pending)) i := 0 for _, tx := range self.pending { txs[i] = tx i++ } return txs } // Content retrieves the data content of the transaction pool, returning all the // pending as well as queued transactions, grouped by account and nonce. func (self *TxPool) Content() (map[common.Address]types.Transactions, map[common.Address]types.Transactions) { self.mu.RLock() defer self.mu.RUnlock() // Retrieve all the pending transactions and sort by account and by nonce pending := make(map[common.Address]types.Transactions) for _, tx := range self.pending { account, _ := tx.From() pending[account] = append(pending[account], tx) } // There are no queued transactions in a light pool, just return an empty map queued := make(map[common.Address]types.Transactions) return pending, queued } // RemoveTransactions removes all given transactions from the pool. func (self *TxPool) RemoveTransactions(txs types.Transactions) { self.mu.Lock() defer self.mu.Unlock() var hashes []common.Hash for _, tx := range txs { //self.RemoveTx(tx.Hash()) hash := tx.Hash() delete(self.pending, hash) self.chainDb.Delete(hash[:]) hashes = append(hashes, hash) } self.relay.Discard(hashes) } // RemoveTx removes the transaction with the given hash from the pool. func (pool *TxPool) RemoveTx(hash common.Hash) { pool.mu.Lock() defer pool.mu.Unlock() // delete from pending pool delete(pool.pending, hash) pool.chainDb.Delete(hash[:]) pool.relay.Discard([]common.Hash{hash}) }