// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package network import ( "encoding/binary" "encoding/json" "fmt" "path/filepath" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/swarm/storage" ) // syncer parameters (global, not peer specific) default values const ( requestDbBatchSize = 512 // size of batch before written to request db keyBufferSize = 1024 // size of buffer for unsynced keys syncBatchSize = 128 // maximum batchsize for outgoing requests syncBufferSize = 128 // size of buffer for delivery requests syncCacheSize = 1024 // cache capacity to store request queue in memory ) // priorities const ( Low = iota // 0 Medium // 1 High // 2 priorities // 3 number of priority levels ) // request types const ( DeliverReq = iota // 0 PushReq // 1 PropagateReq // 2 HistoryReq // 3 BacklogReq // 4 ) // json serialisable struct to record the syncronisation state between 2 peers type syncState struct { *storage.DbSyncState // embeds the following 4 fields: // Start Key // lower limit of address space // Stop Key // upper limit of address space // First uint64 // counter taken from last sync state // Last uint64 // counter of remote peer dbStore at the time of last connection SessionAt uint64 // set at the time of connection LastSeenAt uint64 // set at the time of connection Latest storage.Key // cursor of dbstore when last (continuously set by syncer) Synced bool // true iff Sync is done up to the last disconnect synced chan bool // signal that sync stage finished } // wrapper of db-s to provide mockable custom local chunk store access to syncer type DbAccess struct { db *storage.DbStore loc *storage.LocalStore } func NewDbAccess(loc *storage.LocalStore) *DbAccess { return &DbAccess{loc.DbStore.(*storage.DbStore), loc} } // to obtain the chunks from key or request db entry only func (self *DbAccess) get(key storage.Key) (*storage.Chunk, error) { return self.loc.Get(key) } // current storage counter of chunk db func (self *DbAccess) counter() uint64 { return self.db.Counter() } // implemented by dbStoreSyncIterator type keyIterator interface { Next() storage.Key } // generator function for iteration by address range and storage counter func (self *DbAccess) iterator(s *syncState) keyIterator { it, err := self.db.NewSyncIterator(*(s.DbSyncState)) if err != nil { return nil } return keyIterator(it) } func (self syncState) String() string { if self.Synced { return fmt.Sprintf( "session started at: %v, last seen at: %v, latest key: %v", self.SessionAt, self.LastSeenAt, self.Latest.Log(), ) } else { return fmt.Sprintf( "address: %v-%v, index: %v-%v, session started at: %v, last seen at: %v, latest key: %v", self.Start.Log(), self.Stop.Log(), self.First, self.Last, self.SessionAt, self.LastSeenAt, self.Latest.Log(), ) } } // syncer parameters (global, not peer specific) type SyncParams struct { RequestDbPath string // path for request db (leveldb) RequestDbBatchSize uint // nuber of items before batch is saved to requestdb KeyBufferSize uint // size of key buffer SyncBatchSize uint // maximum batchsize for outgoing requests SyncBufferSize uint // size of buffer for SyncCacheSize uint // cache capacity to store request queue in memory SyncPriorities []uint // list of priority levels for req types 0-3 SyncModes []bool // list of sync modes for for req types 0-3 } // constructor with default values func NewDefaultSyncParams() *SyncParams { return &SyncParams{ RequestDbBatchSize: requestDbBatchSize, KeyBufferSize: keyBufferSize, SyncBufferSize: syncBufferSize, SyncBatchSize: syncBatchSize, SyncCacheSize: syncCacheSize, SyncPriorities: []uint{High, Medium, Medium, Low, Low}, SyncModes: []bool{true, true, true, true, false}, } } //this can only finally be set after all config options (file, cmd line, env vars) //have been evaluated func (self *SyncParams) Init(path string) { self.RequestDbPath = filepath.Join(path, "requests") } // syncer is the agent that manages content distribution/storage replication/chunk storeRequest forwarding type syncer struct { *SyncParams // sync parameters syncF func() bool // if syncing is needed key storage.Key // remote peers address key state *syncState // sync state for our dbStore syncStates chan *syncState // different stages of sync deliveryRequest chan bool // one of two triggers needed to send unsyncedKeys newUnsyncedKeys chan bool // one of two triggers needed to send unsynced keys quit chan bool // signal to quit loops // DB related fields dbAccess *DbAccess // access to dbStore // native fields queues [priorities]*syncDb // in-memory cache / queues for sync reqs keys [priorities]chan interface{} // buffer for unsynced keys deliveries [priorities]chan *storeRequestMsgData // delivery // bzz protocol instance outgoing message callbacks (mockable for testing) unsyncedKeys func([]*syncRequest, *syncState) error // send unsyncedKeysMsg store func(*storeRequestMsgData) error // send storeRequestMsg } // a syncer instance is linked to each peer connection // constructor is called from protocol after successful handshake // the returned instance is attached to the peer and can be called // by the forwarder func newSyncer( db *storage.LDBDatabase, remotekey storage.Key, dbAccess *DbAccess, unsyncedKeys func([]*syncRequest, *syncState) error, store func(*storeRequestMsgData) error, params *SyncParams, state *syncState, syncF func() bool, ) (*syncer, error) { syncBufferSize := params.SyncBufferSize keyBufferSize := params.KeyBufferSize dbBatchSize := params.RequestDbBatchSize self := &syncer{ syncF: syncF, key: remotekey, dbAccess: dbAccess, syncStates: make(chan *syncState, 20), deliveryRequest: make(chan bool, 1), newUnsyncedKeys: make(chan bool, 1), SyncParams: params, state: state, quit: make(chan bool), unsyncedKeys: unsyncedKeys, store: store, } // initialising for i := 0; i < priorities; i++ { self.keys[i] = make(chan interface{}, keyBufferSize) self.deliveries[i] = make(chan *storeRequestMsgData) // initialise a syncdb instance for each priority queue self.queues[i] = newSyncDb(db, remotekey, uint(i), syncBufferSize, dbBatchSize, self.deliver(uint(i))) } log.Info(fmt.Sprintf("syncer started: %v", state)) // launch chunk delivery service go self.syncDeliveries() // launch sync task manager if self.syncF() { go self.sync() } // process unsynced keys to broadcast go self.syncUnsyncedKeys() return self, nil } // metadata serialisation func encodeSync(state *syncState) (*json.RawMessage, error) { data, err := json.MarshalIndent(state, "", " ") if err != nil { return nil, err } meta := json.RawMessage(data) return &meta, nil } func decodeSync(meta *json.RawMessage) (*syncState, error) { if meta == nil { return nil, fmt.Errorf("unable to deserialise sync state from ") } data := []byte(*(meta)) if len(data) == 0 { return nil, fmt.Errorf("unable to deserialise sync state from ") } state := &syncState{DbSyncState: &storage.DbSyncState{}} err := json.Unmarshal(data, state) return state, err } /* sync implements the syncing script * first all items left in the request Db are replayed * type = StaleSync * Mode: by default once again via confirmation roundtrip * Priority: the items are replayed as the proirity specified for StaleSync * but within the order respects earlier priority level of request * after all items are consumed for a priority level, the the respective queue for delivery requests is open (this way new reqs not written to db) (TODO: this should be checked) * the sync state provided by the remote peer is used to sync history * all the backlog from earlier (aborted) syncing is completed starting from latest * if Last < LastSeenAt then all items in between then process all backlog from upto last disconnect * if Last > 0 && sync is called from the syncer constructor and is not supposed to be used externally */ func (self *syncer) sync() { state := self.state // sync finished defer close(self.syncStates) // 0. first replay stale requests from request db if state.SessionAt == 0 { log.Debug(fmt.Sprintf("syncer[%v]: nothing to sync", self.key.Log())) return } log.Debug(fmt.Sprintf("syncer[%v]: start replaying stale requests from request db", self.key.Log())) for p := priorities - 1; p >= 0; p-- { self.queues[p].dbRead(false, 0, self.replay()) } log.Debug(fmt.Sprintf("syncer[%v]: done replaying stale requests from request db", self.key.Log())) // unless peer is synced sync unfinished history beginning on if !state.Synced { start := state.Start if !storage.IsZeroKey(state.Latest) { // 1. there is unfinished earlier sync state.Start = state.Latest log.Debug(fmt.Sprintf("syncer[%v]: start syncronising backlog (unfinished sync: %v)", self.key.Log(), state)) // blocks while the entire history upto state is synced self.syncState(state) if state.Last < state.SessionAt { state.First = state.Last + 1 } } state.Latest = storage.ZeroKey state.Start = start // 2. sync up to last disconnect1 if state.First < state.LastSeenAt { state.Last = state.LastSeenAt log.Debug(fmt.Sprintf("syncer[%v]: start syncronising history upto last disconnect at %v: %v", self.key.Log(), state.LastSeenAt, state)) self.syncState(state) state.First = state.LastSeenAt } state.Latest = storage.ZeroKey } else { // synchronisation starts at end of last session state.First = state.LastSeenAt } // 3. sync up to current session start // if there have been new chunks since last session if state.LastSeenAt < state.SessionAt { state.Last = state.SessionAt log.Debug(fmt.Sprintf("syncer[%v]: start syncronising history since last disconnect at %v up until session start at %v: %v", self.key.Log(), state.LastSeenAt, state.SessionAt, state)) // blocks until state syncing is finished self.syncState(state) } log.Info(fmt.Sprintf("syncer[%v]: syncing all history complete", self.key.Log())) } // wait till syncronised block uptil state is synced func (self *syncer) syncState(state *syncState) { self.syncStates <- state select { case <-state.synced: case <-self.quit: } } // stop quits both request processor and saves the request cache to disk func (self *syncer) stop() { close(self.quit) log.Trace(fmt.Sprintf("syncer[%v]: stop and save sync request db backlog", self.key.Log())) for _, db := range self.queues { db.stop() } } // rlp serialisable sync request type syncRequest struct { Key storage.Key Priority uint } func (self *syncRequest) String() string { return fmt.Sprintf("", self.Key.Log(), self.Priority) } func (self *syncer) newSyncRequest(req interface{}, p int) (*syncRequest, error) { key, _, _, _, err := parseRequest(req) // TODO: if req has chunk, it should be put in a cache // create if err != nil { return nil, err } return &syncRequest{key, uint(p)}, nil } // serves historical items from the DB // * read is on demand, blocking unless history channel is read // * accepts sync requests (syncStates) to create new db iterator // * closes the channel one iteration finishes func (self *syncer) syncHistory(state *syncState) chan interface{} { var n uint history := make(chan interface{}) log.Debug(fmt.Sprintf("syncer[%v]: syncing history between %v - %v for chunk addresses %v - %v", self.key.Log(), state.First, state.Last, state.Start, state.Stop)) it := self.dbAccess.iterator(state) if it != nil { go func() { // signal end of the iteration ended defer close(history) IT: for { key := it.Next() if key == nil { break IT } select { // blocking until history channel is read from case history <- key: n++ log.Trace(fmt.Sprintf("syncer[%v]: history: %v (%v keys)", self.key.Log(), key.Log(), n)) state.Latest = key case <-self.quit: return } } log.Debug(fmt.Sprintf("syncer[%v]: finished syncing history between %v - %v for chunk addresses %v - %v (at %v) (chunks = %v)", self.key.Log(), state.First, state.Last, state.Start, state.Stop, state.Latest, n)) }() } return history } // triggers key syncronisation func (self *syncer) sendUnsyncedKeys() { select { case self.deliveryRequest <- true: default: } } // assembles a new batch of unsynced keys // * keys are drawn from the key buffers in order of priority queue // * if the queues of priority for History (HistoryReq) or higher are depleted, // historical data is used so historical items are lower priority within // their priority group. // * Order of historical data is unspecified func (self *syncer) syncUnsyncedKeys() { // send out new var unsynced []*syncRequest var more, justSynced bool var keyCount, historyCnt int var history chan interface{} priority := High keys := self.keys[priority] var newUnsyncedKeys, deliveryRequest chan bool keyCounts := make([]int, priorities) histPrior := self.SyncPriorities[HistoryReq] syncStates := self.syncStates state := self.state LOOP: for { var req interface{} // select the highest priority channel to read from // keys channels are buffered so the highest priority ones // are checked first - integrity can only be guaranteed if writing // is locked while selecting if priority != High || len(keys) == 0 { // selection is not needed if the High priority queue has items keys = nil PRIORITIES: for priority = High; priority >= 0; priority-- { // the first priority channel that is non-empty will be assigned to keys if len(self.keys[priority]) > 0 { log.Trace(fmt.Sprintf("syncer[%v]: reading request with priority %v", self.key.Log(), priority)) keys = self.keys[priority] break PRIORITIES } log.Trace(fmt.Sprintf("syncer[%v/%v]: queue: [%v, %v, %v]", self.key.Log(), priority, len(self.keys[High]), len(self.keys[Medium]), len(self.keys[Low]))) // if the input queue is empty on this level, resort to history if there is any if uint(priority) == histPrior && history != nil { log.Trace(fmt.Sprintf("syncer[%v]: reading history for %v", self.key.Log(), self.key)) keys = history break PRIORITIES } } } // if peer ready to receive but nothing to send if keys == nil && deliveryRequest == nil { // if no items left and switch to waiting mode log.Trace(fmt.Sprintf("syncer[%v]: buffers consumed. Waiting", self.key.Log())) newUnsyncedKeys = self.newUnsyncedKeys } // send msg iff // * peer is ready to receive keys AND ( // * all queues and history are depleted OR // * batch full OR // * all history have been consumed, synced) if deliveryRequest == nil && (justSynced || len(unsynced) > 0 && keys == nil || len(unsynced) == int(self.SyncBatchSize)) { justSynced = false // listen to requests deliveryRequest = self.deliveryRequest newUnsyncedKeys = nil // not care about data until next req comes in // set sync to current counter // (all nonhistorical outgoing traffic sheduled and persisted state.LastSeenAt = self.dbAccess.counter() state.Latest = storage.ZeroKey log.Trace(fmt.Sprintf("syncer[%v]: sending %v", self.key.Log(), unsynced)) // send the unsynced keys stateCopy := *state err := self.unsyncedKeys(unsynced, &stateCopy) if err != nil { log.Warn(fmt.Sprintf("syncer[%v]: unable to send unsynced keys: %v", self.key.Log(), err)) } self.state = state log.Debug(fmt.Sprintf("syncer[%v]: --> %v keys sent: (total: %v (%v), history: %v), sent sync state: %v", self.key.Log(), len(unsynced), keyCounts, keyCount, historyCnt, stateCopy)) unsynced = nil keys = nil } // process item and add it to the batch select { case <-self.quit: break LOOP case req, more = <-keys: if keys == history && !more { log.Trace(fmt.Sprintf("syncer[%v]: syncing history segment complete", self.key.Log())) // history channel is closed, waiting for new state (called from sync()) syncStates = self.syncStates state.Synced = true // this signals that the current segment is complete select { case state.synced <- false: case <-self.quit: break LOOP } justSynced = true history = nil } case <-deliveryRequest: log.Trace(fmt.Sprintf("syncer[%v]: peer ready to receive", self.key.Log())) // this 1 cap channel can wake up the loop // signaling that peer is ready to receive unsynced Keys // the channel is set to nil any further writes will be ignored deliveryRequest = nil case <-newUnsyncedKeys: log.Trace(fmt.Sprintf("syncer[%v]: new unsynced keys available", self.key.Log())) // this 1 cap channel can wake up the loop // signals that data is available to send if peer is ready to receive newUnsyncedKeys = nil keys = self.keys[High] case state, more = <-syncStates: // this resets the state if !more { state = self.state log.Trace(fmt.Sprintf("syncer[%v]: (priority %v) syncing complete upto %v)", self.key.Log(), priority, state)) state.Synced = true syncStates = nil } else { log.Trace(fmt.Sprintf("syncer[%v]: (priority %v) syncing history upto %v priority %v)", self.key.Log(), priority, state, histPrior)) state.Synced = false history = self.syncHistory(state) // only one history at a time, only allow another one once the // history channel is closed syncStates = nil } } if req == nil { continue LOOP } log.Trace(fmt.Sprintf("syncer[%v]: (priority %v) added to unsynced keys: %v", self.key.Log(), priority, req)) keyCounts[priority]++ keyCount++ if keys == history { log.Trace(fmt.Sprintf("syncer[%v]: (priority %v) history item %v (synced = %v)", self.key.Log(), priority, req, state.Synced)) historyCnt++ } if sreq, err := self.newSyncRequest(req, priority); err == nil { // extract key from req log.Trace(fmt.Sprintf("syncer[%v]: (priority %v): request %v (synced = %v)", self.key.Log(), priority, req, state.Synced)) unsynced = append(unsynced, sreq) } else { log.Warn(fmt.Sprintf("syncer[%v]: (priority %v): error creating request for %v: %v)", self.key.Log(), priority, req, err)) } } } // delivery loop // takes into account priority, send store Requests with chunk (delivery) // idle blocking if no new deliveries in any of the queues func (self *syncer) syncDeliveries() { var req *storeRequestMsgData p := High var deliveries chan *storeRequestMsgData var msg *storeRequestMsgData var err error var c = [priorities]int{} var n = [priorities]int{} var total, success uint for { deliveries = self.deliveries[p] select { case req = <-deliveries: n[p]++ c[p]++ default: if p == Low { // blocking, depletion on all channels, no preference for priority select { case req = <-self.deliveries[High]: n[High]++ case req = <-self.deliveries[Medium]: n[Medium]++ case req = <-self.deliveries[Low]: n[Low]++ case <-self.quit: return } p = High } else { p-- continue } } total++ msg, err = self.newStoreRequestMsgData(req) if err != nil { log.Warn(fmt.Sprintf("syncer[%v]: failed to create store request for %v: %v", self.key.Log(), req, err)) } else { err = self.store(msg) if err != nil { log.Warn(fmt.Sprintf("syncer[%v]: failed to deliver %v: %v", self.key.Log(), req, err)) } else { success++ log.Trace(fmt.Sprintf("syncer[%v]: %v successfully delivered", self.key.Log(), req)) } } if total%self.SyncBatchSize == 0 { log.Debug(fmt.Sprintf("syncer[%v]: deliver Total: %v, Success: %v, High: %v/%v, Medium: %v/%v, Low %v/%v", self.key.Log(), total, success, c[High], n[High], c[Medium], n[Medium], c[Low], n[Low])) } } } /* addRequest handles requests for delivery it accepts 4 types: * storeRequestMsgData: coming from netstore propagate response * chunk: coming from forwarding (questionable: id?) * key: from incoming syncRequest * syncDbEntry: key,id encoded in db If sync mode is on for the type of request, then it sends the request to the keys queue of the correct priority channel buffered with capacity (SyncBufferSize) If sync mode is off then, requests are directly sent to deliveries */ func (self *syncer) addRequest(req interface{}, ty int) { // retrieve priority for request type name int8 priority := self.SyncPriorities[ty] // sync mode for this type ON if self.syncF() || ty == DeliverReq { if self.SyncModes[ty] { self.addKey(req, priority, self.quit) } else { self.addDelivery(req, priority, self.quit) } } } // addKey queues sync request for sync confirmation with given priority // ie the key will go out in an unsyncedKeys message func (self *syncer) addKey(req interface{}, priority uint, quit chan bool) bool { select { case self.keys[priority] <- req: // this wakes up the unsynced keys loop if idle select { case self.newUnsyncedKeys <- true: default: } return true case <-quit: return false } } // addDelivery queues delivery request for with given priority // ie the chunk will be delivered ASAP mod priority queueing handled by syncdb // requests are persisted across sessions for correct sync func (self *syncer) addDelivery(req interface{}, priority uint, quit chan bool) bool { select { case self.queues[priority].buffer <- req: return true case <-quit: return false } } // doDelivery delivers the chunk for the request with given priority // without queuing func (self *syncer) doDelivery(req interface{}, priority uint, quit chan bool) bool { msgdata, err := self.newStoreRequestMsgData(req) if err != nil { log.Warn(fmt.Sprintf("unable to deliver request %v: %v", msgdata, err)) return false } select { case self.deliveries[priority] <- msgdata: return true case <-quit: return false } } // returns the delivery function for given priority // passed on to syncDb func (self *syncer) deliver(priority uint) func(req interface{}, quit chan bool) bool { return func(req interface{}, quit chan bool) bool { return self.doDelivery(req, priority, quit) } } // returns the replay function passed on to syncDb // depending on sync mode settings for BacklogReq, // re play of request db backlog sends items via confirmation // or directly delivers func (self *syncer) replay() func(req interface{}, quit chan bool) bool { sync := self.SyncModes[BacklogReq] priority := self.SyncPriorities[BacklogReq] // sync mode for this type ON if sync { return func(req interface{}, quit chan bool) bool { return self.addKey(req, priority, quit) } } else { return func(req interface{}, quit chan bool) bool { return self.doDelivery(req, priority, quit) } } } // given a request, extends it to a full storeRequestMsgData // polimorphic: see addRequest for the types accepted func (self *syncer) newStoreRequestMsgData(req interface{}) (*storeRequestMsgData, error) { key, id, chunk, sreq, err := parseRequest(req) if err != nil { return nil, err } if sreq == nil { if chunk == nil { var err error chunk, err = self.dbAccess.get(key) if err != nil { return nil, err } } sreq = &storeRequestMsgData{ Id: id, Key: chunk.Key, SData: chunk.SData, } } return sreq, nil } // parse request types and extracts, key, id, chunk, request if available // does not do chunk lookup ! func parseRequest(req interface{}) (storage.Key, uint64, *storage.Chunk, *storeRequestMsgData, error) { var key storage.Key var entry *syncDbEntry var chunk *storage.Chunk var id uint64 var ok bool var sreq *storeRequestMsgData var err error if key, ok = req.(storage.Key); ok { id = generateId() } else if entry, ok = req.(*syncDbEntry); ok { id = binary.BigEndian.Uint64(entry.val[32:]) key = storage.Key(entry.val[:32]) } else if chunk, ok = req.(*storage.Chunk); ok { key = chunk.Key id = generateId() } else if sreq, ok = req.(*storeRequestMsgData); ok { key = sreq.Key } else { err = fmt.Errorf("type not allowed: %v (%T)", req, req) } return key, id, chunk, sreq, err }