// Package discover implements the Node Discovery Protocol. // // The Node Discovery protocol provides a way to find RLPx nodes that // can be connected to. It uses a Kademlia-like protocol to maintain a // distributed database of the IDs and endpoints of all listening // nodes. package discover import ( "net" "sort" "sync" "time" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" ) const ( alpha = 3 // Kademlia concurrency factor bucketSize = 16 // Kademlia bucket size nBuckets = nodeIDBits + 1 // Number of buckets maxBondingPingPongs = 10 ) type Table struct { mutex sync.Mutex // protects buckets, their content, and nursery buckets [nBuckets]*bucket // index of known nodes by distance nursery []*Node // bootstrap nodes db *nodeDB // database of known nodes bondmu sync.Mutex bonding map[NodeID]*bondproc bondslots chan struct{} // limits total number of active bonding processes net transport self *Node // metadata of the local node } type bondproc struct { err error n *Node done chan struct{} } // transport is implemented by the UDP transport. // it is an interface so we can test without opening lots of UDP // sockets and without generating a private key. type transport interface { ping(NodeID, *net.UDPAddr) error waitping(NodeID) error findnode(toid NodeID, addr *net.UDPAddr, target NodeID) ([]*Node, error) close() } // bucket contains nodes, ordered by their last activity. // the entry that was most recently active is the last element // in entries. type bucket struct { lastLookup time.Time entries []*Node } func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr, nodeDBPath string) *Table { // If no node database was given, use an in-memory one db, err := newNodeDB(nodeDBPath, Version) if err != nil { glog.V(logger.Warn).Infoln("Failed to open node database:", err) db, _ = newNodeDB("", Version) } tab := &Table{ net: t, db: db, self: newNode(ourID, ourAddr), bonding: make(map[NodeID]*bondproc), bondslots: make(chan struct{}, maxBondingPingPongs), } for i := 0; i < cap(tab.bondslots); i++ { tab.bondslots <- struct{}{} } for i := range tab.buckets { tab.buckets[i] = new(bucket) } return tab } // Self returns the local node. func (tab *Table) Self() *Node { return tab.self } // Close terminates the network listener and flushes the node database. func (tab *Table) Close() { tab.net.close() tab.db.close() } // Bootstrap sets the bootstrap nodes. These nodes are used to connect // to the network if the table is empty. Bootstrap will also attempt to // fill the table by performing random lookup operations on the // network. func (tab *Table) Bootstrap(nodes []*Node) { tab.mutex.Lock() // TODO: maybe filter nodes with bad fields (nil, etc.) to avoid strange crashes tab.nursery = make([]*Node, 0, len(nodes)) for _, n := range nodes { cpy := *n tab.nursery = append(tab.nursery, &cpy) } tab.mutex.Unlock() tab.refresh() } // Lookup performs a network search for nodes close // to the given target. It approaches the target by querying // nodes that are closer to it on each iteration. func (tab *Table) Lookup(target NodeID) []*Node { var ( asked = make(map[NodeID]bool) seen = make(map[NodeID]bool) reply = make(chan []*Node, alpha) pendingQueries = 0 ) // don't query further if we hit the target or ourself. // unlikely to happen often in practice. asked[target] = true asked[tab.self.ID] = true tab.mutex.Lock() // update last lookup stamp (for refresh logic) tab.buckets[logdist(tab.self.ID, target)].lastLookup = time.Now() // generate initial result set result := tab.closest(target, bucketSize) tab.mutex.Unlock() for { // ask the alpha closest nodes that we haven't asked yet for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ { n := result.entries[i] if !asked[n.ID] { asked[n.ID] = true pendingQueries++ go func() { r, _ := tab.net.findnode(n.ID, n.addr(), target) reply <- tab.bondall(r) }() } } if pendingQueries == 0 { // we have asked all closest nodes, stop the search break } // wait for the next reply for _, n := range <-reply { if n != nil && !seen[n.ID] { seen[n.ID] = true result.push(n, bucketSize) } } pendingQueries-- } return result.entries } // refresh performs a lookup for a random target to keep buckets full. func (tab *Table) refresh() { ld := -1 // logdist of chosen bucket tab.mutex.Lock() for i, b := range tab.buckets { if i > 0 && b.lastLookup.Before(time.Now().Add(-1*time.Hour)) { ld = i break } } tab.mutex.Unlock() result := tab.Lookup(randomID(tab.self.ID, ld)) if len(result) == 0 { // Pick a batch of previously know seeds to lookup with seeds := tab.db.querySeeds(10) for _, seed := range seeds { glog.V(logger.Debug).Infoln("Seeding network with", seed) } // Bootstrap the table with a self lookup all := tab.bondall(append(tab.nursery, seeds...)) tab.mutex.Lock() tab.add(all) tab.mutex.Unlock() tab.Lookup(tab.self.ID) // TODO: the Kademlia paper says that we're supposed to perform // random lookups in all buckets further away than our closest neighbor. } } // closest returns the n nodes in the table that are closest to the // given id. The caller must hold tab.mutex. func (tab *Table) closest(target NodeID, nresults int) *nodesByDistance { // This is a very wasteful way to find the closest nodes but // obviously correct. I believe that tree-based buckets would make // this easier to implement efficiently. close := &nodesByDistance{target: target} for _, b := range tab.buckets { for _, n := range b.entries { close.push(n, nresults) } } return close } func (tab *Table) len() (n int) { for _, b := range tab.buckets { n += len(b.entries) } return n } // bondall bonds with all given nodes concurrently and returns // those nodes for which bonding has probably succeeded. func (tab *Table) bondall(nodes []*Node) (result []*Node) { rc := make(chan *Node, len(nodes)) for i := range nodes { go func(n *Node) { nn, _ := tab.bond(false, n.ID, n.addr(), uint16(n.TCPPort)) rc <- nn }(nodes[i]) } for _ = range nodes { if n := <-rc; n != nil { result = append(result, n) } } return result } // bond ensures the local node has a bond with the given remote node. // It also attempts to insert the node into the table if bonding succeeds. // The caller must not hold tab.mutex. // // A bond is must be established before sending findnode requests. // Both sides must have completed a ping/pong exchange for a bond to // exist. The total number of active bonding processes is limited in // order to restrain network use. // // bond is meant to operate idempotently in that bonding with a remote // node which still remembers a previously established bond will work. // The remote node will simply not send a ping back, causing waitping // to time out. // // If pinged is true, the remote node has just pinged us and one half // of the process can be skipped. func (tab *Table) bond(pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) (*Node, error) { var n *Node if n = tab.db.node(id); n == nil { tab.bondmu.Lock() w := tab.bonding[id] if w != nil { // Wait for an existing bonding process to complete. tab.bondmu.Unlock() <-w.done } else { // Register a new bonding process. w = &bondproc{done: make(chan struct{})} tab.bonding[id] = w tab.bondmu.Unlock() // Do the ping/pong. The result goes into w. tab.pingpong(w, pinged, id, addr, tcpPort) // Unregister the process after it's done. tab.bondmu.Lock() delete(tab.bonding, id) tab.bondmu.Unlock() } n = w.n if w.err != nil { return nil, w.err } } tab.mutex.Lock() defer tab.mutex.Unlock() if b := tab.buckets[logdist(tab.self.ID, n.ID)]; !b.bump(n) { tab.pingreplace(n, b) } return n, nil } func (tab *Table) pingpong(w *bondproc, pinged bool, id NodeID, addr *net.UDPAddr, tcpPort uint16) { // Request a bonding slot to limit network usage <-tab.bondslots defer func() { tab.bondslots <- struct{}{} }() // Ping the remote side and wait for a pong if w.err = tab.ping(id, addr); w.err != nil { close(w.done) return } if !pinged { // Give the remote node a chance to ping us before we start // sending findnode requests. If they still remember us, // waitping will simply time out. tab.net.waitping(id) } // Bonding succeeded, update the node database w.n = &Node{ ID: id, IP: addr.IP, DiscPort: addr.Port, TCPPort: int(tcpPort), } tab.db.updateNode(w.n) close(w.done) } func (tab *Table) pingreplace(new *Node, b *bucket) { if len(b.entries) == bucketSize { oldest := b.entries[bucketSize-1] if err := tab.ping(oldest.ID, oldest.addr()); err == nil { // The node responded, we don't need to replace it. return } } else { // Add a slot at the end so the last entry doesn't // fall off when adding the new node. b.entries = append(b.entries, nil) } copy(b.entries[1:], b.entries) b.entries[0] = new } // ping a remote endpoint and wait for a reply, also updating the node database // accordingly. func (tab *Table) ping(id NodeID, addr *net.UDPAddr) error { // Update the last ping and send the message tab.db.updateLastPing(id, time.Now()) if err := tab.net.ping(id, addr); err != nil { return err } // Pong received, update the database and return tab.db.updateLastPong(id, time.Now()) return nil } // add puts the entries into the table if their corresponding // bucket is not full. The caller must hold tab.mutex. func (tab *Table) add(entries []*Node) { outer: for _, n := range entries { if n == nil || n.ID == tab.self.ID { // skip bad entries. The RLP decoder returns nil for empty // input lists. continue } bucket := tab.buckets[logdist(tab.self.ID, n.ID)] for i := range bucket.entries { if bucket.entries[i].ID == n.ID { // already in bucket continue outer } } if len(bucket.entries) < bucketSize { bucket.entries = append(bucket.entries, n) } } } func (b *bucket) bump(n *Node) bool { for i := range b.entries { if b.entries[i].ID == n.ID { // move it to the front copy(b.entries[1:], b.entries[:i]) b.entries[0] = n return true } } return false } // nodesByDistance is a list of nodes, ordered by // distance to target. type nodesByDistance struct { entries []*Node target NodeID } // push adds the given node to the list, keeping the total size below maxElems. func (h *nodesByDistance) push(n *Node, maxElems int) { ix := sort.Search(len(h.entries), func(i int) bool { return distcmp(h.target, h.entries[i].ID, n.ID) > 0 }) if len(h.entries) < maxElems { h.entries = append(h.entries, n) } if ix == len(h.entries) { // farther away than all nodes we already have. // if there was room for it, the node is now the last element. } else { // slide existing entries down to make room // this will overwrite the entry we just appended. copy(h.entries[ix+1:], h.entries[ix:]) h.entries[ix] = n } }