// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package state import ( "bytes" "math/big" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/trie" ) // testAccount is the data associated with an account used by the state tests. type testAccount struct { address common.Address balance *big.Int nonce uint64 code []byte } // makeTestState create a sample test state to test node-wise reconstruction. func makeTestState() (ethdb.Database, common.Hash, []*testAccount) { // Create an empty state db, _ := ethdb.NewMemDatabase() state, _ := New(common.Hash{}, db) // Fill it with some arbitrary data accounts := []*testAccount{} for i := byte(0); i < 96; i++ { obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i})) acc := &testAccount{address: common.BytesToAddress([]byte{i})} obj.AddBalance(big.NewInt(int64(11 * i))) acc.balance = big.NewInt(int64(11 * i)) obj.SetNonce(uint64(42 * i)) acc.nonce = uint64(42 * i) if i%3 == 0 { obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i}) acc.code = []byte{i, i, i, i, i} } state.updateStateObject(obj) accounts = append(accounts, acc) } root, _ := state.Commit(false) // Return the generated state return db, root, accounts } // checkStateAccounts cross references a reconstructed state with an expected // account array. func checkStateAccounts(t *testing.T, db ethdb.Database, root common.Hash, accounts []*testAccount) { // Check root availability and state contents state, err := New(root, db) if err != nil { t.Fatalf("failed to create state trie at %x: %v", root, err) } if err := checkStateConsistency(db, root); err != nil { t.Fatalf("inconsistent state trie at %x: %v", root, err) } for i, acc := range accounts { if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 { t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance) } if nonce := state.GetNonce(acc.address); nonce != acc.nonce { t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce) } if code := state.GetCode(acc.address); bytes.Compare(code, acc.code) != 0 { t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code) } } } // checkStateConsistency checks that all nodes in a state trie are indeed present. func checkStateConsistency(db ethdb.Database, root common.Hash) error { // Create and iterate a state trie rooted in a sub-node if _, err := db.Get(root.Bytes()); err != nil { return nil // Consider a non existent state consistent } state, err := New(root, db) if err != nil { return err } it := NewNodeIterator(state) for it.Next() { } return it.Error } // Tests that an empty state is not scheduled for syncing. func TestEmptyStateSync(t *testing.T) { empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") db, _ := ethdb.NewMemDatabase() if req := NewStateSync(empty, db).Missing(1); len(req) != 0 { t.Errorf("content requested for empty state: %v", req) } } // Tests that given a root hash, a state can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go. func TestIterativeStateSyncIndividual(t *testing.T) { testIterativeStateSync(t, 1) } func TestIterativeStateSyncBatched(t *testing.T) { testIterativeStateSync(t, 100) } func testIterativeStateSync(t *testing.T, batch int) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() // Create a destination state and sync with the scheduler dstDb, _ := ethdb.NewMemDatabase() sched := NewStateSync(srcRoot, dstDb) queue := append([]common.Hash{}, sched.Missing(batch)...) for len(queue) > 0 { results := make([]trie.SyncResult, len(queue)) for i, hash := range queue { data, err := srcDb.Get(hash.Bytes()) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", hash, err) } results[i] = trie.SyncResult{Hash: hash, Data: data} } if _, index, err := sched.Process(results); err != nil { t.Fatalf("failed to process result #%d: %v", index, err) } queue = append(queue[:0], sched.Missing(batch)...) } // Cross check that the two states are in sync checkStateAccounts(t, dstDb, srcRoot, srcAccounts) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned, and the others sent only later. func TestIterativeDelayedStateSync(t *testing.T) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() // Create a destination state and sync with the scheduler dstDb, _ := ethdb.NewMemDatabase() sched := NewStateSync(srcRoot, dstDb) queue := append([]common.Hash{}, sched.Missing(0)...) for len(queue) > 0 { // Sync only half of the scheduled nodes results := make([]trie.SyncResult, len(queue)/2+1) for i, hash := range queue[:len(results)] { data, err := srcDb.Get(hash.Bytes()) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", hash, err) } results[i] = trie.SyncResult{Hash: hash, Data: data} } if _, index, err := sched.Process(results); err != nil { t.Fatalf("failed to process result #%d: %v", index, err) } queue = append(queue[len(results):], sched.Missing(0)...) } // Cross check that the two states are in sync checkStateAccounts(t, dstDb, srcRoot, srcAccounts) } // Tests that given a root hash, a trie can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go, however in a // random order. func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1) } func TestIterativeRandomStateSyncBatched(t *testing.T) { testIterativeRandomStateSync(t, 100) } func testIterativeRandomStateSync(t *testing.T, batch int) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() // Create a destination state and sync with the scheduler dstDb, _ := ethdb.NewMemDatabase() sched := NewStateSync(srcRoot, dstDb) queue := make(map[common.Hash]struct{}) for _, hash := range sched.Missing(batch) { queue[hash] = struct{}{} } for len(queue) > 0 { // Fetch all the queued nodes in a random order results := make([]trie.SyncResult, 0, len(queue)) for hash, _ := range queue { data, err := srcDb.Get(hash.Bytes()) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", hash, err) } results = append(results, trie.SyncResult{Hash: hash, Data: data}) } // Feed the retrieved results back and queue new tasks if _, index, err := sched.Process(results); err != nil { t.Fatalf("failed to process result #%d: %v", index, err) } queue = make(map[common.Hash]struct{}) for _, hash := range sched.Missing(batch) { queue[hash] = struct{}{} } } // Cross check that the two states are in sync checkStateAccounts(t, dstDb, srcRoot, srcAccounts) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned (Even those randomly), others sent only later. func TestIterativeRandomDelayedStateSync(t *testing.T) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() // Create a destination state and sync with the scheduler dstDb, _ := ethdb.NewMemDatabase() sched := NewStateSync(srcRoot, dstDb) queue := make(map[common.Hash]struct{}) for _, hash := range sched.Missing(0) { queue[hash] = struct{}{} } for len(queue) > 0 { // Sync only half of the scheduled nodes, even those in random order results := make([]trie.SyncResult, 0, len(queue)/2+1) for hash, _ := range queue { delete(queue, hash) data, err := srcDb.Get(hash.Bytes()) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", hash, err) } results = append(results, trie.SyncResult{Hash: hash, Data: data}) if len(results) >= cap(results) { break } } // Feed the retrieved results back and queue new tasks if _, index, err := sched.Process(results); err != nil { t.Fatalf("failed to process result #%d: %v", index, err) } for _, hash := range sched.Missing(0) { queue[hash] = struct{}{} } } // Cross check that the two states are in sync checkStateAccounts(t, dstDb, srcRoot, srcAccounts) } // Tests that at any point in time during a sync, only complete sub-tries are in // the database. func TestIncompleteStateSync(t *testing.T) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() // Create a destination state and sync with the scheduler dstDb, _ := ethdb.NewMemDatabase() sched := NewStateSync(srcRoot, dstDb) added := []common.Hash{} queue := append([]common.Hash{}, sched.Missing(1)...) for len(queue) > 0 { // Fetch a batch of state nodes results := make([]trie.SyncResult, len(queue)) for i, hash := range queue { data, err := srcDb.Get(hash.Bytes()) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", hash, err) } results[i] = trie.SyncResult{Hash: hash, Data: data} } // Process each of the state nodes if _, index, err := sched.Process(results); err != nil { t.Fatalf("failed to process result #%d: %v", index, err) } for _, result := range results { added = append(added, result.Hash) } // Check that all known sub-tries in the synced state is complete for _, root := range added { // Skim through the accounts and make sure the root hash is not a code node codeHash := false for _, acc := range srcAccounts { if bytes.Compare(root.Bytes(), crypto.Sha3(acc.code)) == 0 { codeHash = true break } } // If the root is a real trie node, check consistency if !codeHash { if err := checkStateConsistency(dstDb, root); err != nil { t.Fatalf("state inconsistent: %v", err) } } } // Fetch the next batch to retrieve queue = append(queue[:0], sched.Missing(1)...) } // Sanity check that removing any node from the database is detected for _, node := range added[1:] { key := node.Bytes() value, _ := dstDb.Get(key) dstDb.Delete(key) if err := checkStateConsistency(dstDb, added[0]); err == nil { t.Fatalf("trie inconsistency not caught, missing: %x", key) } dstDb.Put(key, value) } }