// Copyright 2010 The Go Authors. All rights reserved. // Copyright 2011 ThePiachu. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // * The name of ThePiachu may not be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package secp256k1 import ( "crypto/elliptic" "math/big" "unsafe" "github.com/ethereum/go-ethereum/common/math" ) /* #include "libsecp256k1/include/secp256k1.h" extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar); */ import "C" // This code is from https://github.com/ThePiachu/GoBit and implements // several Koblitz elliptic curves over prime fields. // // The curve methods, internally, on Jacobian coordinates. For a given // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come // when the whole calculation can be performed within the transform // (as in ScalarMult and ScalarBaseMult). But even for Add and Double, // it's faster to apply and reverse the transform than to operate in // affine coordinates. // A BitCurve represents a Koblitz Curve with a=0. // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html type BitCurve struct { P *big.Int // the order of the underlying field N *big.Int // the order of the base point B *big.Int // the constant of the BitCurve equation Gx, Gy *big.Int // (x,y) of the base point BitSize int // the size of the underlying field } func (BitCurve *BitCurve) Params() *elliptic.CurveParams { return &elliptic.CurveParams{ P: BitCurve.P, N: BitCurve.N, B: BitCurve.B, Gx: BitCurve.Gx, Gy: BitCurve.Gy, BitSize: BitCurve.BitSize, } } // IsOnBitCurve returns true if the given (x,y) lies on the BitCurve. func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { // y² = x³ + b y2 := new(big.Int).Mul(y, y) //y² y2.Mod(y2, BitCurve.P) //y²%P x3 := new(big.Int).Mul(x, x) //x² x3.Mul(x3, x) //x³ x3.Add(x3, BitCurve.B) //x³+B x3.Mod(x3, BitCurve.P) //(x³+B)%P return x3.Cmp(y2) == 0 } //TODO: double check if the function is okay // affineFromJacobian reverses the Jacobian transform. See the comment at the // top of the file. func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { zinv := new(big.Int).ModInverse(z, BitCurve.P) zinvsq := new(big.Int).Mul(zinv, zinv) xOut = new(big.Int).Mul(x, zinvsq) xOut.Mod(xOut, BitCurve.P) zinvsq.Mul(zinvsq, zinv) yOut = new(big.Int).Mul(y, zinvsq) yOut.Mod(yOut, BitCurve.P) return } // Add returns the sum of (x1,y1) and (x2,y2) func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { z := new(big.Int).SetInt64(1) return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) } // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and // (x2, y2, z2) and returns their sum, also in Jacobian form. func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl z1z1 := new(big.Int).Mul(z1, z1) z1z1.Mod(z1z1, BitCurve.P) z2z2 := new(big.Int).Mul(z2, z2) z2z2.Mod(z2z2, BitCurve.P) u1 := new(big.Int).Mul(x1, z2z2) u1.Mod(u1, BitCurve.P) u2 := new(big.Int).Mul(x2, z1z1) u2.Mod(u2, BitCurve.P) h := new(big.Int).Sub(u2, u1) if h.Sign() == -1 { h.Add(h, BitCurve.P) } i := new(big.Int).Lsh(h, 1) i.Mul(i, i) j := new(big.Int).Mul(h, i) s1 := new(big.Int).Mul(y1, z2) s1.Mul(s1, z2z2) s1.Mod(s1, BitCurve.P) s2 := new(big.Int).Mul(y2, z1) s2.Mul(s2, z1z1) s2.Mod(s2, BitCurve.P) r := new(big.Int).Sub(s2, s1) if r.Sign() == -1 { r.Add(r, BitCurve.P) } r.Lsh(r, 1) v := new(big.Int).Mul(u1, i) x3 := new(big.Int).Set(r) x3.Mul(x3, x3) x3.Sub(x3, j) x3.Sub(x3, v) x3.Sub(x3, v) x3.Mod(x3, BitCurve.P) y3 := new(big.Int).Set(r) v.Sub(v, x3) y3.Mul(y3, v) s1.Mul(s1, j) s1.Lsh(s1, 1) y3.Sub(y3, s1) y3.Mod(y3, BitCurve.P) z3 := new(big.Int).Add(z1, z2) z3.Mul(z3, z3) z3.Sub(z3, z1z1) if z3.Sign() == -1 { z3.Add(z3, BitCurve.P) } z3.Sub(z3, z2z2) if z3.Sign() == -1 { z3.Add(z3, BitCurve.P) } z3.Mul(z3, h) z3.Mod(z3, BitCurve.P) return x3, y3, z3 } // Double returns 2*(x,y) func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { z1 := new(big.Int).SetInt64(1) return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) } // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and // returns its double, also in Jacobian form. func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l a := new(big.Int).Mul(x, x) //X1² b := new(big.Int).Mul(y, y) //Y1² c := new(big.Int).Mul(b, b) //B² d := new(big.Int).Add(x, b) //X1+B d.Mul(d, d) //(X1+B)² d.Sub(d, a) //(X1+B)²-A d.Sub(d, c) //(X1+B)²-A-C d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) e := new(big.Int).Mul(big.NewInt(3), a) //3*A f := new(big.Int).Mul(e, e) //E² x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D x3.Sub(f, x3) //F-2*D x3.Mod(x3, BitCurve.P) y3 := new(big.Int).Sub(d, x3) //D-X3 y3.Mul(e, y3) //E*(D-X3) y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C y3.Mod(y3, BitCurve.P) z3 := new(big.Int).Mul(y, z) //Y1*Z1 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 z3.Mod(z3, BitCurve.P) return x3, y3, z3 } func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { // Ensure scalar is exactly 32 bytes. We pad always, even if // scalar is 32 bytes long, to avoid a timing side channel. if len(scalar) > 32 { panic("can't handle scalars > 256 bits") } // NOTE: potential timing issue padded := make([]byte, 32) copy(padded[32-len(scalar):], scalar) scalar = padded // Do the multiplication in C, updating point. point := make([]byte, 64) math.ReadBits(Bx, point[:32]) math.ReadBits(By, point[32:]) pointPtr := (*C.uchar)(unsafe.Pointer(&point[0])) scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0])) res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr) // Unpack the result and clear temporaries. x := new(big.Int).SetBytes(point[:32]) y := new(big.Int).SetBytes(point[32:]) for i := range point { point[i] = 0 } for i := range padded { scalar[i] = 0 } if res != 1 { return nil, nil } return x, y } // ScalarBaseMult returns k*G, where G is the base point of the group and k is // an integer in big-endian form. func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) } // Marshal converts a point into the form specified in section 4.3.6 of ANSI // X9.62. func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { byteLen := (BitCurve.BitSize + 7) >> 3 ret := make([]byte, 1+2*byteLen) ret[0] = 4 // uncompressed point flag math.ReadBits(x, ret[1:1+byteLen]) math.ReadBits(y, ret[1+byteLen:]) return ret } // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On // error, x = nil. func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { byteLen := (BitCurve.BitSize + 7) >> 3 if len(data) != 1+2*byteLen { return } if data[0] != 4 { // uncompressed form return } x = new(big.Int).SetBytes(data[1 : 1+byteLen]) y = new(big.Int).SetBytes(data[1+byteLen:]) return } var theCurve = new(BitCurve) func init() { // See SEC 2 section 2.7.1 // curve parameters taken from: // http://www.secg.org/collateral/sec2_final.pdf theCurve.P = math.MustParseBig256("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F") theCurve.N = math.MustParseBig256("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141") theCurve.B = math.MustParseBig256("0x0000000000000000000000000000000000000000000000000000000000000007") theCurve.Gx = math.MustParseBig256("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798") theCurve.Gy = math.MustParseBig256("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8") theCurve.BitSize = 256 } // S256 returns a BitCurve which implements secp256k1. func S256() *BitCurve { return theCurve }