package core import ( "math/big" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" ) var ( big8 = big.NewInt(8) big32 = big.NewInt(32) ) type StateProcessor struct { bc *BlockChain } func NewStateProcessor(bc *BlockChain) *StateProcessor { return &StateProcessor{bc} } // Process processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb and applying any rewards to both // the processor (coinbase) and any included uncles. // // Process returns the receipts and logs accumulated during the process and // returns the amount of gas that was used in the process. If any of the // transactions failed to execute due to insufficient gas it will return an error. func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB) (types.Receipts, vm.Logs, *big.Int, error) { var ( receipts types.Receipts totalUsedGas = big.NewInt(0) err error header = block.Header() allLogs vm.Logs gp = new(GasPool).AddGas(block.GasLimit()) ) for i, tx := range block.Transactions() { statedb.StartRecord(tx.Hash(), block.Hash(), i) receipt, logs, _, err := ApplyTransaction(p.bc, gp, statedb, header, tx, totalUsedGas) if err != nil { return nil, nil, totalUsedGas, err } receipts = append(receipts, receipt) allLogs = append(allLogs, logs...) } AccumulateRewards(statedb, header, block.Uncles()) return receipts, allLogs, totalUsedGas, err } // ApplyTransaction attemps to apply a transaction to the given state database // and uses the input parameters for its environment. // // ApplyTransactions returns the generated receipts and vm logs during the // execution of the state transition phase. func ApplyTransaction(bc *BlockChain, gp *GasPool, statedb *state.StateDB, header *types.Header, tx *types.Transaction, usedGas *big.Int) (*types.Receipt, vm.Logs, *big.Int, error) { _, gas, err := ApplyMessage(NewEnv(statedb, bc, tx, header), tx, gp) if err != nil { return nil, nil, nil, err } // Update the state with pending changes usedGas.Add(usedGas, gas) receipt := types.NewReceipt(statedb.IntermediateRoot().Bytes(), usedGas) receipt.TxHash = tx.Hash() receipt.GasUsed = new(big.Int).Set(gas) if MessageCreatesContract(tx) { from, _ := tx.From() receipt.ContractAddress = crypto.CreateAddress(from, tx.Nonce()) } logs := statedb.GetLogs(tx.Hash()) receipt.Logs = logs receipt.Bloom = types.CreateBloom(types.Receipts{receipt}) glog.V(logger.Debug).Infoln(receipt) return receipt, logs, gas, err } // AccumulateRewards credits the coinbase of the given block with the // mining reward. The total reward consists of the static block reward // and rewards for included uncles. The coinbase of each uncle block is // also rewarded. func AccumulateRewards(statedb *state.StateDB, header *types.Header, uncles []*types.Header) { reward := new(big.Int).Set(BlockReward) r := new(big.Int) for _, uncle := range uncles { r.Add(uncle.Number, big8) r.Sub(r, header.Number) r.Mul(r, BlockReward) r.Div(r, big8) statedb.AddBalance(uncle.Coinbase, r) r.Div(BlockReward, big32) reward.Add(reward, r) } statedb.AddBalance(header.Coinbase, reward) }