// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "hash" "sync" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto/sha3" "github.com/ethereum/go-ethereum/rlp" ) type hasher struct { tmp sliceBuffer sha keccakState cachegen uint16 cachelimit uint16 onleaf LeafCallback } // keccakState wraps sha3.state. In addition to the usual hash methods, it also supports // Read to get a variable amount of data from the hash state. Read is faster than Sum // because it doesn't copy the internal state, but also modifies the internal state. type keccakState interface { hash.Hash Read([]byte) (int, error) } type sliceBuffer []byte func (b *sliceBuffer) Write(data []byte) (n int, err error) { *b = append(*b, data...) return len(data), nil } func (b *sliceBuffer) Reset() { *b = (*b)[:0] } // hashers live in a global db. var hasherPool = sync.Pool{ New: func() interface{} { return &hasher{ tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode. sha: sha3.NewKeccak256().(keccakState), } }, } func newHasher(cachegen, cachelimit uint16, onleaf LeafCallback) *hasher { h := hasherPool.Get().(*hasher) h.cachegen, h.cachelimit, h.onleaf = cachegen, cachelimit, onleaf return h } func returnHasherToPool(h *hasher) { hasherPool.Put(h) } // hash collapses a node down into a hash node, also returning a copy of the // original node initialized with the computed hash to replace the original one. func (h *hasher) hash(n node, db *Database, force bool) (node, node, error) { // If we're not storing the node, just hashing, use available cached data if hash, dirty := n.cache(); hash != nil { if db == nil { return hash, n, nil } if n.canUnload(h.cachegen, h.cachelimit) { // Unload the node from cache. All of its subnodes will have a lower or equal // cache generation number. cacheUnloadCounter.Inc(1) return hash, hash, nil } if !dirty { return hash, n, nil } } // Trie not processed yet or needs storage, walk the children collapsed, cached, err := h.hashChildren(n, db) if err != nil { return hashNode{}, n, err } hashed, err := h.store(collapsed, db, force) if err != nil { return hashNode{}, n, err } // Cache the hash of the node for later reuse and remove // the dirty flag in commit mode. It's fine to assign these values directly // without copying the node first because hashChildren copies it. cachedHash, _ := hashed.(hashNode) switch cn := cached.(type) { case *shortNode: cn.flags.hash = cachedHash if db != nil { cn.flags.dirty = false } case *fullNode: cn.flags.hash = cachedHash if db != nil { cn.flags.dirty = false } } return hashed, cached, nil } // hashChildren replaces the children of a node with their hashes if the encoded // size of the child is larger than a hash, returning the collapsed node as well // as a replacement for the original node with the child hashes cached in. func (h *hasher) hashChildren(original node, db *Database) (node, node, error) { var err error switch n := original.(type) { case *shortNode: // Hash the short node's child, caching the newly hashed subtree collapsed, cached := n.copy(), n.copy() collapsed.Key = hexToCompact(n.Key) cached.Key = common.CopyBytes(n.Key) if _, ok := n.Val.(valueNode); !ok { collapsed.Val, cached.Val, err = h.hash(n.Val, db, false) if err != nil { return original, original, err } } return collapsed, cached, nil case *fullNode: // Hash the full node's children, caching the newly hashed subtrees collapsed, cached := n.copy(), n.copy() for i := 0; i < 16; i++ { if n.Children[i] != nil { collapsed.Children[i], cached.Children[i], err = h.hash(n.Children[i], db, false) if err != nil { return original, original, err } } } cached.Children[16] = n.Children[16] return collapsed, cached, nil default: // Value and hash nodes don't have children so they're left as were return n, original, nil } } // store hashes the node n and if we have a storage layer specified, it writes // the key/value pair to it and tracks any node->child references as well as any // node->external trie references. func (h *hasher) store(n node, db *Database, force bool) (node, error) { // Don't store hashes or empty nodes. if _, isHash := n.(hashNode); n == nil || isHash { return n, nil } // Generate the RLP encoding of the node h.tmp.Reset() if err := rlp.Encode(&h.tmp, n); err != nil { panic("encode error: " + err.Error()) } if len(h.tmp) < 32 && !force { return n, nil // Nodes smaller than 32 bytes are stored inside their parent } // Larger nodes are replaced by their hash and stored in the database. hash, _ := n.cache() if hash == nil { hash = h.makeHashNode(h.tmp) } if db != nil { // We are pooling the trie nodes into an intermediate memory cache hash := common.BytesToHash(hash) db.lock.Lock() db.insert(hash, h.tmp, n) db.lock.Unlock() // Track external references from account->storage trie if h.onleaf != nil { switch n := n.(type) { case *shortNode: if child, ok := n.Val.(valueNode); ok { h.onleaf(child, hash) } case *fullNode: for i := 0; i < 16; i++ { if child, ok := n.Children[i].(valueNode); ok { h.onleaf(child, hash) } } } } } return hash, nil } func (h *hasher) makeHashNode(data []byte) hashNode { n := make(hashNode, h.sha.Size()) h.sha.Reset() h.sha.Write(data) h.sha.Read(n) return n }