quorum/les/test_helper.go

559 lines
20 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// This file contains some shares testing functionality, common to multiple
// different files and modules being tested.
package les
import (
"context"
"crypto/rand"
"math/big"
"testing"
"time"
"github.com/ethereum/go-ethereum/accounts/abi/bind"
"github.com/ethereum/go-ethereum/accounts/abi/bind/backends"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/contracts/checkpointoracle/contract"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/eth"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/les/flowcontrol"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/params"
)
var (
bankKey, _ = crypto.GenerateKey()
bankAddr = crypto.PubkeyToAddress(bankKey.PublicKey)
bankFunds = big.NewInt(1000000000000000000)
userKey1, _ = crypto.GenerateKey()
userKey2, _ = crypto.GenerateKey()
userAddr1 = crypto.PubkeyToAddress(userKey1.PublicKey)
userAddr2 = crypto.PubkeyToAddress(userKey2.PublicKey)
testContractAddr common.Address
testContractCode = common.Hex2Bytes("606060405260cc8060106000396000f360606040526000357c01000000000000000000000000000000000000000000000000000000009004806360cd2685146041578063c16431b914606b57603f565b005b6055600480803590602001909190505060a9565b6040518082815260200191505060405180910390f35b60886004808035906020019091908035906020019091905050608a565b005b80600060005083606481101560025790900160005b50819055505b5050565b6000600060005082606481101560025790900160005b5054905060c7565b91905056")
testContractCodeDeployed = testContractCode[16:]
testContractDeployed = uint64(2)
testEventEmitterCode = common.Hex2Bytes("60606040523415600e57600080fd5b7f57050ab73f6b9ebdd9f76b8d4997793f48cf956e965ee070551b9ca0bb71584e60405160405180910390a160358060476000396000f3006060604052600080fd00a165627a7a723058203f727efcad8b5811f8cb1fc2620ce5e8c63570d697aef968172de296ea3994140029")
// Checkpoint registrar relative
registrarAddr common.Address
signerKey, _ = crypto.GenerateKey()
signerAddr = crypto.PubkeyToAddress(signerKey.PublicKey)
)
var (
// The block frequency for creating checkpoint(only used in test)
sectionSize = big.NewInt(128)
// The number of confirmations needed to generate a checkpoint(only used in test).
processConfirms = big.NewInt(1)
// The token bucket buffer limit for testing purpose.
testBufLimit = uint64(1000000)
// The buffer recharging speed for testing purpose.
testBufRecharge = uint64(1000)
)
/*
contract test {
uint256[100] data;
function Put(uint256 addr, uint256 value) {
data[addr] = value;
}
function Get(uint256 addr) constant returns (uint256 value) {
return data[addr];
}
}
*/
// prepare pre-commits specified number customized blocks into chain.
func prepare(n int, backend *backends.SimulatedBackend) {
var (
ctx = context.Background()
signer = types.HomesteadSigner{}
)
for i := 0; i < n; i++ {
switch i {
case 0:
// deploy checkpoint contract
registrarAddr, _, _, _ = contract.DeployCheckpointOracle(bind.NewKeyedTransactor(bankKey), backend, []common.Address{signerAddr}, sectionSize, processConfirms, big.NewInt(1))
// bankUser transfers some ether to user1
nonce, _ := backend.PendingNonceAt(ctx, bankAddr)
tx, _ := types.SignTx(types.NewTransaction(nonce, userAddr1, big.NewInt(10000), params.TxGas, nil, nil), signer, bankKey)
backend.SendTransaction(ctx, tx, bind.PrivateTxArgs{})
case 1:
bankNonce, _ := backend.PendingNonceAt(ctx, bankAddr)
userNonce1, _ := backend.PendingNonceAt(ctx, userAddr1)
// bankUser transfers more ether to user1
tx1, _ := types.SignTx(types.NewTransaction(bankNonce, userAddr1, big.NewInt(1000), params.TxGas, nil, nil), signer, bankKey)
backend.SendTransaction(ctx, tx1, bind.PrivateTxArgs{})
// user1 relays ether to user2
tx2, _ := types.SignTx(types.NewTransaction(userNonce1, userAddr2, big.NewInt(1000), params.TxGas, nil, nil), signer, userKey1)
backend.SendTransaction(ctx, tx2, bind.PrivateTxArgs{})
// user1 deploys a test contract
tx3, _ := types.SignTx(types.NewContractCreation(userNonce1+1, big.NewInt(0), 200000, big.NewInt(0), testContractCode), signer, userKey1)
backend.SendTransaction(ctx, tx3, bind.PrivateTxArgs{})
testContractAddr = crypto.CreateAddress(userAddr1, userNonce1+1)
// user1 deploys a event contract
tx4, _ := types.SignTx(types.NewContractCreation(userNonce1+2, big.NewInt(0), 200000, big.NewInt(0), testEventEmitterCode), signer, userKey1)
backend.SendTransaction(ctx, tx4, bind.PrivateTxArgs{})
case 2:
// bankUser transfer some ether to signer
bankNonce, _ := backend.PendingNonceAt(ctx, bankAddr)
tx1, _ := types.SignTx(types.NewTransaction(bankNonce, signerAddr, big.NewInt(1000000000), params.TxGas, nil, nil), signer, bankKey)
backend.SendTransaction(ctx, tx1, bind.PrivateTxArgs{})
// invoke test contract
data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001")
tx2, _ := types.SignTx(types.NewTransaction(bankNonce+1, testContractAddr, big.NewInt(0), 100000, nil, data), signer, bankKey)
backend.SendTransaction(ctx, tx2, bind.PrivateTxArgs{})
case 3:
// invoke test contract
bankNonce, _ := backend.PendingNonceAt(ctx, bankAddr)
data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002")
tx, _ := types.SignTx(types.NewTransaction(bankNonce, testContractAddr, big.NewInt(0), 100000, nil, data), signer, bankKey)
backend.SendTransaction(ctx, tx, bind.PrivateTxArgs{})
}
backend.Commit()
}
}
// testIndexers creates a set of indexers with specified params for testing purpose.
func testIndexers(db ethdb.Database, odr light.OdrBackend, config *light.IndexerConfig) []*core.ChainIndexer {
var indexers [3]*core.ChainIndexer
indexers[0] = light.NewChtIndexer(db, odr, config.ChtSize, config.ChtConfirms)
indexers[1] = eth.NewBloomIndexer(db, config.BloomSize, config.BloomConfirms)
indexers[2] = light.NewBloomTrieIndexer(db, odr, config.BloomSize, config.BloomTrieSize)
// make bloomTrieIndexer as a child indexer of bloom indexer.
indexers[1].AddChildIndexer(indexers[2])
return indexers[:]
}
func newTestClientHandler(backend *backends.SimulatedBackend, odr *LesOdr, indexers []*core.ChainIndexer, db ethdb.Database, peers *peerSet, ulcServers []string, ulcFraction int) *clientHandler {
var (
evmux = new(event.TypeMux)
engine = ethash.NewFaker()
gspec = core.Genesis{
Config: params.AllEthashProtocolChanges,
Alloc: core.GenesisAlloc{bankAddr: {Balance: bankFunds}},
GasLimit: 100000000,
}
oracle *checkpointOracle
)
genesis := gspec.MustCommit(db)
chain, _ := light.NewLightChain(odr, gspec.Config, engine, nil)
if indexers != nil {
checkpointConfig := &params.CheckpointOracleConfig{
Address: crypto.CreateAddress(bankAddr, 0),
Signers: []common.Address{signerAddr},
Threshold: 1,
}
getLocal := func(index uint64) params.TrustedCheckpoint {
chtIndexer := indexers[0]
sectionHead := chtIndexer.SectionHead(index)
return params.TrustedCheckpoint{
SectionIndex: index,
SectionHead: sectionHead,
CHTRoot: light.GetChtRoot(db, index, sectionHead),
BloomRoot: light.GetBloomTrieRoot(db, index, sectionHead),
}
}
oracle = newCheckpointOracle(checkpointConfig, getLocal)
}
client := &LightEthereum{
lesCommons: lesCommons{
genesis: genesis.Hash(),
config: &eth.Config{LightPeers: 100, NetworkId: NetworkId},
chainConfig: params.AllEthashProtocolChanges,
iConfig: light.TestClientIndexerConfig,
chainDb: db,
oracle: oracle,
chainReader: chain,
peers: peers,
closeCh: make(chan struct{}),
},
reqDist: odr.retriever.dist,
retriever: odr.retriever,
odr: odr,
engine: engine,
blockchain: chain,
eventMux: evmux,
}
client.handler = newClientHandler(ulcServers, ulcFraction, nil, client)
if client.oracle != nil {
client.oracle.start(backend)
}
return client.handler
}
func newTestServerHandler(blocks int, indexers []*core.ChainIndexer, db ethdb.Database, peers *peerSet, clock mclock.Clock) (*serverHandler, *backends.SimulatedBackend) {
var (
gspec = core.Genesis{
Config: params.AllEthashProtocolChanges,
Alloc: core.GenesisAlloc{bankAddr: {Balance: bankFunds}},
GasLimit: 100000000,
}
oracle *checkpointOracle
)
genesis := gspec.MustCommit(db)
// create a simulation backend and pre-commit several customized block to the database.
simulation := backends.NewSimulatedBackendWithDatabase(db, gspec.Alloc, 100000000)
prepare(blocks, simulation)
txpoolConfig := core.DefaultTxPoolConfig
txpoolConfig.Journal = ""
txpool := core.NewTxPool(txpoolConfig, gspec.Config, simulation.Blockchain())
if indexers != nil {
checkpointConfig := &params.CheckpointOracleConfig{
Address: crypto.CreateAddress(bankAddr, 0),
Signers: []common.Address{signerAddr},
Threshold: 1,
}
getLocal := func(index uint64) params.TrustedCheckpoint {
chtIndexer := indexers[0]
sectionHead := chtIndexer.SectionHead(index)
return params.TrustedCheckpoint{
SectionIndex: index,
SectionHead: sectionHead,
CHTRoot: light.GetChtRoot(db, index, sectionHead),
BloomRoot: light.GetBloomTrieRoot(db, index, sectionHead),
}
}
oracle = newCheckpointOracle(checkpointConfig, getLocal)
}
server := &LesServer{
lesCommons: lesCommons{
genesis: genesis.Hash(),
config: &eth.Config{LightPeers: 100, NetworkId: NetworkId},
chainConfig: params.AllEthashProtocolChanges,
iConfig: light.TestServerIndexerConfig,
chainDb: db,
chainReader: simulation.Blockchain(),
oracle: oracle,
peers: peers,
closeCh: make(chan struct{}),
},
servingQueue: newServingQueue(int64(time.Millisecond*10), 1),
defParams: flowcontrol.ServerParams{
BufLimit: testBufLimit,
MinRecharge: testBufRecharge,
},
fcManager: flowcontrol.NewClientManager(nil, clock),
}
server.costTracker, server.freeCapacity = newCostTracker(db, server.config)
server.costTracker.testCostList = testCostList(0) // Disable flow control mechanism.
server.clientPool = newClientPool(db, 1, clock, nil)
server.clientPool.setLimits(10000, 10000) // Assign enough capacity for clientpool
server.handler = newServerHandler(server, simulation.Blockchain(), db, txpool, func() bool { return true })
if server.oracle != nil {
server.oracle.start(simulation)
}
server.servingQueue.setThreads(4)
server.handler.start()
return server.handler, simulation
}
// testPeer is a simulated peer to allow testing direct network calls.
type testPeer struct {
peer *peer
net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging
app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side
}
// newTestPeer creates a new peer registered at the given protocol manager.
func newTestPeer(t *testing.T, name string, version int, handler *serverHandler, shake bool, testCost uint64) (*testPeer, <-chan error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
// Generate a random id and create the peer
var id enode.ID
rand.Read(id[:])
peer := newPeer(version, NetworkId, false, p2p.NewPeer(id, name, nil), net)
// Start the peer on a new thread
errCh := make(chan error, 1)
go func() {
select {
case <-handler.closeCh:
errCh <- p2p.DiscQuitting
case errCh <- handler.handle(peer):
}
}()
tp := &testPeer{
app: app,
net: net,
peer: peer,
}
// Execute any implicitly requested handshakes and return
if shake {
// Customize the cost table if required.
if testCost != 0 {
handler.server.costTracker.testCostList = testCostList(testCost)
}
var (
genesis = handler.blockchain.Genesis()
head = handler.blockchain.CurrentHeader()
td = handler.blockchain.GetTd(head.Hash(), head.Number.Uint64())
)
tp.handshake(t, td, head.Hash(), head.Number.Uint64(), genesis.Hash(), testCostList(testCost))
}
return tp, errCh
}
// close terminates the local side of the peer, notifying the remote protocol
// manager of termination.
func (p *testPeer) close() {
p.app.Close()
}
func newTestPeerPair(name string, version int, server *serverHandler, client *clientHandler) (*testPeer, <-chan error, *testPeer, <-chan error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
// Generate a random id and create the peer
var id enode.ID
rand.Read(id[:])
peer1 := newPeer(version, NetworkId, false, p2p.NewPeer(id, name, nil), net)
peer2 := newPeer(version, NetworkId, false, p2p.NewPeer(id, name, nil), app)
// Start the peer on a new thread
errc1 := make(chan error, 1)
errc2 := make(chan error, 1)
go func() {
select {
case <-server.closeCh:
errc1 <- p2p.DiscQuitting
case errc1 <- server.handle(peer1):
}
}()
go func() {
select {
case <-client.closeCh:
errc1 <- p2p.DiscQuitting
case errc1 <- client.handle(peer2):
}
}()
return &testPeer{peer: peer1, net: net, app: app}, errc1, &testPeer{peer: peer2, net: app, app: net}, errc2
}
// handshake simulates a trivial handshake that expects the same state from the
// remote side as we are simulating locally.
func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, headNum uint64, genesis common.Hash, costList RequestCostList) {
var expList keyValueList
expList = expList.add("protocolVersion", uint64(p.peer.version))
expList = expList.add("networkId", uint64(NetworkId))
expList = expList.add("headTd", td)
expList = expList.add("headHash", head)
expList = expList.add("headNum", headNum)
expList = expList.add("genesisHash", genesis)
sendList := make(keyValueList, len(expList))
copy(sendList, expList)
expList = expList.add("serveHeaders", nil)
expList = expList.add("serveChainSince", uint64(0))
expList = expList.add("serveStateSince", uint64(0))
expList = expList.add("serveRecentState", uint64(core.TriesInMemory-4))
expList = expList.add("txRelay", nil)
expList = expList.add("flowControl/BL", testBufLimit)
expList = expList.add("flowControl/MRR", testBufRecharge)
expList = expList.add("flowControl/MRC", costList)
if err := p2p.ExpectMsg(p.app, StatusMsg, expList); err != nil {
t.Fatalf("status recv: %v", err)
}
if err := p2p.Send(p.app, StatusMsg, sendList); err != nil {
t.Fatalf("status send: %v", err)
}
p.peer.fcParams = flowcontrol.ServerParams{
BufLimit: testBufLimit,
MinRecharge: testBufRecharge,
}
}
type indexerCallback func(*core.ChainIndexer, *core.ChainIndexer, *core.ChainIndexer)
// testClient represents a client for testing with necessary auxiliary fields.
type testClient struct {
clock mclock.Clock
db ethdb.Database
peer *testPeer
handler *clientHandler
chtIndexer *core.ChainIndexer
bloomIndexer *core.ChainIndexer
bloomTrieIndexer *core.ChainIndexer
}
// testServer represents a server for testing with necessary auxiliary fields.
type testServer struct {
clock mclock.Clock
backend *backends.SimulatedBackend
db ethdb.Database
peer *testPeer
handler *serverHandler
chtIndexer *core.ChainIndexer
bloomIndexer *core.ChainIndexer
bloomTrieIndexer *core.ChainIndexer
}
func newServerEnv(t *testing.T, blocks int, protocol int, callback indexerCallback, simClock bool, newPeer bool, testCost uint64) (*testServer, func()) {
db := rawdb.NewMemoryDatabase()
indexers := testIndexers(db, nil, light.TestServerIndexerConfig)
var clock mclock.Clock = &mclock.System{}
if simClock {
clock = &mclock.Simulated{}
}
handler, b := newTestServerHandler(blocks, indexers, db, newPeerSet(), clock)
var peer *testPeer
if newPeer {
peer, _ = newTestPeer(t, "peer", protocol, handler, true, testCost)
}
cIndexer, bIndexer, btIndexer := indexers[0], indexers[1], indexers[2]
cIndexer.Start(handler.blockchain)
bIndexer.Start(handler.blockchain)
// Wait until indexers generate enough index data.
if callback != nil {
callback(cIndexer, bIndexer, btIndexer)
}
server := &testServer{
clock: clock,
backend: b,
db: db,
peer: peer,
handler: handler,
chtIndexer: cIndexer,
bloomIndexer: bIndexer,
bloomTrieIndexer: btIndexer,
}
teardown := func() {
if newPeer {
peer.close()
b.Close()
}
cIndexer.Close()
bIndexer.Close()
}
return server, teardown
}
func newClientServerEnv(t *testing.T, blocks int, protocol int, callback indexerCallback, ulcServers []string, ulcFraction int, simClock bool, connect bool) (*testServer, *testClient, func()) {
sdb, cdb := rawdb.NewMemoryDatabase(), rawdb.NewMemoryDatabase()
speers, cPeers := newPeerSet(), newPeerSet()
var clock mclock.Clock = &mclock.System{}
if simClock {
clock = &mclock.Simulated{}
}
dist := newRequestDistributor(cPeers, clock)
rm := newRetrieveManager(cPeers, dist, nil)
odr := NewLesOdr(cdb, light.TestClientIndexerConfig, rm)
sindexers := testIndexers(sdb, nil, light.TestServerIndexerConfig)
cIndexers := testIndexers(cdb, odr, light.TestClientIndexerConfig)
scIndexer, sbIndexer, sbtIndexer := sindexers[0], sindexers[1], sindexers[2]
ccIndexer, cbIndexer, cbtIndexer := cIndexers[0], cIndexers[1], cIndexers[2]
odr.SetIndexers(ccIndexer, cbIndexer, cbtIndexer)
server, b := newTestServerHandler(blocks, sindexers, sdb, speers, clock)
client := newTestClientHandler(b, odr, cIndexers, cdb, cPeers, ulcServers, ulcFraction)
scIndexer.Start(server.blockchain)
sbIndexer.Start(server.blockchain)
ccIndexer.Start(client.backend.blockchain)
cbIndexer.Start(client.backend.blockchain)
if callback != nil {
callback(scIndexer, sbIndexer, sbtIndexer)
}
var (
speer, cpeer *testPeer
err1, err2 <-chan error
)
if connect {
cpeer, err1, speer, err2 = newTestPeerPair("peer", protocol, server, client)
select {
case <-time.After(time.Millisecond * 300):
case err := <-err1:
t.Fatalf("peer 1 handshake error: %v", err)
case err := <-err2:
t.Fatalf("peer 2 handshake error: %v", err)
}
}
s := &testServer{
clock: clock,
backend: b,
db: sdb,
peer: cpeer,
handler: server,
chtIndexer: scIndexer,
bloomIndexer: sbIndexer,
bloomTrieIndexer: sbtIndexer,
}
c := &testClient{
clock: clock,
db: cdb,
peer: speer,
handler: client,
chtIndexer: ccIndexer,
bloomIndexer: cbIndexer,
bloomTrieIndexer: cbtIndexer,
}
teardown := func() {
if connect {
speer.close()
cpeer.close()
}
ccIndexer.Close()
cbIndexer.Close()
scIndexer.Close()
sbIndexer.Close()
b.Close()
}
return s, c, teardown
}