quorum/p2p/discover/table.go

660 lines
18 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package discover implements the Node Discovery Protocol.
//
// The Node Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discover
import (
crand "crypto/rand"
"encoding/binary"
"fmt"
mrand "math/rand"
"net"
"sort"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/netutil"
)
const (
alpha = 3 // Kademlia concurrency factor
bucketSize = 16 // Kademlia bucket size
maxReplacements = 10 // Size of per-bucket replacement list
// We keep buckets for the upper 1/15 of distances because
// it's very unlikely we'll ever encounter a node that's closer.
hashBits = len(common.Hash{}) * 8
nBuckets = hashBits / 15 // Number of buckets
bucketMinDistance = hashBits - nBuckets // Log distance of closest bucket
// IP address limits.
bucketIPLimit, bucketSubnet = 2, 24 // at most 2 addresses from the same /24
tableIPLimit, tableSubnet = 10, 24
refreshInterval = 30 * time.Minute
revalidateInterval = 10 * time.Second
copyNodesInterval = 30 * time.Second
seedMinTableTime = 5 * time.Minute
seedCount = 30
seedMaxAge = 5 * 24 * time.Hour
)
// Table is the 'node table', a Kademlia-like index of neighbor nodes. The table keeps
// itself up-to-date by verifying the liveness of neighbors and requesting their node
// records when announcements of a new record version are received.
type Table struct {
mutex sync.Mutex // protects buckets, bucket content, nursery, rand
buckets [nBuckets]*bucket // index of known nodes by distance
nursery []*node // bootstrap nodes
rand *mrand.Rand // source of randomness, periodically reseeded
ips netutil.DistinctNetSet
log log.Logger
db *enode.DB // database of known nodes
net transport
refreshReq chan chan struct{}
initDone chan struct{}
closeReq chan struct{}
closed chan struct{}
nodeAddedHook func(*node) // for testing
}
// transport is implemented by the UDP transports.
type transport interface {
Self() *enode.Node
RequestENR(*enode.Node) (*enode.Node, error)
lookupRandom() []*enode.Node
lookupSelf() []*enode.Node
ping(*enode.Node) (seq uint64, err error)
}
// bucket contains nodes, ordered by their last activity. the entry
// that was most recently active is the first element in entries.
type bucket struct {
entries []*node // live entries, sorted by time of last contact
replacements []*node // recently seen nodes to be used if revalidation fails
ips netutil.DistinctNetSet
}
func newTable(t transport, db *enode.DB, bootnodes []*enode.Node, log log.Logger) (*Table, error) {
tab := &Table{
net: t,
db: db,
refreshReq: make(chan chan struct{}),
initDone: make(chan struct{}),
closeReq: make(chan struct{}),
closed: make(chan struct{}),
rand: mrand.New(mrand.NewSource(0)),
ips: netutil.DistinctNetSet{Subnet: tableSubnet, Limit: tableIPLimit},
log: log,
}
if err := tab.setFallbackNodes(bootnodes); err != nil {
return nil, err
}
for i := range tab.buckets {
tab.buckets[i] = &bucket{
ips: netutil.DistinctNetSet{Subnet: bucketSubnet, Limit: bucketIPLimit},
}
}
tab.seedRand()
tab.loadSeedNodes()
return tab, nil
}
func (tab *Table) self() *enode.Node {
return tab.net.Self()
}
func (tab *Table) seedRand() {
var b [8]byte
crand.Read(b[:])
tab.mutex.Lock()
tab.rand.Seed(int64(binary.BigEndian.Uint64(b[:])))
tab.mutex.Unlock()
}
// ReadRandomNodes fills the given slice with random nodes from the table. The results
// are guaranteed to be unique for a single invocation, no node will appear twice.
func (tab *Table) ReadRandomNodes(buf []*enode.Node) (n int) {
if !tab.isInitDone() {
return 0
}
tab.mutex.Lock()
defer tab.mutex.Unlock()
var nodes []*enode.Node
for _, b := range &tab.buckets {
for _, n := range b.entries {
nodes = append(nodes, unwrapNode(n))
}
}
// Shuffle.
for i := 0; i < len(nodes); i++ {
j := tab.rand.Intn(len(nodes))
nodes[i], nodes[j] = nodes[j], nodes[i]
}
return copy(buf, nodes)
}
// getNode returns the node with the given ID or nil if it isn't in the table.
func (tab *Table) getNode(id enode.ID) *enode.Node {
tab.mutex.Lock()
defer tab.mutex.Unlock()
b := tab.bucket(id)
for _, e := range b.entries {
if e.ID() == id {
return unwrapNode(e)
}
}
return nil
}
// close terminates the network listener and flushes the node database.
func (tab *Table) close() {
close(tab.closeReq)
<-tab.closed
}
// setFallbackNodes sets the initial points of contact. These nodes
// are used to connect to the network if the table is empty and there
// are no known nodes in the database.
func (tab *Table) setFallbackNodes(nodes []*enode.Node) error {
for _, n := range nodes {
if err := n.ValidateComplete(); err != nil {
return fmt.Errorf("bad bootstrap node %q: %v", n, err)
}
}
tab.nursery = wrapNodes(nodes)
return nil
}
// isInitDone returns whether the table's initial seeding procedure has completed.
func (tab *Table) isInitDone() bool {
select {
case <-tab.initDone:
return true
default:
return false
}
}
func (tab *Table) refresh() <-chan struct{} {
done := make(chan struct{})
select {
case tab.refreshReq <- done:
case <-tab.closeReq:
close(done)
}
return done
}
// loop schedules runs of doRefresh, doRevalidate and copyLiveNodes.
func (tab *Table) loop() {
var (
revalidate = time.NewTimer(tab.nextRevalidateTime())
refresh = time.NewTicker(refreshInterval)
copyNodes = time.NewTicker(copyNodesInterval)
refreshDone = make(chan struct{}) // where doRefresh reports completion
revalidateDone chan struct{} // where doRevalidate reports completion
waiting = []chan struct{}{tab.initDone} // holds waiting callers while doRefresh runs
)
defer refresh.Stop()
defer revalidate.Stop()
defer copyNodes.Stop()
// Start initial refresh.
go tab.doRefresh(refreshDone)
loop:
for {
select {
case <-refresh.C:
tab.seedRand()
if refreshDone == nil {
refreshDone = make(chan struct{})
go tab.doRefresh(refreshDone)
}
case req := <-tab.refreshReq:
waiting = append(waiting, req)
if refreshDone == nil {
refreshDone = make(chan struct{})
go tab.doRefresh(refreshDone)
}
case <-refreshDone:
for _, ch := range waiting {
close(ch)
}
waiting, refreshDone = nil, nil
case <-revalidate.C:
revalidateDone = make(chan struct{})
go tab.doRevalidate(revalidateDone)
case <-revalidateDone:
revalidate.Reset(tab.nextRevalidateTime())
revalidateDone = nil
case <-copyNodes.C:
go tab.copyLiveNodes()
case <-tab.closeReq:
break loop
}
}
if refreshDone != nil {
<-refreshDone
}
for _, ch := range waiting {
close(ch)
}
if revalidateDone != nil {
<-revalidateDone
}
close(tab.closed)
}
// doRefresh performs a lookup for a random target to keep buckets full. seed nodes are
// inserted if the table is empty (initial bootstrap or discarded faulty peers).
func (tab *Table) doRefresh(done chan struct{}) {
defer close(done)
// Load nodes from the database and insert
// them. This should yield a few previously seen nodes that are
// (hopefully) still alive.
tab.loadSeedNodes()
// Run self lookup to discover new neighbor nodes.
tab.net.lookupSelf()
// The Kademlia paper specifies that the bucket refresh should
// perform a lookup in the least recently used bucket. We cannot
// adhere to this because the findnode target is a 512bit value
// (not hash-sized) and it is not easily possible to generate a
// sha3 preimage that falls into a chosen bucket.
// We perform a few lookups with a random target instead.
for i := 0; i < 3; i++ {
tab.net.lookupRandom()
}
}
func (tab *Table) loadSeedNodes() {
seeds := wrapNodes(tab.db.QuerySeeds(seedCount, seedMaxAge))
seeds = append(seeds, tab.nursery...)
for i := range seeds {
seed := seeds[i]
age := log.Lazy{Fn: func() interface{} { return time.Since(tab.db.LastPongReceived(seed.ID(), seed.IP())) }}
tab.log.Trace("Found seed node in database", "id", seed.ID(), "addr", seed.addr(), "age", age)
tab.addSeenNode(seed)
}
}
// doRevalidate checks that the last node in a random bucket is still live and replaces or
// deletes the node if it isn't.
func (tab *Table) doRevalidate(done chan<- struct{}) {
defer func() { done <- struct{}{} }()
last, bi := tab.nodeToRevalidate()
if last == nil {
// No non-empty bucket found.
return
}
// Ping the selected node and wait for a pong.
remoteSeq, err := tab.net.ping(unwrapNode(last))
// Also fetch record if the node replied and returned a higher sequence number.
if last.Seq() < remoteSeq {
n, err := tab.net.RequestENR(unwrapNode(last))
if err != nil {
tab.log.Debug("ENR request failed", "id", last.ID(), "addr", last.addr(), "err", err)
} else {
last = &node{Node: *n, addedAt: last.addedAt, livenessChecks: last.livenessChecks}
}
}
tab.mutex.Lock()
defer tab.mutex.Unlock()
b := tab.buckets[bi]
if err == nil {
// The node responded, move it to the front.
last.livenessChecks++
tab.log.Debug("Revalidated node", "b", bi, "id", last.ID(), "checks", last.livenessChecks)
tab.bumpInBucket(b, last)
return
}
// No reply received, pick a replacement or delete the node if there aren't
// any replacements.
if r := tab.replace(b, last); r != nil {
tab.log.Debug("Replaced dead node", "b", bi, "id", last.ID(), "ip", last.IP(), "checks", last.livenessChecks, "r", r.ID(), "rip", r.IP())
} else {
tab.log.Debug("Removed dead node", "b", bi, "id", last.ID(), "ip", last.IP(), "checks", last.livenessChecks)
}
}
// nodeToRevalidate returns the last node in a random, non-empty bucket.
func (tab *Table) nodeToRevalidate() (n *node, bi int) {
tab.mutex.Lock()
defer tab.mutex.Unlock()
for _, bi = range tab.rand.Perm(len(tab.buckets)) {
b := tab.buckets[bi]
if len(b.entries) > 0 {
last := b.entries[len(b.entries)-1]
return last, bi
}
}
return nil, 0
}
func (tab *Table) nextRevalidateTime() time.Duration {
tab.mutex.Lock()
defer tab.mutex.Unlock()
return time.Duration(tab.rand.Int63n(int64(revalidateInterval)))
}
// copyLiveNodes adds nodes from the table to the database if they have been in the table
// longer then minTableTime.
func (tab *Table) copyLiveNodes() {
tab.mutex.Lock()
defer tab.mutex.Unlock()
now := time.Now()
for _, b := range &tab.buckets {
for _, n := range b.entries {
if n.livenessChecks > 0 && now.Sub(n.addedAt) >= seedMinTableTime {
tab.db.UpdateNode(unwrapNode(n))
}
}
}
}
// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
func (tab *Table) closest(target enode.ID, nresults int, checklive bool) *nodesByDistance {
// This is a very wasteful way to find the closest nodes but
// obviously correct. I believe that tree-based buckets would make
// this easier to implement efficiently.
close := &nodesByDistance{target: target}
for _, b := range &tab.buckets {
for _, n := range b.entries {
if checklive && n.livenessChecks == 0 {
continue
}
close.push(n, nresults)
}
}
return close
}
// len returns the number of nodes in the table.
func (tab *Table) len() (n int) {
tab.mutex.Lock()
defer tab.mutex.Unlock()
for _, b := range &tab.buckets {
n += len(b.entries)
}
return n
}
// bucket returns the bucket for the given node ID hash.
func (tab *Table) bucket(id enode.ID) *bucket {
d := enode.LogDist(tab.self().ID(), id)
if d <= bucketMinDistance {
return tab.buckets[0]
}
return tab.buckets[d-bucketMinDistance-1]
}
// addSeenNode adds a node which may or may not be live to the end of a bucket. If the
// bucket has space available, adding the node succeeds immediately. Otherwise, the node is
// added to the replacements list.
//
// The caller must not hold tab.mutex.
func (tab *Table) addSeenNode(n *node) {
if n.ID() == tab.self().ID() {
return
}
tab.mutex.Lock()
defer tab.mutex.Unlock()
b := tab.bucket(n.ID())
if contains(b.entries, n.ID()) {
// Already in bucket, don't add.
return
}
if len(b.entries) >= bucketSize {
// Bucket full, maybe add as replacement.
tab.addReplacement(b, n)
return
}
if !tab.addIP(b, n.IP()) {
// Can't add: IP limit reached.
return
}
// Add to end of bucket:
b.entries = append(b.entries, n)
b.replacements = deleteNode(b.replacements, n)
n.addedAt = time.Now()
if tab.nodeAddedHook != nil {
tab.nodeAddedHook(n)
}
}
// addVerifiedNode adds a node whose existence has been verified recently to the front of a
// bucket. If the node is already in the bucket, it is moved to the front. If the bucket
// has no space, the node is added to the replacements list.
//
// There is an additional safety measure: if the table is still initializing the node
// is not added. This prevents an attack where the table could be filled by just sending
// ping repeatedly.
//
// The caller must not hold tab.mutex.
func (tab *Table) addVerifiedNode(n *node) {
if !tab.isInitDone() {
return
}
if n.ID() == tab.self().ID() {
return
}
tab.mutex.Lock()
defer tab.mutex.Unlock()
b := tab.bucket(n.ID())
if tab.bumpInBucket(b, n) {
// Already in bucket, moved to front.
return
}
if len(b.entries) >= bucketSize {
// Bucket full, maybe add as replacement.
tab.addReplacement(b, n)
return
}
if !tab.addIP(b, n.IP()) {
// Can't add: IP limit reached.
return
}
// Add to front of bucket.
b.entries, _ = pushNode(b.entries, n, bucketSize)
b.replacements = deleteNode(b.replacements, n)
n.addedAt = time.Now()
if tab.nodeAddedHook != nil {
tab.nodeAddedHook(n)
}
}
// delete removes an entry from the node table. It is used to evacuate dead nodes.
func (tab *Table) delete(node *node) {
tab.mutex.Lock()
defer tab.mutex.Unlock()
tab.deleteInBucket(tab.bucket(node.ID()), node)
}
func (tab *Table) addIP(b *bucket, ip net.IP) bool {
if netutil.IsLAN(ip) {
return true
}
if !tab.ips.Add(ip) {
tab.log.Debug("IP exceeds table limit", "ip", ip)
return false
}
if !b.ips.Add(ip) {
tab.log.Debug("IP exceeds bucket limit", "ip", ip)
tab.ips.Remove(ip)
return false
}
return true
}
func (tab *Table) removeIP(b *bucket, ip net.IP) {
if netutil.IsLAN(ip) {
return
}
tab.ips.Remove(ip)
b.ips.Remove(ip)
}
func (tab *Table) addReplacement(b *bucket, n *node) {
for _, e := range b.replacements {
if e.ID() == n.ID() {
return // already in list
}
}
if !tab.addIP(b, n.IP()) {
return
}
var removed *node
b.replacements, removed = pushNode(b.replacements, n, maxReplacements)
if removed != nil {
tab.removeIP(b, removed.IP())
}
}
// replace removes n from the replacement list and replaces 'last' with it if it is the
// last entry in the bucket. If 'last' isn't the last entry, it has either been replaced
// with someone else or became active.
func (tab *Table) replace(b *bucket, last *node) *node {
if len(b.entries) == 0 || b.entries[len(b.entries)-1].ID() != last.ID() {
// Entry has moved, don't replace it.
return nil
}
// Still the last entry.
if len(b.replacements) == 0 {
tab.deleteInBucket(b, last)
return nil
}
r := b.replacements[tab.rand.Intn(len(b.replacements))]
b.replacements = deleteNode(b.replacements, r)
b.entries[len(b.entries)-1] = r
tab.removeIP(b, last.IP())
return r
}
// bumpInBucket moves the given node to the front of the bucket entry list
// if it is contained in that list.
func (tab *Table) bumpInBucket(b *bucket, n *node) bool {
for i := range b.entries {
if b.entries[i].ID() == n.ID() {
if !n.IP().Equal(b.entries[i].IP()) {
// Endpoint has changed, ensure that the new IP fits into table limits.
tab.removeIP(b, b.entries[i].IP())
if !tab.addIP(b, n.IP()) {
// It doesn't, put the previous one back.
tab.addIP(b, b.entries[i].IP())
return false
}
}
// Move it to the front.
copy(b.entries[1:], b.entries[:i])
b.entries[0] = n
return true
}
}
return false
}
func (tab *Table) deleteInBucket(b *bucket, n *node) {
b.entries = deleteNode(b.entries, n)
tab.removeIP(b, n.IP())
}
func contains(ns []*node, id enode.ID) bool {
for _, n := range ns {
if n.ID() == id {
return true
}
}
return false
}
// pushNode adds n to the front of list, keeping at most max items.
func pushNode(list []*node, n *node, max int) ([]*node, *node) {
if len(list) < max {
list = append(list, nil)
}
removed := list[len(list)-1]
copy(list[1:], list)
list[0] = n
return list, removed
}
// deleteNode removes n from list.
func deleteNode(list []*node, n *node) []*node {
for i := range list {
if list[i].ID() == n.ID() {
return append(list[:i], list[i+1:]...)
}
}
return list
}
// nodesByDistance is a list of nodes, ordered by distance to target.
type nodesByDistance struct {
entries []*node
target enode.ID
}
// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *node, maxElems int) {
ix := sort.Search(len(h.entries), func(i int) bool {
return enode.DistCmp(h.target, h.entries[i].ID(), n.ID()) > 0
})
if len(h.entries) < maxElems {
h.entries = append(h.entries, n)
}
if ix == len(h.entries) {
// farther away than all nodes we already have.
// if there was room for it, the node is now the last element.
} else {
// slide existing entries down to make room
// this will overwrite the entry we just appended.
copy(h.entries[ix+1:], h.entries[ix:])
h.entries[ix] = n
}
}