Added basic public-key cryptography example.

This commit is contained in:
DrPeterVanNostrand 2018-08-28 16:45:11 +00:00
parent 29498c4d89
commit 824eef95ae
3 changed files with 68 additions and 0 deletions

View File

@ -28,3 +28,4 @@ tiny-keccak = "1.4"
[dev-dependencies]
bincode = "1.0.0"
serde_derive = "1.0.55"

View File

@ -1,5 +1,11 @@
# Examples
- [`Public-Key Cryptography`](basic_pkc.rs) - Demonstrates how to generate a
random secret-key and corresponding public-key, sign some bytes using a
secret-key, validate the signature for some bytes using a public-key, encrypt
some bytes using a public-key, and how to decrypt a ciphertext using a
secret-key.
- [`Threshold Encryption`](threshold_enc.rs) - Demonstrates how to encrypt a
message to a group of actors with a master public-key, where the number of
actors collaborating in the decryption process must exceed a given threshold

61
examples/basic_pkc.rs Normal file
View File

@ -0,0 +1,61 @@
extern crate bincode;
#[macro_use]
extern crate serde_derive;
extern crate threshold_crypto;
use bincode::{deserialize, serialize};
use threshold_crypto::{PublicKey, SecretKey, Signature};
#[derive(Deserialize, Serialize)]
struct SignedMsg {
msg: Vec<u8>,
sig: Signature,
}
#[derive(Debug)]
struct KeyPair {
sk: SecretKey,
pk: PublicKey,
}
impl KeyPair {
fn random() -> Self {
let sk = SecretKey::random();
let pk = sk.public_key();
KeyPair { sk, pk }
}
fn create_signed_msg(&self, msg: &[u8]) -> SignedMsg {
let sig = self.sk.sign(msg);
let msg = msg.to_vec();
SignedMsg { msg, sig }
}
}
fn main() {
// Alice and Bob each generate a public/private key-pair.
//
// Note: it is against best practices to use the same key-pair for both encryption/decryption
// and signing. The following example could be interpreted as advocating this, which it is not
// meant to. This is just a basic example. In this example, Bob's key-pair is used for signing
// where as Alice's is used for encryption/decryption.
let alice = KeyPair::random();
let bob = KeyPair::random();
// Bob wants to send Alice a message. He signs the plaintext message with his secret key. He
// then encrypts the signed message with Alice's public key.
let msg = b"let's get pizza";
let signed_msg = bob.create_signed_msg(msg);
let serialized = serialize(&signed_msg).expect("Failed to serialize `SignedMsg`");
let ciphertext = alice.pk.encrypt(&serialized);
// Alice receives Bob's encrypted message. She decrypts the message using her secret key. She
// then verifies that the signature of the plaintext is valid using Bob's public key.
let decrypted = alice.sk.decrypt(&ciphertext).expect("Invalid ciphertext");
let deserialized: SignedMsg =
deserialize(&decrypted).expect("Failed to deserialize bytes to `SignedMsg`");
assert!(bob.pk.verify(&deserialized.sig, &deserialized.msg));
// We assert that the message that Alice received is the same message that Bob sent.
assert_eq!(msg, &deserialized.msg[..]);
}