

2Foreword

Clarity is a rare commodity. That is why for the convenience of both the client and the read-
er, we have introduced a system of marking vulnerabilities and security issues we discover
during our security audits.

Let’s start with an ideal case. If an identified security imperfection bears no impact on the
security of our client, we mark it with the label.

The fixed security issues get the 		 label that informs those reading our public
report that the flaws in question should no longer be worried about.

In case a client addresses an issue in another way (e.g., by updating the information in the
technical papers and specification) we put a nice		 tag right in front of it.

If an issue is planned to be addressed in the future, it gets the			 tag, and a
client clearly sees what is yet to be done.

Although the issues marker with	 	 and 			 are no threat, we still list
them to provide the most detailed and up-to-date information for the client and the reader.

No issue

✓ Fixed

Addressed

Acknowledged

✓ Fixed Acknowledged

TABLE OF CONTENTS
01. INTRODUCTION

Source code

Audit methodology

Auditors

02. SUMMARY
Discovered vulnerabilities

03. AUTH-OS: CON-
TRACT

Math improvement

Code reuse

Redundant code

05. AUTH-OS: AB-
STRACT STORAGE

Documentation mistype

Payment can be delivered via transfer only

Code reuse

Contract.Sender() can be spoofed (exec func)

06. AUTH-OS:
SCRIPTEXEC

No access control

No input validation

07. DUTCHCROWD-
SALE: TOKEN

Documentation mistype or logical flaw

08. DUTCHCROWD-
SALE: SALE

There is no “isWhitelisted” check during purchase

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

Addressed

Acknowledged

No issue

No issue

09. DUTCHCROWD-
SALE: ADMIN

Documentation mistype

There is no check that _min_token_purchase <= _max_token_pur-
chase

Code reuse

10. DUTCHCROWD-
SALE: DUTCHPROXY

Contract does not prevent accidental Ether transferring

11. DUTCHCROWD-
SALE: DUTCH-
CROWDSALEIDX

Code reuse

There are no overflow checks

12. MINTEDCAPPED-
CROWDSALE: SALE-
MANAGER

Whitelist can be added to a non-existent tier

13. PROXIESREGIS-
TRY

Unnecessary functionality

14. GENERAL
ISSUES

Token wizard app does not use authos killer feature

APPENDIX 1.
TERMINOLOGY

Severity

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

✓ Fixed

Addressed

Addressed

Left as is

Acknowledged

Acknowledged

501. Introduction

Source code

Audit methodology

Auditors

Object Location

Token Wizard App #2840b97dea33c8cf455a67b2b9c7229e2cda1843

Auth_os release #1.0.4

The code of a smart contract has been automatically and manually scanned for known
vulnerabilities and logic errors that can potentially cause security threats. The conformity of the
requirements (i.e, White Paper) and practical implementation has been reviewed as well. More
information on the methodology can be found here.

Alexey Pertsev. PepperSec.

https://github.com/poanetwork/auth-os-applications/tree/2840b97dea33c8cf455a67b2b9c7229e2cda1843
https://github.com/auth-os/core/tree/cebb1089c417a8e26bd97a44f7234bdb9d0bd781
https://peppersec.com/smart-contract-audit.html
https://peppersec.com/

602. Summary

Discovered vulnerabilities

Below, you can find a table with all the discovered bugs and security issues listed.

Vulnerability description Severity See paragraph

No access control Critical Auth-os: ScriptExec

Contract does not prevent
accidental Ether transferring

Major	 DutchProxy

Math improvement

Minor

Auth-os: ContractCode reuse

Redundant code

Code reuse
Auth-os: Abstract storage

Documentation mistype or
logical flaw

DutchCrowdsale: Token

There is no “isWhitelisted”
check during purchase	

DutchCrowdsale: Sale

Documentation mistype

DutchCrowdsale: AdminThere is no check that _min_
token_purchase <= _max_
token_purchase

Code reuse

Code reuse
DutchCrowdsaleIdx

There are overflow checks

Whitelist can be added to a
non-existent tier

MintedCappedCrowdsale:
SaleManager

Unnecessary functionality
ProxiesRegistry

7

Documentation mistype

None

Auth-os: Abstract storage
Payment can be delivered via
transfer only

Contract.Sender() can be
spoofed (exec func)

No input validation
Auth-os: ScriptExec

Token wizard app does not
use authos killer feature

General issues

803. Auth-os: Contract

Math improvement

Code reuse

►► S�everity: Minor

Contract.sol#L494

Recommendations:

Consider using the >= sign instead of >

Status:

►► Fixed – #da5361fdc0d962e4094e62f78259578d6a15a6ef

►► Severity: Minor

The snippet of code bellow is used 16 times within Contract.sol contract:

// If the free-memory pointer does not point beyond the buffer’s current size, update it

if lt(mload(0x40), add(0x20, add(ptr, mload(ptr)))) {

 mstore(0x40, add(0x20, add(ptr, mload(ptr))))

}

1. Consider taking it into a separate function.

function setmptr() internal pure {

 assembly {

 let ptr := add(0x20, mload(0xc0))

 if lt(mload(0x40), add(0x20, add(ptr, mload(ptr)))) {

 mstore(0x40, add(0x20, add(ptr, mload(ptr))))

 }

 }

}

And call it after the assembly block or alike parameter for the condition modifier which it
actually is.

https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/Contract.sol#L494
https://github.com/auth-os/core/commit/da5361fdc0d962e4094e62f78259578d6a15a6ef

9

Redundant code

►► S�everity: Minor

The Contract.sol#L333 line is a duplicate of Contract.sol#L327. Since the framework is under
heavy development, the code can be replicated many times in the future, which is undoubtedly
not a good thing.
The same can be found here and here.

Recommendations:

1.	Remove it.

Status:

Fixed – #de8aabdc8e8d6c81e7b1b2d814856488a7cd9057

2. Consider calling initialize() instead of this code block at the authorize function.

�Status:

Fixed – #da5361fdc0d962e4094e62f78259578d6a15a6ef

https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/Contract.sol#L333
https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/Contract.sol#L327
https://github.com/auth-os/core/commit/de8aabdc8e8d6c81e7b1b2d814856488a7cd9057
https://github.com/auth-os/core/commit/da5361fdc0d962e4094e62f78259578d6a15a6ef

1005. Auth-os: Abstract storage

Documentation mistype

Payment can be delivered via transfer only

Code reuse

►► Severity: None

The AbstractStorage.sol#L452 parameter is supposed to be n_emitted instead of n_paid.
AbstractStorage.sol#L414 is the exact same thing. AbstractStorage.sol#L64 misses
_provider description.

Status:

Fixed – #fca016e0aa01f177d3d2d28070d1c80ca43091eb

►► Severity: None

AbstractStorage.sol#L392 the doPay func implements payments via transfer only. Consider
adding the send functionality. It may turn out to be extremely useful for some contracts.

Team comment:

Currently we don’t have a way for users to decide what happens if a send fails, so I really think it
needs to be either success or throw.

Status:

Due to the current AuthOS architecture, it takes too much to implement the send behavior, so
all developers just should take it into account.

►► Severity: Minor

AbstractStorage.sol#L574 Consider using this:

 function readMulti(bytes32 _exec_id, bytes32[] _locations) public view returns
(bytes32[] data_read) {

 data_read = new bytes32[](_locations.length);

 for (uint i = 0; i < _locations.length; i++) {

 data_read[i] = read(_locations[i], _exec_id); // call of `read`

 }

 }

https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/AbstractStorage.sol#L452
https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/AbstractStorage.sol#L414
https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/AbstractStorage.sol#L64
https://github.com/auth-os/core/commit/fca016e0aa01f177d3d2d28070d1c80ca43091eb
https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/AbstractStorage.sol#L392
https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/AbstractStorage.sol#L574

11

Contract.Sender() can be spoofed (exec
func)

►► Severity: None

Due to the architectural feature, any function can be called via AbstactStorage.exec(address
sender,...) instead of RegistryExec.exec or DutchProxy. For example, the Token.trasfer function
uses Contract.sender() to get caller (considered to be _from), but it is just an arbitary value that
the caller can send (see AbstactStorage.exec above). The actual authorization is implemented
by Token contract itself - it checks whether the actual caller is Proxy contract.

The same is relevant for the createInstance function.

Recommendation:

1.	All the developers who use AuthOS should be aware of the behavior of the kinfd. Consider
adding this into the documentation.

Team comment:

This is intended, and is in fact used in the latest RegistryExec. Maybe a better name for the
variable would be “exec_as” or something. Basically, it is part of the architecture to use a
ScriptExec contract, or something similar to interface with storage, and it is up to that contract
to perform input validation and provide information to storage. It’s just a separation of concerns
problem, and the job here is given to ScriptExec.

Status:

There is no issue here. Just the thing that should be taken into account.

instead of the actual one. Since the framework is under heavy development, code reuse is a
solid approach to minimize the number of bugs.

Status:

Fixed – #fca016e0aa01f177d3d2d28070d1c80ca43091eb

https://github.com/auth-os/core/commit/fca016e0aa01f177d3d2d28070d1c80ca43091eb

1206. Auth-os: ScriptExec

No access control

No input validation

►► Severity: Critical

There is no onlyOwner modifier at the configure function. So an attacker can use it to
reconfigure app.

Recommendation:

1.	 Add access control for the function.

Status:

Fixed – #d11890df8628682099af4ebc4743c8db948252bf.

►► Severity: None

In contrast to other functions and parameters, the configure and setProvider functions do
not check provider address.

Recommendation:

1.	Consider adding some checks to keep code uniform

Team comment:

the _provider check is unnecessary, as any address might be a valid provider, even 0x0.

Status:

There is no issue here.

https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/ScriptExec.sol#L55
https://github.com/auth-os/core/commit/d11890df8628682099af4ebc4743c8db948252bf
https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/ScriptExec.sol#L56
https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/ScriptExec.sol#L55
https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/ScriptExec.sol#L188

1307. DutchCrowdsale: Token

Documentation mistype or logical flaw

►► Severity: Minor

In the Token.sol#L198 line, it is stated “Ensures state change will only affect storage and
events”. However, the actual emitAndStore function just checks that emitted and stored
buffers are not empty (note, there is no payment check here). So, if a function does some
unexpected manipulations with the payment buffer, it will not be spotted (but the comment
tells us the opposite thing).

Status:

Fixed – #9e21ef2ddc536ab9701e67db229caa8d02c2e5de

https://github.com/poanetwork/auth-os-applications/blob/308a6a43d187d84e54de3da0d3c714a20b4fa329/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/token/Token.sol#L198
https://github.com/poanetwork/auth-os-applications/blob/308a6a43d187d84e54de3da0d3c714a20b4fa329/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/token/Token.sol#L178
https://github.com/poanetwork/auth-os-applications/commit/9e21ef2ddc536ab9701e67db229caa8d02c2e5de

1408. DutchCrowdsale: Sale

There is no “isWhitelisted” check during
purchase

►► Severity: Minor

Sale.sol#L292 buy function does not check a contributor being/not being whitelisted, so min_
contribution is set to 0 during execution. Fortunately, that behavior is not exploitable because
of zero amount exception at line 144.

Recommendation:

1.	Consider adding an explicit check that emits readable exception message.

Status:

Team decided to leave it as is. There is no threat.

https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/sale/Sale.sol#L292
https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/sale/Sale.sol#L34
https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/sale/Sale.sol#L144

1509. DutchCrowdsale: Admin

Documentation mistype

Code reuse

There is no check that _min_token_purchase
<= _max_token_purchase

►► Severity: Minor

Admin.sol#L378 _max_wei_spend parameter is used as _max_token_purchase actualy.

Recommendation:

1.	Rename the parameter to avoid misunderstanding.

Status:

Fixed – #9e21ef2ddc536ab9701e67db229caa8d02c2e5de

►► Severity: Minor

Admin.sol#L322-L323 consider calling onlyAdmin func instead of a copy-pasting function
body. Same thing here.

Status:

Fixed – #9e21ef2ddc536ab9701e67db229caa8d02c2e5de

►► Severity: Minor

Admin.sol#L63 the whitelistMulti function does not check that _min_token_purchase <=
_max_token_purchase, so they can keep any values. At this time, this cause no serious impact.

Recommendation:

1.	Consider adding the check to avoid accidents.

Status:

Fixed – #9e21ef2ddc536ab9701e67db229caa8d02c2e5de

https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/admin/Admin.sol#L378
https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/admin/Admin.sol#L63
https://github.com/auth-os/applications/commit/9e21ef2ddc536ab9701e67db229caa8d02c2e5de
https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/admin/Admin.sol#L322-L323
https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/admin/Admin.sol#L331-L332
https://github.com/auth-os/applications/commit/9e21ef2ddc536ab9701e67db229caa8d02c2e5de
https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/classes/admin/Admin.sol#L63
https://github.com/auth-os/applications/commit/9e21ef2ddc536ab9701e67db229caa8d02c2e5de

1610. DutchCrowdsale: DutchProxy

Contract does not prevent accidental Ether
transferring

►► Severity: Major

DutchProxy contract has the payble fallback function (inherits the Proxy.sol#L26) for storing
refunds. However, this may cause potential issues with the crowdsale app: according to user
experience, someone can just send Ether to “crowdsale” address and lose it (the buy function
will not be called).

Recommedation:

1.	Consider using another (custom) function to refund or make the fallback function check that
msg.sender == address(app_storage)

Status:

Fixed #fd207315418bdc4b16482516ae6d4e6df7b0a801

https://github.com/auth-os/core/blob/cebb1089c417a8e26bd97a44f7234bdb9d0bd781/contracts/core/Proxy.sol#L26
https://github.com/auth-os/core/commit/fd207315418bdc4b16482516ae6d4e6df7b0a801

1711. DutchCrowdsale: DutchCrowdsaleIdx

Code reuse

There are no overflow checks

►► Severity: Minor

Consider importing the Token, Sale, and Admin libraries instead of copy-pasting their
functionality. After importing, it can be used the same way as Contract (e.g., Contract.storing()).
So it would be:

Contract.set(Sale.startRate()).to(_starting_rate);

instead of:

Contract.set(startRate()).to(_starting_rate);

The first one is more readable and keeps code minimalistic.

Status:

Taken into account.

►► Severity: Minor

DutchCrowdsaleIdx.sol#L362 the getRateAndTimeRemaining function does not check the
_start_rate and _end_rate values. So, if _end_rate is bigger than _start_rate then (at line 377)
uint underflow occurs and current rate becomes huge.

Recomendations:

1.	At the moment, there is no way to exploit the behavior, but this kind of check (_start_rate >=
_end_rate) would be extremely useful to complicate or eliminate attacks.

Status:

Team decided to leave it as is. There is no threat.

https://github.com/poanetwork/auth-os-applications/blob/308a6a43d187d84e54de3da0d3c714a20b4fa329/TokenWizard/crowdsale/DutchCrowdsale/contracts/DutchCrowdsaleIdx.sol#L19-L140
https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/DutchCrowdsaleIdx.sol#L362
https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/DutchCrowdsale/contracts/DutchCrowdsaleIdx.sol#L377

1812. MintedCappedCrowdsale: SaleManager

Whitelist can be added to a non-existent
tier

►► Severity: Minor

SaleManager.sol#L145. The whitelistMultiForTier function does not check _tier_index, so it
can be any.

Recommendation:

1.	Consider adding the check to avoid accidents, i.e., current_tier_index <=_tier_index <= last_
tier_index

Status:

Team decided to leave it as is. There is no threat.

https://github.com/poanetwork/auth-os-applications/blob/2840b97dea33c8cf455a67b2b9c7229e2cda1843/TokenWizard/crowdsale/MintedCappedCrowdsale/contracts/classes/sale_manager/SaleManager.sol#L145

1913. ProxiesRegistry

Unnecessary functionality

►► Severity: Minor

The new version of openzeppelin Ownable contract has the renounceOwnership function.
For more information, see here. This function is inherited by your ProxiesRegistry with no
indications. renounceOwnership seems superfluous.

Recomendations:

1.	Consider rewrite renounceOwnership to empty implementation.

Status:

Fixed – #f9d1518369d37a34bb1685416977cb891f908b1b

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/5daaf60d11ee2075260d0f3adfb22b1c536db983/contracts/ownership/Ownable.sol#L42
https://github.com/OpenZeppelin/openzeppelin-solidity/issues/903
https://github.com/poanetwork/auth-os-applications/commit/f9d1518369d37a34bb1685416977cb891f908b1b

2014. General issues

Token wizard app does not use authos killer
feature

►► Severity: None

At the moment, Token and Crowdsale together is just one app. However, because of an
architectural feature (AbstactStorage), they can act as separate apps that share Storage. This
behavior may bring an additional layer of security.

Recommendations:

It may turn out to be a laborious task to rewrite TokenWizard, so that is up to the development
team.

Status:

Taken into account.

21Appendix 1. Terminology

Severity

Severity is the category that described the magnitude of an issue.

Severity

Im
pa

ct

Major Medium Major Critical

Medium Minor Medium Major

Minor None Minor Medium

Minor Medium Major

Likelihood

Minor

Minor issues are generally subjective in their nature or potentially associated with the topics like
“best practices” or “readability”. As a rule, minor issues do not indicate an actual problem or bug
in the code.

The maintainers should use their own judgment as to whether addressing these issues will
improve the codebase.

Medium

Medium issues are generally objective in their nature but do not represent any actual bugs or
security problems.

These issues should be addressed unless there is an apparent reason not to.

Major

Major issues are things like bugs or vulnerabilities. These issues may be unexploitable directly
or may require a certain condition to arise to be exploited.

If unaddressed, these issues are likely to cause problems with the operation of the contract or
lead to situations which make the system exploitable.

Critical

Critical issues are directly exploitable bugs or security vulnerabilities.

If unaddressed, these issues are likely or guaranteed to cause major problems and ultimately a
full failure in the operations of the contract.

About Us

Worried about the security of your project? You’re on the right
way! The second step is to find a team of seasoned cybersecurity
experts who will make it impenetrable. And you’ve just come to
the right place.

PepperSec is a group of whitehat hackers seasoned by many-year
experience and have a deep understanding of the modern Inter-
net technologies. We’re ready to battle for the security of your
project.

LET’S KEEP IN TOUCH

peppersec.com

Github

hello@peppersec.com

https://peppersec.com
https://peppersec.com
https://peppersec.com
https://peppersec.com
https://github.com/peppersec
https://github.com/peppersec
https://github.com/peppersec
https://github.com/peppersec
mailto:hello%40peppersec.com?subject=
mailto:hello%40peppersec.com?subject=
mailto:hello%40peppersec.com?subject=
mailto:hello%40peppersec.com?subject=

