vdf/classgroup/src/gmp_classgroup/ffi.rs

341 lines
10 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2018 POA Networks Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! FFI bindings to GMP. This module exists because the `rust-gmp` crate
//! is too high-level. High-performance bignum computation requires that
//! bignums be modified in-place, so that their storage can be reused.
//! Furthermore, the `rust-gmp` crate doesnt support many operations that
//! this library requires.
#![allow(unsafe_code)]
pub use super::super::gmp::mpz::Mpz;
use super::super::gmp::mpz::{mp_bitcnt_t, mp_limb_t};
use libc::{c_int, c_long, c_ulong, c_void, size_t};
// pub use c_ulong;
use std::{mem, usize};
// We use the unsafe versions to avoid unecessary allocations.
#[link(name = "gmp")]
extern "C" {
fn __gmpz_gcdext(gcd: *mut Mpz, s: *mut Mpz, t: *mut Mpz, a: *const Mpz, b: *const Mpz);
fn __gmpz_gcd(rop: *mut Mpz, op1: *const Mpz, op2: *const Mpz);
fn __gmpz_fdiv_qr(q: *mut Mpz, r: *mut Mpz, b: *const Mpz, g: *const Mpz);
fn __gmpz_fdiv_q(q: *mut Mpz, n: *const Mpz, d: *const Mpz);
fn __gmpz_divexact(q: *mut Mpz, n: *const Mpz, d: *const Mpz);
fn __gmpz_tdiv_q(q: *mut Mpz, n: *const Mpz, d: *const Mpz);
fn __gmpz_mul(p: *mut Mpz, a: *const Mpz, b: *const Mpz);
fn __gmpz_mul_2exp(rop: *mut Mpz, op1: *const Mpz, op2: mp_bitcnt_t);
fn __gmpz_sub(rop: *mut Mpz, op1: *const Mpz, op2: *const Mpz);
fn __gmpz_import(
rop: *mut Mpz,
count: size_t,
order: c_int,
size: size_t,
endian: c_int,
nails: size_t,
op: *const c_void,
);
fn __gmpz_tdiv_r(r: *mut Mpz, n: *const Mpz, d: *const Mpz);
fn __gmpz_sizeinbase(op: &Mpz, base: c_int) -> size_t;
fn __gmpz_fdiv_q_ui(rop: *mut Mpz, op1: *const Mpz, op2: c_ulong) -> c_ulong;
fn __gmpz_add(rop: *mut Mpz, op1: *const Mpz, op2: *const Mpz);
fn __gmpz_add_ui(rop: *mut Mpz, op1: *const Mpz, op2: c_ulong);
fn __gmpz_set_ui(rop: &mut Mpz, op: c_ulong);
fn __gmpz_set_si(rop: &mut Mpz, op: c_long);
fn __gmpz_cdiv_ui(n: &Mpz, d: c_ulong) -> c_ulong;
fn __gmpz_fdiv_ui(n: &Mpz, d: c_ulong) -> c_ulong;
fn __gmpz_tdiv_ui(n: &Mpz, d: c_ulong) -> c_ulong;
fn __gmpz_export(
rop: *mut c_void,
countp: *mut size_t,
order: c_int,
size: size_t,
endian: c_int,
nails: size_t,
op: &Mpz,
) -> *mut c_void;
fn __gmpz_powm(rop: *mut Mpz, base: *const Mpz, exp: *const Mpz, modulus: *const Mpz);
}
// MEGA HACK: rust-gmp doesnt expose the fields of this struct, so we must define
// it ourselves and cast.
//
// Should be stable though, as only GMP can change it, and doing would break binary compatibility.
#[repr(C)]
struct MpzStruct {
mp_alloc: c_int,
mp_size: c_int,
mp_d: *mut mp_limb_t,
}
macro_rules! impl_div_ui {
($t:ident, $i:ident, $f:expr) => {
pub fn $i(n: &Mpz, d: $t) -> $t {
use std::$t;
let res = unsafe { $f(n, c_ulong::from(d)) };
assert!(res <= $t::MAX.into());
res as $t
}
};
}
impl_div_ui!(u16, mpz_crem_u16, __gmpz_cdiv_ui);
impl_div_ui!(u32, mpz_frem_u32, __gmpz_fdiv_ui);
/// Returns `true` if `z` is negative and not zero. Otherwise,
/// returns `false`.
#[inline]
pub fn mpz_is_negative(z: &Mpz) -> bool {
unsafe { (*(z as *const _ as *const MpzStruct)).mp_size < 0 }
}
#[inline]
pub fn mpz_powm(rop: &mut Mpz, base: &Mpz, exponent: &Mpz, modulus: &Mpz) {
unsafe { __gmpz_powm(rop, base, exponent, modulus) }
}
#[inline]
pub fn mpz_tdiv_r(r: &mut Mpz, n: &Mpz, d: &Mpz) {
unsafe { __gmpz_tdiv_r(r, n, d) }
}
/// Sets `g` to the GCD of `a` and `b`.
#[inline]
pub fn mpz_gcdext(gcd: &mut Mpz, s: &mut Mpz, t: &mut Mpz, a: &Mpz, b: &Mpz) {
unsafe { __gmpz_gcdext(gcd, s, t, a, b) }
}
/// Doubles `rop` in-place
#[inline]
pub fn mpz_double(rop: &mut Mpz) {
if true {
// slightly faster
unsafe { __gmpz_mul_2exp(rop, rop, 1) }
} else {
unsafe { __gmpz_add(rop, rop, rop) }
}
}
#[inline]
pub fn mpz_fdiv_qr(q: &mut Mpz, r: &mut Mpz, b: &Mpz, g: &Mpz) {
unsafe { __gmpz_fdiv_qr(q, r, b, g) }
}
#[inline]
pub fn mpz_fdiv_q_ui_self(rop: &mut Mpz, op: c_ulong) -> c_ulong {
unsafe { __gmpz_fdiv_q_ui(rop, rop, op) }
}
/// Unmarshals a buffer to an `Mpz`. `buf` is interpreted as a 2s complement,
/// big-endian integer. If the buffer is empty, zero is returned.
pub fn import_obj(buf: &[u8]) -> Mpz {
fn raw_import(buf: &[u8]) -> Mpz {
let mut obj = Mpz::new();
unsafe { __gmpz_import(&mut obj, buf.len(), 1, 1, 1, 0, buf.as_ptr() as *const _) }
obj
}
let is_negative = match buf.first() {
None => return Mpz::zero(),
Some(x) => x & 0x80 != 0,
};
if !is_negative {
raw_import(buf)
} else {
let mut new_buf: Vec<_> = buf.iter().cloned().skip_while(|&x| x == 0xFF).collect();
if new_buf.is_empty() {
(-1).into()
} else {
for i in &mut new_buf {
*i ^= 0xFF
}
!raw_import(&new_buf)
}
}
}
pub fn three_gcd(rop: &mut Mpz, a: &Mpz, b: &Mpz, c: &Mpz) {
unsafe {
__gmpz_gcd(rop, a, b);
__gmpz_gcd(rop, rop, c)
}
}
#[inline]
pub fn size_in_bits(obj: &Mpz) -> usize {
unsafe { __gmpz_sizeinbase(obj, 2) }
}
#[inline]
pub fn mpz_add(rop: &mut Mpz, op1: &Mpz, op2: &Mpz) {
unsafe { __gmpz_add(rop, op1, op2) }
}
#[inline]
pub fn mpz_mul(rop: &mut Mpz, op1: &Mpz, op2: &Mpz) {
unsafe { __gmpz_mul(rop, op1, op2) }
}
#[inline]
pub fn mpz_divexact(q: &mut Mpz, n: &Mpz, d: &Mpz) {
unsafe { __gmpz_divexact(q, n, d) }
}
#[inline]
pub fn mpz_mul_2exp(rop: &mut Mpz, op1: &Mpz, op2: mp_bitcnt_t) {
unsafe { __gmpz_mul_2exp(rop as *mut _ as *mut Mpz, op1, op2) }
}
/// Divide `n` by `d`. Round towards -∞ and place the result in `q`.
#[inline]
pub fn mpz_fdiv_q(q: &mut Mpz, n: &Mpz, d: &Mpz) {
if mpz_is_negative(n) == mpz_is_negative(d) {
unsafe { __gmpz_tdiv_q(q, n, d) }
} else {
unsafe { __gmpz_fdiv_q(q, n, d) }
}
}
/// Sets `rop` to `(-1) * op`
#[inline]
#[cfg(none)]
pub fn mpz_neg(rop: &mut Mpz) {
assert!(mem::size_of::<Mpz>() == mem::size_of::<MpzStruct>());
unsafe {
let ptr = rop as *mut _ as *mut MpzStruct;
let v = (*ptr).mp_size;
(*ptr).mp_size = -v;
}
}
/// Subtracts `op2` from `op1` and stores the result in `rop`.
#[inline]
pub fn mpz_sub(rop: &mut Mpz, op1: &Mpz, op2: &Mpz) {
unsafe { __gmpz_sub(rop as *mut _ as *mut Mpz, op1, op2) }
}
/// Exports `obj` to `v` as an array of 2s complement, big-endian
/// bytes. If `v` is too small to hold the result, returns `Err(s)`,
/// where `s` is the size needed to hold the exported version of `obj`.
pub fn export_obj(obj: &Mpz, v: &mut [u8]) -> Result<(), usize> {
// Requires: offset < v.len() and v[offset..] be able to hold all of `obj`
unsafe fn raw_export(v: &mut [u8], offset: usize, obj: &Mpz) -> usize {
// SAFE as `offset` will always be in-bounds, since byte_len always <=
// byte_len_needed and we check that v.len() >= byte_len_needed.
let ptr = v.as_mut_ptr().add(offset) as *mut c_void;
// Necessary ― this byte may not be fully overwritten
*(ptr as *mut u8) = 0;
// SAFE as __gmpz_export will *always* initialize this.
let mut s: usize = mem::uninitialized();
let ptr2 = __gmpz_export(ptr, &mut s, 1, 1, 1, 0, obj);
assert_eq!(ptr, ptr2);
if 0 == s {
1
} else {
s
}
}
let size = size_in_bits(obj);
assert!(size > 0);
// Check to avoid integer overflow in later operations.
if size > usize::MAX - 8 || v.len() > usize::MAX >> 3 {
return Err(usize::MAX);
}
// One additional bit is needed for the sign bit.
let byte_len_needed = (size + 8) >> 3;
if v.len() < byte_len_needed {
return if v.is_empty() && obj.is_zero() {
Ok(())
} else {
Err(byte_len_needed)
};
}
let is_negative = mpz_is_negative(obj);
if is_negative {
// MEGA HACK: GMP does not have a function to perform 2's complement
let obj = !obj;
debug_assert!(
!mpz_is_negative(&obj),
"bitwise negation of a negative number produced a negative number"
);
let new_byte_size = (size_in_bits(&obj) + 7) >> 3;
let offset = v.len() - new_byte_size;
for i in &mut v[..offset] {
*i = 0xFF
}
unsafe {
assert_eq!(raw_export(v, offset, &obj), new_byte_size);
}
// We had to do a ones complement to get the data in a decent format,
// so now we need to flip all of the bits back. LLVM should be able to
// vectorize this loop easily.
for i in &mut v[offset..] {
*i ^= 0xFF
}
} else {
// ...but GMP will not include that in the number of bytes it writes
// (except for negative numbers)
let byte_len = (size + 7) >> 3;
assert!(byte_len > 0);
let offset = v.len() - byte_len;
// Zero out any leading bytes
for i in &mut v[..offset] {
*i = 0
}
unsafe {
assert_eq!(raw_export(v, offset, &obj), byte_len);
}
}
Ok(())
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn check_expected_bit_width() {
let mut s: Mpz = (-2).into();
assert_eq!(size_in_bits(&s), 2);
s = !s;
assert_eq!(s, 1.into());
s.setbit(2);
assert_eq!(s, 5.into());
}
#[test]
fn check_export() {
let mut s: Mpz = 0x100.into();
s = !s;
let mut buf = [0, 0, 0];
export_obj(&s, &mut buf).expect("buffer should be large enough");
assert_eq!(buf, [0xFF, 0xFE, 0xFF]);
export_obj(&Mpz::zero(), &mut []).unwrap();
}
#[test]
fn check_rem() {
assert_eq!(mpz_crem_u16(&(-100i64).into(), 3), 1);
assert_eq!(mpz_crem_u16(&(100i64).into(), 3), 2);
}
}