EICU now able to capture data on all channels

This commit is contained in:
barthess 2015-03-03 19:01:28 +03:00
parent 4764c3ba15
commit 75688209c2
3 changed files with 502 additions and 345 deletions

View File

@ -51,14 +51,23 @@ typedef enum {
EICU_IDLE = 5 /* Idle cycle phase. */
} eicustate_t;
/**
* @brief Channel state machine possible states.
*/
typedef enum {
EICU_CH_IDLE = 0, /* Idle cycle phase. */
EICU_CH_ACTIVE = 1 /* Active cycle phase. */
} eicuchannelstate_t;
/**
* @brief EICU channel selection definition
*/
typedef enum {
EICU_CHANNEL_1 = 0,
EICU_CHANNEL_2 = 1,
EICU_CHANNEL_3 = 2,
EICU_CHANNEL_4 = 3
EICU_CHANNEL_2,
EICU_CHANNEL_3,
EICU_CHANNEL_4,
EICU_CHANNEL_ENUM_END
} eicuchannel_t;
/**
@ -71,8 +80,11 @@ typedef struct EICUDriver EICUDriver;
*
* @param[in] eicup Pointer to a EICUDriver object
* @param[in] channel EICU channel that fired the interrupt
* @param[in] width Pulse width
* @param[in] period Pulse period
*/
typedef void (*eicucallback_t)(EICUDriver *eicup, eicuchannel_t channel);
typedef void (*eicucallback_t)(EICUDriver *eicup, eicuchannel_t channel,
uint32_t width, uint32_t period);
#include "eicu_lld.h"
@ -101,35 +113,6 @@ typedef void (*eicucallback_t)(EICUDriver *eicup, eicuchannel_t channel);
* @iclass
*/
#define eicuDisableI(eicup) eicu_lld_disable(eicup)
/**
* @brief Returns the time of the latest measurement.
* @details The pulse width is defined as number of ticks between the 2
* capture events depending on EICU mode (pulse width or period).
* @note This function is meant to be invoked from the capture
* callback only.
*
* @param[in] eicup Pointer to the @p EICUDriver object
* @param[in] channel The timer channel that fired the interrupt.
* @return The number of ticks.
*
* @special
*/
#define eicuGetTime(eicup, channel) eicu_lld_get_time((eicup), (channel))
/**
* @brief Returns the width of the latest cycle.
* @details The cycle width is defined as number of ticks between a start
* edge and the next start edge.
* @note This function is meant to be invoked from the capture
* callback only.
*
* @param[in] eicup Pointer to the @p EICUDriver object
* @return The number of ticks.
*
* @special
*/
#define eicuGetPeriod(eicup) eicu_lld_get_period(eicup)
/** @} */
/**
@ -148,7 +131,7 @@ static inline void _eicu_isr_invoke_pwm_width_cb(EICUDriver *eicup,
eicuchannel_t channel) {
if (eicup->state != EICU_WAITING) {
eicup->state = EICU_IDLE;
eicup->config->iccfgp[channel]->capture_cb(eicup, channel);
eicup->config->iccfgp[channel]->capture_cb(eicup, channel, 0, 0);
}
}
@ -165,48 +148,7 @@ static inline void _eicu_isr_invoke_pwm_period_cb(EICUDriver *eicup,
eicustate_t previous_state = eicup->state;
eicup->state = EICU_ACTIVE;
if (previous_state != EICU_WAITING)
eicup->config->period_cb(eicup, channel);
}
/**
* @brief Common ISR code, EICU Pulse width event.
* @details This macro needs special care since it needs to invert the
* correct polarity bit to detect pulses.
* @note This macro assumes that the polarity is not changed by some
* external user. It must only be changed using the HAL.
*
* @param[in] eicup Pointer to the @p EICUDriver object
* @param[in] channel The timer channel that fired the interrupt.
*
* @notapi
*/
static inline void _eicu_isr_invoke_pulse_width_cb(EICUDriver *eicup,
eicuchannel_t channel) {
if (eicup->state == EICU_ACTIVE) {
eicup->state = EICU_READY;
eicu_lld_invert_polarity(eicup, channel);
eicup->config->iccfgp[channel]->capture_cb(eicup, channel);
}
else {
eicup->state = EICU_ACTIVE;
eicup->last_count[channel] = eicu_lld_get_compare(eicup, channel);
eicu_lld_invert_polarity(eicup, channel);
}
}
/**
* @brief Common ISR code, EICU Edge detect event.
*
* @param[in] eicup Pointer to the @p EICUDriver object
* @param[in] channel The timer channel that fired the interrupt.
*
* @notapi
*/
static inline void _eicu_isr_invoke_edge_detect_cb(EICUDriver *eicup,
eicuchannel_t channel) {
eicup->state = EICU_READY;
eicup->config->iccfgp[channel]->capture_cb(eicup, channel);
eicup->last_count[channel] = eicu_lld_get_compare(eicup, channel);
eicup->channel[channel].config->capture_cb(eicup, channel, 0, 0);
}
/**
@ -217,7 +159,7 @@ static inline void _eicu_isr_invoke_edge_detect_cb(EICUDriver *eicup,
* @notapi
*/
#define _eicu_isr_invoke_overflow_cb(icup) { \
(eicup)->config->overflow_cb(eicup, 0); \
(eicup)->config->overflow_cb(eicup, 0, 0, 0); \
}
/** @} */

View File

@ -107,6 +107,214 @@ EICUDriver EICUD12;
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
/**
* @brief Returns the time between latest 2 capture events.
* @details The time is defined as number of ticks.
*
* @param[in] eicup Pointer to the EICUDriver object.
* @param[in] channel The timer channel that fired the interrupt.
* @return The number of ticks.
*
* @notapi
*/
static eicuresult_t eicu_lld_get_both(EICUDriver *eicup,
eicuchannel_t channel,
eicucnt_t compare) {
const EICUChannelDriver *chp = &eicup->channel[channel];
eicuresult_t ret;
/* Note! there is no overflow check because it handles under the hood of
unsigned subtraction math.*/
/* 16-bit timer */
if (0xFFFF == eicup->tim->ARR) {
uint16_t cmp = compare & 0xFFFF;
uint16_t la = chp->last_active;
uint16_t li = chp->last_idle;
uint16_t w = li - la;
uint16_t p = cmp - la;
ret.width = w;
ret.period = p;
}
/* 32-bit timer */
else if (0xFFFFFFFF == eicup->tim->ARR) {
ret.width = chp->last_idle - chp->last_active;
ret.period = compare - chp->last_active;
return ret;
}
/* error trap */
else {
osalSysHalt("ARR register must be loaded with maximum possible value");
}
return ret;
}
/**
*
*/
static eicucnt_t eicu_lld_get_width(EICUDriver *eicup,
eicuchannel_t channel,
eicucnt_t compare) {
const EICUChannelDriver *chp = &eicup->channel[channel];
/* Note! there is no overflow check because it handles under the hood of
unsigned subtraction math.*/
/* 16-bit timer */
if (0xFFFF == eicup->tim->ARR) {
uint16_t cmp = compare & 0xFFFF;
uint16_t la = chp->last_active;
uint16_t ret = cmp - la;
return ret;
}
/* 32-bit timer */
else if (0xFFFFFFFF == eicup->tim->ARR) {
return compare - chp->last_active;
}
/* error trap */
else {
osalSysHalt("ARR register must be loaded with maximum possible value");
return 0;
}
}
/**
*
*/
static eicucnt_t eicu_lld_get_period(EICUDriver *eicup,
eicuchannel_t channel,
eicucnt_t compare) {
const EICUChannelDriver *chp = &eicup->channel[channel];
/* Note! there is no overflow check because it handles under the hood of
unsigned subtraction math.*/
/* 16-bit timer */
if (0xFFFF == eicup->tim->ARR) {
uint16_t cmp = compare & 0xFFFF;
uint16_t li = chp->last_idle;
uint16_t ret = cmp - li;
return ret;
}
/* 32-bit timer */
else if (0xFFFFFFFF == eicup->tim->ARR) {
return compare - chp->last_idle;
}
/* error trap */
else {
osalSysHalt("ARR register must be loaded with maximum possible value");
return 0;
}
}
/**
* @brief Common ISR code, EICU width or (width + period) event.
* @note Needs special care since it needs to invert the
* correct polarity bit to detect pulses.
* @note Assumes that the polarity is not changed by some
* external user. It must only be changed using the HAL.
*
* @param[in] eicup Pointer to the @p EICUDriver object
* @param[in] channel The timer channel that fired the interrupt.
*
* @notapi
*/
static void isr_invoke_pulse_cb(EICUDriver *eicup, eicuchannel_t channel) {
EICUChannelDriver *chp = &eicup->channel[channel];
eicucnt_t compare = eicu_lld_get_compare(chp);
if (EICU_CH_ACTIVE == chp->state) {
chp->state = EICU_CH_IDLE;
eicu_lld_invert_polarity(eicup, channel);
if (EICU_INPUT_PULSE == chp->config->mode) {
uint32_t width = eicu_lld_get_width(eicup, channel, compare);
chp->config->capture_cb(eicup, channel, width, 0);
}
chp->last_idle = compare;
}
else {
chp->state = EICU_CH_ACTIVE;
eicu_lld_invert_polarity(eicup, channel);
if (EICU_INPUT_BOTH == chp->config->mode) {
eicuresult_t both = eicu_lld_get_both(eicup, channel, compare);
chp->config->capture_cb(eicup, channel, both.width, both.period);
}
chp->last_active = compare;
}
}
/**
* @brief Common ISR code, EICU Edge detect event.
*
* @param[in] eicup Pointer to the @p EICUDriver object
* @param[in] channel The timer channel that fired the interrupt.
*
* @notapi
*/
static void isr_invoke_edge_cb(EICUDriver *eicup,
eicuchannel_t channel) {
EICUChannelDriver *chp = &eicup->channel[channel];
eicucnt_t compare = eicu_lld_get_compare(chp);
uint32_t period = eicu_lld_get_period(eicup, channel, compare);
chp->config->capture_cb(eicup, channel, 0, period);
chp->last_idle = compare;
}
/**
* @brief Common ISR call.
*
* @param[in] eicup Pointer to the @p EICUDriver object
* @param[in] channel The timer channel that fired the interrupt.
*
* @notapi
*/
static void eicu_isr_invoke_cb(EICUDriver *eicup, eicuchannel_t channel) {
if (EICU_INPUT_EDGE == eicup->channel[channel].config->mode)
isr_invoke_edge_cb(eicup, channel);
else /* EICU_INPUT_PULSE || EICU_INPUT_BOTH */
isr_invoke_pulse_cb(eicup, channel);
}
/**
*
*/
static void slow_mode_handler(EICUDriver *eicup, uint16_t sr) {
if ((sr & STM32_TIM_SR_CC1IF) != 0)
eicu_isr_invoke_cb(eicup, EICU_CHANNEL_1);
if ((sr & STM32_TIM_SR_CC2IF) != 0)
eicu_isr_invoke_cb(eicup, EICU_CHANNEL_2);
if ((sr & STM32_TIM_SR_CC3IF) != 0)
eicu_isr_invoke_cb(eicup, EICU_CHANNEL_3);
if ((sr & STM32_TIM_SR_CC4IF) != 0)
eicu_isr_invoke_cb(eicup, EICU_CHANNEL_4);
}
/**
*
*/
static void fast_mode_handler(EICUDriver *eicup, uint16_t sr) {
if (eicup->config->iccfgp[0] != NULL) {
if ((sr & STM32_TIM_SR_CC1IF) != 0)
_eicu_isr_invoke_pwm_period_cb(eicup,EICU_CHANNEL_1);
if ((sr & STM32_TIM_SR_CC2IF) != 0)
_eicu_isr_invoke_pwm_width_cb(eicup, EICU_CHANNEL_1);
}
else {
if ((sr & STM32_TIM_SR_CC1IF) != 0)
_eicu_isr_invoke_pwm_width_cb(eicup, EICU_CHANNEL_2);
if ((sr & STM32_TIM_SR_CC2IF) != 0)
_eicu_isr_invoke_pwm_period_cb(eicup,EICU_CHANNEL_2);
}
}
/**
* @brief Shared IRQ handler.
*
@ -123,53 +331,180 @@ static void eicu_lld_serve_interrupt(EICUDriver *eicup) {
/* Clear interrupts */
eicup->tim->SR = ~sr;
switch (eicup->config->input_type) {
case EICU_INPUT_PWM:
if (eicup->config->iccfgp[0] != NULL) {
if ((sr & STM32_TIM_SR_CC1IF) != 0)
_eicu_isr_invoke_pwm_period_cb(eicup,EICU_CHANNEL_1);
if ((sr & STM32_TIM_SR_CC2IF) != 0)
_eicu_isr_invoke_pwm_width_cb(eicup, EICU_CHANNEL_1);
}
else {
if ((sr & STM32_TIM_SR_CC1IF) != 0)
_eicu_isr_invoke_pwm_width_cb(eicup, EICU_CHANNEL_2);
if ((sr & STM32_TIM_SR_CC2IF) != 0)
_eicu_isr_invoke_pwm_period_cb(eicup,EICU_CHANNEL_2);
}
break;
case EICU_INPUT_PULSE:
if ((sr & STM32_TIM_SR_CC1IF) != 0)
_eicu_isr_invoke_pulse_width_cb(eicup, EICU_CHANNEL_1);
if ((sr & STM32_TIM_SR_CC2IF) != 0)
_eicu_isr_invoke_pulse_width_cb(eicup, EICU_CHANNEL_2);
if ((sr & STM32_TIM_SR_CC3IF) != 0)
_eicu_isr_invoke_pulse_width_cb(eicup, EICU_CHANNEL_3);
if ((sr & STM32_TIM_SR_CC4IF) != 0)
_eicu_isr_invoke_pulse_width_cb(eicup, EICU_CHANNEL_4);
break;
case EICU_INPUT_EDGE:
if ((sr & STM32_TIM_SR_CC1IF) != 0)
_eicu_isr_invoke_edge_detect_cb(eicup, EICU_CHANNEL_1);
if ((sr & STM32_TIM_SR_CC2IF) != 0)
_eicu_isr_invoke_edge_detect_cb(eicup, EICU_CHANNEL_2);
if ((sr & STM32_TIM_SR_CC3IF) != 0)
_eicu_isr_invoke_edge_detect_cb(eicup, EICU_CHANNEL_3);
if ((sr & STM32_TIM_SR_CC4IF) != 0)
_eicu_isr_invoke_edge_detect_cb(eicup, EICU_CHANNEL_4);
break;
default:
osalSysHalt("Unhandled case");
break;
}
if (EICU_FAST == eicup->config->mode)
fast_mode_handler(eicup, sr);
else
slow_mode_handler(eicup, sr);
if ((sr & STM32_TIM_SR_UIF) != 0)
_eicu_isr_invoke_overflow_cb(eicup);
}
static void eicu_lld_fast_start(EICUDriver *eicup) {
(void)eicup;
osalSysHalt("unrealized yet");
#if 0
if (eicup->config->iccfgp[0] != NULL) {
/* Selected input 1.
CCMR1_CC1S = 01 = CH1 Input on TI1.
CCMR1_CC2S = 10 = CH2 Input on TI1.*/
eicup->tim->CCMR1 = STM32_TIM_CCMR1_CC1S(1) | STM32_TIM_CCMR1_CC2S(2);
/* SMCR_TS = 101, input is TI1FP1.
SMCR_SMS = 100, reset on rising edge.*/
eicup->tim->SMCR = STM32_TIM_SMCR_TS(5) | STM32_TIM_SMCR_SMS(4);
/* The CCER settings depend on the selected trigger mode.
EICU_INPUT_ACTIVE_HIGH: Active on rising edge, idle on falling edge.
EICU_INPUT_ACTIVE_LOW: Active on falling edge, idle on rising edge.
*/
if (eicup->config->iccfgp[0]->alvl == EICU_INPUT_ACTIVE_HIGH) {
eicup->tim->CCER = STM32_TIM_CCER_CC1E |
STM32_TIM_CCER_CC2E | STM32_TIM_CCER_CC2P;
}
else {
eicup->tim->CCER = STM32_TIM_CCER_CC1E | STM32_TIM_CCER_CC1P |
STM32_TIM_CCER_CC2E;
}
/* Direct pointers to the capture registers in order to make reading
data faster from within callbacks.*/
eicup->wccrp[0] = &eicup->tim->CCR[1];
eicup->pccrp = &eicup->tim->CCR[0];
}
else {
/* Selected input 2.
CCMR1_CC1S = 10 = CH1 Input on TI2.
CCMR1_CC2S = 01 = CH2 Input on TI2.*/
eicup->tim->CCMR1 = STM32_TIM_CCMR1_CC1S(2) | STM32_TIM_CCMR1_CC2S(1);
/* SMCR_TS = 110, input is TI2FP2.
SMCR_SMS = 100, reset on rising edge.*/
eicup->tim->SMCR = STM32_TIM_SMCR_TS(6) | STM32_TIM_SMCR_SMS(4);
/* The CCER settings depend on the selected trigger mode.
EICU_INPUT_ACTIVE_HIGH: Active on rising edge, idle on falling edge.
EICU_INPUT_ACTIVE_LOW: Active on falling edge, idle on rising edge.
*/
if (eicup->config->iccfgp[1]->alvl == EICU_INPUT_ACTIVE_HIGH) {
eicup->tim->CCER = STM32_TIM_CCER_CC1E | STM32_TIM_CCER_CC1P |
STM32_TIM_CCER_CC2E;
}
else {
eicup->tim->CCER = STM32_TIM_CCER_CC1E |
STM32_TIM_CCER_CC2E | STM32_TIM_CCER_CC2P;
}
/* Direct pointers to the capture registers in order to make reading
data faster from within callbacks.*/
eicup->wccrp[1] = &eicup->tim->CCR[0];
eicup->pccrp = &eicup->tim->CCR[1];
}
#endif
}
static void eicu_lld_slow_start(EICUDriver *eicup) {
/* Set each input channel that is used as: a normal input capture channel,
link the corresponding CCR register and set polarity. */
/* Input capture channel 1 */
if (eicup->config->iccfgp[0] != NULL) {
/* Normal capture input input */
eicup->tim->CCMR1 |= STM32_TIM_CCMR1_CC1S(1);
/* Link CCR register */
eicup->channel[0].wccrp = &eicup->tim->CCR[0];
/* Set input polarity */
if (eicup->config->iccfgp[0]->alvl == EICU_INPUT_ACTIVE_HIGH)
eicup->tim->CCER |= STM32_TIM_CCER_CC1E;
else
eicup->tim->CCER |= STM32_TIM_CCER_CC1E | STM32_TIM_CCER_CC1P;
}
/* Input capture channel 2 */
if (eicup->config->iccfgp[1] != NULL) {
/* Normal capture input input */
eicup->tim->CCMR1 |= STM32_TIM_CCMR1_CC2S(1);
/* Link CCR register */
eicup->channel[1].wccrp = &eicup->tim->CCR[1];
/* Set input polarity */
if (eicup->config->iccfgp[1]->alvl == EICU_INPUT_ACTIVE_HIGH)
eicup->tim->CCER |= STM32_TIM_CCER_CC2E;
else
eicup->tim->CCER |= STM32_TIM_CCER_CC2E | STM32_TIM_CCER_CC2P;
}
/* Input capture channel 3 (not for TIM 9 and 12) */
if (eicup->config->iccfgp[2] != NULL) {
/* Normal capture input input */
eicup->tim->CCMR2 |= STM32_TIM_CCMR2_CC3S(1);
/* Link CCR register */
eicup->channel[2].wccrp = &eicup->tim->CCR[2];
/* Set input polarity */
if (eicup->config->iccfgp[2]->alvl == EICU_INPUT_ACTIVE_HIGH)
eicup->tim->CCER |= STM32_TIM_CCER_CC3E;
else
eicup->tim->CCER |= STM32_TIM_CCER_CC3E | STM32_TIM_CCER_CC3P;
}
/* Input capture channel 4 (not for TIM 9 and 12) */
if (eicup->config->iccfgp[3] != NULL) {
/* Normal capture input input */
eicup->tim->CCMR2 |= STM32_TIM_CCMR2_CC4S(1);
/* Link CCR register */
eicup->channel[3].wccrp = &eicup->tim->CCR[3];
/* Set input polarity */
if (eicup->config->iccfgp[3]->alvl == EICU_INPUT_ACTIVE_HIGH)
eicup->tim->CCER |= STM32_TIM_CCER_CC4E;
else
eicup->tim->CCER |= STM32_TIM_CCER_CC4E | STM32_TIM_CCER_CC4P;
}
}
static void eicu_lld_enable_fast(EICUDriver *eicup) {
(void)eicup;
osalSysHalt("urealized");
#if 0
if (eicup->config->iccfgp[0] != NULL) {
if (eicup->config->period_cb != NULL)
eicup->tim->DIER |= STM32_TIM_DIER_CC1IE;
if ((eicup->config->iccfgp[EICU_CHANNEL_1] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_1]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC2IE;
}
else {
if ((eicup->config->iccfgp[EICU_CHANNEL_2] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_2]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC1IE;
if (eicup->config->period_cb != NULL)
eicup->tim->DIER |= STM32_TIM_DIER_CC2IE;
}
#endif
}
static void eicu_lld_enable_slow(EICUDriver *eicup) {
if ((eicup->config->iccfgp[EICU_CHANNEL_1] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_1]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC1IE;
if ((eicup->config->iccfgp[EICU_CHANNEL_2] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_2]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC2IE;
if ((eicup->config->iccfgp[EICU_CHANNEL_3] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_3]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC3IE;
if ((eicup->config->iccfgp[EICU_CHANNEL_4] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_4]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC4IE;
}
/*===========================================================================*/
/* Driver interrupt handlers. */
/*===========================================================================*/
@ -459,6 +794,7 @@ void eicu_lld_init(void) {
*/
void eicu_lld_start(EICUDriver *eicup) {
uint32_t psc;
size_t ch;
osalDbgAssert((eicup->config->iccfgp[0] != NULL) ||
(eicup->config->iccfgp[1] != NULL) ||
@ -565,10 +901,14 @@ void eicu_lld_start(EICUDriver *eicup) {
/* Reset registers */
eicup->tim->SMCR = 0;
eicup->tim->CCMR1 = 0;
eicup->last_count[0] = 0;
eicup->last_count[1] = 0;
eicup->last_count[2] = 0;
eicup->last_count[3] = 0;
/* clean channel structures and set pointers to channel configs */
for (ch=0; ch<EICU_CHANNEL_ENUM_END; ch++) {
eicup->channel[ch].last_active = 0;
eicup->channel[ch].last_idle = 0;
eicup->channel[ch].config = eicup->config->iccfgp[ch];
eicup->channel[ch].state = EICU_CH_IDLE;
}
#if STM32_EICU_USE_TIM9 && !STM32_EICU_USE_TIM12
if (eicup != &EICUD9)
@ -597,129 +937,10 @@ void eicu_lld_start(EICUDriver *eicup) {
}
#endif
if (eicup->config->input_type == EICU_INPUT_PWM) {
if (eicup->config->iccfgp[0] != NULL) {
/* Selected input 1.
CCMR1_CC1S = 01 = CH1 Input on TI1.
CCMR1_CC2S = 10 = CH2 Input on TI1.*/
eicup->tim->CCMR1 = STM32_TIM_CCMR1_CC1S(1) | STM32_TIM_CCMR1_CC2S(2);
/* SMCR_TS = 101, input is TI1FP1.
SMCR_SMS = 100, reset on rising edge.*/
eicup->tim->SMCR = STM32_TIM_SMCR_TS(5) | STM32_TIM_SMCR_SMS(4);
/* The CCER settings depend on the selected trigger mode.
EICU_INPUT_ACTIVE_HIGH: Active on rising edge, idle on falling edge.
EICU_INPUT_ACTIVE_LOW: Active on falling edge, idle on rising edge.
*/
if (eicup->config->iccfgp[0]->mode == EICU_INPUT_ACTIVE_HIGH) {
eicup->tim->CCER = STM32_TIM_CCER_CC1E |
STM32_TIM_CCER_CC2E | STM32_TIM_CCER_CC2P;
}
else {
eicup->tim->CCER = STM32_TIM_CCER_CC1E | STM32_TIM_CCER_CC1P |
STM32_TIM_CCER_CC2E;
}
/* Direct pointers to the capture registers in order to make reading
data faster from within callbacks.*/
eicup->wccrp[0] = &eicup->tim->CCR[1];
eicup->pccrp = &eicup->tim->CCR[0];
}
else {
/* Selected input 2.
CCMR1_CC1S = 10 = CH1 Input on TI2.
CCMR1_CC2S = 01 = CH2 Input on TI2.*/
eicup->tim->CCMR1 = STM32_TIM_CCMR1_CC1S(2) | STM32_TIM_CCMR1_CC2S(1);
/* SMCR_TS = 110, input is TI2FP2.
SMCR_SMS = 100, reset on rising edge.*/
eicup->tim->SMCR = STM32_TIM_SMCR_TS(6) | STM32_TIM_SMCR_SMS(4);
/* The CCER settings depend on the selected trigger mode.
EICU_INPUT_ACTIVE_HIGH: Active on rising edge, idle on falling edge.
EICU_INPUT_ACTIVE_LOW: Active on falling edge, idle on rising edge.
*/
if (eicup->config->iccfgp[1]->mode == EICU_INPUT_ACTIVE_HIGH) {
eicup->tim->CCER = STM32_TIM_CCER_CC1E | STM32_TIM_CCER_CC1P |
STM32_TIM_CCER_CC2E;
}
else {
eicup->tim->CCER = STM32_TIM_CCER_CC1E |
STM32_TIM_CCER_CC2E | STM32_TIM_CCER_CC2P;
}
/* Direct pointers to the capture registers in order to make reading
data faster from within callbacks.*/
eicup->wccrp[1] = &eicup->tim->CCR[0];
eicup->pccrp = &eicup->tim->CCR[1];
}
}
else { /* EICU_INPUT_EDGE & EICU_INPUT_PULSE */
/* Set each input channel that is used as: a normal input capture channel,
link the corresponding CCR register and set polarity. */
/* Input capture channel 1 */
if (eicup->config->iccfgp[0] != NULL) {
/* Normal capture input input */
eicup->tim->CCMR1 |= STM32_TIM_CCMR1_CC1S(1);
/* Link CCR register */
eicup->wccrp[0] = &eicup->tim->CCR[0];
/* Set input polarity */
if (eicup->config->iccfgp[0]->mode == EICU_INPUT_ACTIVE_HIGH)
eicup->tim->CCER |= STM32_TIM_CCER_CC1E;
if (eicup->config->mode == EICU_FAST)
eicu_lld_fast_start(eicup);
else
eicup->tim->CCER |= STM32_TIM_CCER_CC1E | STM32_TIM_CCER_CC1P;
}
/* Input capture channel 2 */
if (eicup->config->iccfgp[1] != NULL) {
/* Normal capture input input */
eicup->tim->CCMR1 |= STM32_TIM_CCMR1_CC2S(1);
/* Link CCR register */
eicup->wccrp[1] = &eicup->tim->CCR[1];
/* Set input polarity */
if (eicup->config->iccfgp[1]->mode == EICU_INPUT_ACTIVE_HIGH)
eicup->tim->CCER |= STM32_TIM_CCER_CC2E;
else
eicup->tim->CCER |= STM32_TIM_CCER_CC2E | STM32_TIM_CCER_CC2P;
}
/* Input capture channel 3 (not for TIM 9 and 12) */
if (eicup->config->iccfgp[2] != NULL) {
/* Normal capture input input */
eicup->tim->CCMR2 |= STM32_TIM_CCMR2_CC3S(1);
/* Link CCR register */
eicup->wccrp[2] = &eicup->tim->CCR[2];
/* Set input polarity */
if (eicup->config->iccfgp[2]->mode == EICU_INPUT_ACTIVE_HIGH)
eicup->tim->CCER |= STM32_TIM_CCER_CC3E;
else
eicup->tim->CCER |= STM32_TIM_CCER_CC3E | STM32_TIM_CCER_CC3P;
}
/* Input capture channel 4 (not for TIM 9 and 12) */
if (eicup->config->iccfgp[3] != NULL) {
/* Normal capture input input */
eicup->tim->CCMR2 |= STM32_TIM_CCMR2_CC4S(1);
/* Link CCR register */
eicup->wccrp[3] = &eicup->tim->CCR[3];
/* Set input polarity */
if (eicup->config->iccfgp[3]->mode == EICU_INPUT_ACTIVE_HIGH)
eicup->tim->CCER |= STM32_TIM_CCER_CC4E;
else
eicup->tim->CCER |= STM32_TIM_CCER_CC4E | STM32_TIM_CCER_CC4P;
}
}
eicu_lld_slow_start(eicup);
}
/**
@ -800,36 +1021,10 @@ void eicu_lld_enable(EICUDriver *eicup) {
eicup->tim->EGR = STM32_TIM_EGR_UG;
eicup->tim->SR = 0; /* Clear pending IRQs (if any). */
if (eicup->config->input_type == EICU_INPUT_PWM) {
if (eicup->config->iccfgp[0] != NULL) {
if (eicup->config->period_cb != NULL)
eicup->tim->DIER |= STM32_TIM_DIER_CC1IE;
if ((eicup->config->iccfgp[EICU_CHANNEL_1] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_1]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC2IE;
}
else {
if ((eicup->config->iccfgp[EICU_CHANNEL_2] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_2]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC1IE;
if (eicup->config->period_cb != NULL)
eicup->tim->DIER |= STM32_TIM_DIER_CC2IE;
}
}
else { /* EICU_INPUT_PULSE || EICU_INPUT_EDGE */
if ((eicup->config->iccfgp[EICU_CHANNEL_1] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_1]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC1IE;
if ((eicup->config->iccfgp[EICU_CHANNEL_2] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_2]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC2IE;
if ((eicup->config->iccfgp[EICU_CHANNEL_3] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_3]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC3IE;
if ((eicup->config->iccfgp[EICU_CHANNEL_4] != NULL) &&
(eicup->config->iccfgp[EICU_CHANNEL_4]->capture_cb != NULL))
eicup->tim->DIER |= STM32_TIM_DIER_CC4IE;
}
if (eicup->config->mode == EICU_FAST)
eicu_lld_enable_fast(eicup);
else
eicu_lld_enable_slow(eicup);
if (eicup->config->overflow_cb != NULL)
eicup->tim->DIER |= STM32_TIM_DIER_UIE;
@ -852,39 +1047,4 @@ void eicu_lld_disable(EICUDriver *eicup) {
eicup->tim->DIER &= ~STM32_TIM_DIER_IRQ_MASK;
}
/**
* @brief Returns the time between latest 2 capture events.
* @details The time is defined as number of ticks.
*
* @param[in] eicup Pointer to the EICUDriver object.
* @param[in] channel The timer channel that fired the interrupt.
* @return The number of ticks.
*
* @notapi
*/
eicucnt_t eicu_lld_get_time(EICUDriver *eicup, eicuchannel_t channel) {
/* Note! there is no overflow check because it handles under the hood of
unsigned subtraction math.*/
/* 16-bit timer */
if (0xFFFF == eicup->tim->ARR) {
uint16_t capture = eicu_lld_get_compare(eicup, channel);
uint16_t last_count = eicup->last_count[channel];
uint16_t ret = capture - last_count;
return ret;
}
/* 32-bit timer */
else if (0xFFFFFFFF == eicup->tim->ARR) {
eicucnt_t capture = eicu_lld_get_compare(eicup, channel);
eicucnt_t last_count = eicup->last_count[channel];
return capture - last_count;
}
/* error trap */
else {
osalSysHalt("ARR register must be loaded with maximum possible value");
return 0;
}
}
#endif /* HAL_USE_EICU */

View File

@ -252,23 +252,40 @@
/*===========================================================================*/
/* Driver data structures and types. */
/*===========================================================================*/
/**
* @brief EICU driver mode.
*/
typedef enum {
/**
* @brief Captures high speed signals.
* @note Only one input per timer possible.
* @note Needs at least 2 capture/compare channels in timer.
*/
EICU_FAST,
/**
* @brief Captures low speed signals.
* @details Suggested for example for PWM or PPM signals from RC receiver.
* @note Only one input per capture/compare channel needed.
*/
EICU_SLOW
} eicumode_t;
/**
* @brief Active level selector.
*/
typedef enum {
EICU_INPUT_ACTIVE_HIGH = 0, /**< Trigger on rising edge. */
EICU_INPUT_ACTIVE_LOW = 1, /**< Trigger on falling edge. */
} eicumode_t;
} eicuactivelevel_t;
/**
* @brief Input type selector.
*/
typedef enum {
EICU_INPUT_EDGE = 0, /**< Triggers on the edge of the input.*/
EICU_INPUT_PULSE = 1, /**< Triggers on detected pulse.*/
EICU_INPUT_PWM = 2 /**< Triggers on detected PWM period and width. */
} eicuinput_t;
EICU_INPUT_EDGE = 0, /**< Measures time between consequent edges.*/
EICU_INPUT_PULSE = 1, /**< Measures pulse width.*/
EICU_INPUT_BOTH = 2 /**< Measures both period and width. */
} eicucapturemode_t;
/**
* @brief EICU frequency type.
@ -280,14 +297,32 @@ typedef uint32_t eicufreq_t;
*/
typedef uint32_t eicucnt_t;
/**
* @brief EICU Captured time(s).
*/
typedef struct {
/**
* @brief Pulse width.
*/
eicucnt_t width;
/**
* @brief Pulse period.
*/
eicucnt_t period;
} eicuresult_t;
/**
* @brief EICU Capture Channel Config structure definition.
*/
typedef struct {
/**
* @brief Specifies the active edge of the input signal.
* @brief Specifies the active level of the input signal.
*/
eicumode_t mode;
eicuactivelevel_t alvl;
/**
* @brief Specifies the channel capture mode.
*/
eicucapturemode_t mode;
/**
* @brief Capture event callback. Used for PWM width, pulse width and
* pulse period capture event.
@ -295,14 +330,40 @@ typedef struct {
eicucallback_t capture_cb;
} EICUChannelConfig;
/**
* @brief EICU Capture Channel Config structure definition.
*/
typedef struct {
/**
* @brief Channel state for the internal state machine.
*/
eicuchannelstate_t state;
/**
* @brief Cached value for pulse width calculation.
*/
eicucnt_t last_active;
/**
* @brief Cached value for period calculation.
*/
eicucnt_t last_idle;
/**
* @brief Pointer to Input Capture channel configuration.
*/
const EICUChannelConfig *config;
/**
* @brief CCR registers for width capture.
*/
volatile uint32_t *wccrp;
} EICUChannelDriver;
/**
* @brief EICU Config structure definition.
*/
typedef struct {
/**
* @brief Select which input type the driver will be configured for.
* @brief Specifies the EICU capture mode.
*/
eicuinput_t input_type;
eicumode_t mode;
/**
* @brief Specifies the Timer clock in Hz.
*/
@ -312,14 +373,10 @@ typedef struct {
* @note A NULL parameter indicates the channel as unused.
* @note In PWM mode, only Channel 1 OR Channel 2 may be used.
*/
const EICUChannelConfig *iccfgp[4];
/**
* @brief Period capture event callback.
* @note Only used when in PWM measurement mode
*/
eicucallback_t period_cb;
const EICUChannelConfig *iccfgp[EICU_CHANNEL_ENUM_END];
/**
* @brief Timer overflow event callback.
* @note Meaningful only when in @p EICU_FAST mode
*/
eicucallback_t overflow_cb;
/**
@ -341,9 +398,9 @@ struct EICUDriver {
*/
eicustate_t state;
/**
* @brief Temporary width holder during measurement.
* @brief Channels' data structures.
*/
eicucnt_t last_count[4];
EICUChannelDriver channel[EICU_CHANNEL_ENUM_END];
/**
* @brief Timer base clock.
*/
@ -352,10 +409,10 @@ struct EICUDriver {
* @brief Pointer to configuration for the driver.
*/
const EICUConfig *config;
/**
* @brief CCR registers for width capture.
*/
volatile uint32_t *wccrp[4];
// /**
// * @brief CCR registers for width capture.
// */
// volatile uint32_t *wccrp[4];
/**
* @brief CCR register for period capture.
* @note Only one is needed since only one PWM input per timer is allowed.
@ -377,18 +434,17 @@ struct EICUDriver {
*
* @notapi
*/
#define eicu_lld_get_period(eicup) (*((eicup)->pccrp) + 1)
#define eicu_lld_get_period_fast(eicup) (*((eicup)->pccrp) + 1)
/**
* @brief Returns the compare value of the latest cycle.
*
* @param[in] eicup Pointer to the EICUDriver object.
* @param[in] channel The timer channel that fired the interrupt.
* @param[in] chp Pointer to channel structure that fired the interrupt.
* @return The number of ticks.
*
* @notapi
*/
#define eicu_lld_get_compare(eicup, channel) (*((eicup)->wccrp[(channel)]) + 1)
#define eicu_lld_get_compare(chp) (*((chp)->wccrp) + 1)
/**
* @brief Inverts the polarity for the given channel.
@ -444,7 +500,6 @@ extern "C" {
void eicu_lld_stop(EICUDriver *eicup);
void eicu_lld_enable(EICUDriver *eicup);
void eicu_lld_disable(EICUDriver *eicup);
eicucnt_t eicu_lld_get_time(EICUDriver *eicup, eicuchannel_t channel);
#ifdef __cplusplus
}
#endif