Adding PID library

This commit is contained in:
Fabien Poussin 2018-03-22 16:30:35 +01:00
parent d4d384557d
commit d66ce4b75b
2 changed files with 269 additions and 0 deletions

191
os/various/pid.c Normal file
View File

@ -0,0 +1,191 @@
/**********************************************************************************************
* Arduino PID Library - Version 1.2.1
* by Brett Beauregard <br3ttb@gmail.com> brettbeauregard.com
* Modified by Fabien Poussin <fabien.poussin@gmail.com> for ChibiOS.
*
* This Library is licensed under the MIT License
**********************************************************************************************/
#include "pid.h"
#include "osal.h"
#define TIME_MS (osalOsGetSystemTimeX() / (OSAL_ST_FREQUENCY / 1000))
/*Constructor (...)*********************************************************
* The parameters specified here are those for for which we can't set up
* reliable defaults, so we need to have the user set them.
***************************************************************************/
void pid_create(pid_t* p, float* Input, float* Output, float* Setpoint,
float Kp, float Ki, float Kd, int POn, int ControllerDirection)
{
p->myOutput = Output;
p->myInput = Input;
p->mySetpoint = Setpoint;
p->inAuto = false;
pid_setOutputLimits(p, 0, 255); // default output limit corresponds to
// the arduino pwm limits
p->SampleTime = 100; // default Controller Sample Time is 100ms
pid_setControllerDirection(p, ControllerDirection);
pid_setTunings(p, Kp, Ki, Kd, POn);
p->lastTime = TIME_MS - p->SampleTime;
}
/* Compute() **********************************************************************
* This, as they say, is where the magic happens. this function should be called
* every time "void loop()" executes. the function will decide for itself whether a new
* pid Output needs to be computed. returns true when the output is computed,
* false when nothing has been done.
**********************************************************************************/
bool pid_compute(pid_t* p)
{
if(!p->inAuto) return false;
unsigned long now = TIME_MS;
unsigned long timeChange = (now - p->lastTime);
if(timeChange >= p->SampleTime)
{
/* Compute all the working error variables */
float input = *p->myInput;
float error = *p->mySetpoint - input;
float dInput = (input - p->lastInput);
p->outputSum += (p->ki * error);
/* Add Proportional on Measurement, if P_ON_M is specified */
if(!p->pOnE) p->outputSum -= p->kp * dInput;
if(p->outputSum > p->outMax) p->outputSum = p->outMax;
else if(p->outputSum < p->outMin) p->outputSum = p->outMin;
/* Add Proportional on Error, if P_ON_E is specified */
float output;
if(p->pOnE) output = p->kp * error;
else output = 0;
/* Compute Rest of PID Output */
output += p->outputSum - p->kd * dInput;
if(output > p->outMax) output = p->outMax;
else if(output < p->outMin) output = p->outMin;
*p->myOutput = output;
/* Remember some variables for next time */
p->lastInput = input;
p->lastTime = now;
return true;
}
else return false;
}
/* SetTunings(...)*************************************************************
* This function allows the controller's dynamic performance to be adjusted.
* it's called automatically from the constructor, but tunings can also
* be adjusted on the fly during normal operation
******************************************************************************/
void pid_setTunings(pid_t* p, float Kp, float Ki, float Kd, int POn)
{
if (Kp<0 || Ki<0 || Kd<0) return;
p->pOn = POn;
p->pOnE = POn == PID_P_ON_E;
p->dispKp = Kp; p->dispKi = Ki; p->dispKd = Kd;
float SampleTimeInSec = ((float)p->SampleTime)/1000;
p->kp = Kp;
p->ki = Ki * SampleTimeInSec;
p->kd = Kd / SampleTimeInSec;
if(p->controllerDirection == PID_REVERSE)
{
p->kp = (0 - p->kp);
p->ki = (0 - p->ki);
p->kd = (0 - p->kd);
}
}
/* SetSampleTime(...) *********************************************************
* sets the period, in Milliseconds, at which the calculation is performed
******************************************************************************/
void pid_setSampleTime(pid_t* p, int NewSampleTime)
{
if (NewSampleTime > 0)
{
float ratio = (float)NewSampleTime / (float)p->SampleTime;
p->ki *= ratio;
p->kd /= ratio;
p->SampleTime = (unsigned long)NewSampleTime;
}
}
/* SetOutputLimits(...)****************************************************
* This function will be used far more often than SetInputLimits. while
* the input to the controller will generally be in the 0-1023 range (which is
* the default already,) the output will be a little different. maybe they'll
* be doing a time window and will need 0-8000 or something. or maybe they'll
* want to clamp it from 0-125. who knows. at any rate, that can all be done
* here.
**************************************************************************/
void pid_setOutputLimits(pid_t* p, float Min, float Max)
{
if(Min >= Max) return;
p->outMin = Min;
p->outMax = Max;
if(p->inAuto)
{
if(*p->myOutput > p->outMax) *p->myOutput = p->outMax;
else if(*p->myOutput < p->outMin) *p->myOutput = p->outMin;
if(p->outputSum > p->outMax) p->outputSum = p->outMax;
else if(p->outputSum < p->outMin) p->outputSum = p->outMin;
}
}
/* SetMode(...)****************************************************************
* Allows the controller Mode to be set to manual (0) or Automatic (non-zero)
* when the transition from manual to auto occurs, the controller is
* automatically initialized
******************************************************************************/
void pid_setMode(pid_t* p, int Mode)
{
bool newAuto = (Mode == PID_AUTOMATIC);
if(newAuto && !p->inAuto)
{ /* we just went from manual to auto */
pid_initialize(p);
}
p->inAuto = newAuto;
}
/* Initialize()****************************************************************
* does all the things that need to happen to ensure a bumpless transfer
* from manual to automatic mode.
******************************************************************************/
void pid_initialize(pid_t* p)
{
p->outputSum = *p->myOutput;
p->lastInput = *p->myInput;
if(p->outputSum > p->outMax) p->outputSum = p->outMax;
else if(p->outputSum < p->outMin) p->outputSum = p->outMin;
}
/* SetControllerDirection(...)*************************************************
* The PID will either be connected to a DIRECT acting process (+Output leads
* to +Input) or a REVERSE acting process(+Output leads to -Input.) we need to
* know which one, because otherwise we may increase the output when we should
* be decreasing. This is called from the constructor.
******************************************************************************/
void pid_setControllerDirection(pid_t* p, int Direction)
{
if(p->inAuto && Direction != p->controllerDirection)
{
p->kp = (0 - p->kp);
p->ki = (0 - p->ki);
p->kd = (0 - p->kd);
}
p->controllerDirection = Direction;
}

78
os/various/pid.h Normal file
View File

@ -0,0 +1,78 @@
#ifndef PID_h
#define PID_h
#include "chtypes.h"
//Constants used in some of the functions below
#define PID_AUTOMATIC 1
#define PID_MANUAL 0
#define PID_DIRECT 0
#define PID_REVERSE 1
#define PID_P_ON_M 0
#define PID_P_ON_E 1
typedef struct {
float dispKp; // * we'll hold on to the tuning parameters in user-entered
float dispKi; // format for display purposes
float dispKd; //
float kp; // * (P)roportional Tuning Parameter
float ki; // * (I)ntegral Tuning Parameter
float kd; // * (D)erivative Tuning Parameter
int controllerDirection;
int pOn;
float *myInput; // * Pointers to the Input, Output, and Setpoint variables
float *myOutput; // This creates a hard link between the variables and the
float *mySetpoint; // PID, freeing the user from having to constantly tell us
// what these values are. with pointers we'll just know.
unsigned long lastTime;
float outputSum;
float lastInput;
unsigned long SampleTime;
float outMin;
float outMax;
bool inAuto;
bool pOnE;
} pid_t;
//commonly used functions **************************************************************************
void pid_create(pid_t* p, float* Input, float* Output, float* Setpoint, // * constructor. links the PID to the Input, Output, and
float Kp, float Ki, float Kd, int POn, int ControllerDirection); // Setpoint. Initial tuning parameters are also set here.
// (overload for specifying proportional mode)
void pid_setmode(pid_t* p, int mode); // * sets PID to either Manual (0) or Auto (non-0)
bool pid_compute(pid_t* p); // * performs the PID calculation. it should be
// called every time loop() cycles. ON/OFF and
// calculation frequency can be set using SetMode
// SetSampleTime respectively
void pid_setOutputLimits(pid_t* p, float Min, float Max); // * clamps the output to a specific range. 0-255 by default, but
// it's likely the user will want to change this depending on
// the application
//available but not commonly used functions ********************************************************
void pid_setTunings(pid_t* p, float Kp, float Ki, float Kd, int POn); // * While most users will set the tunings once in the
// constructor, this function gives the user the option
// of changing tunings during runtime for Adaptive control
void pid_setControllerDirection(pid_t* p, int Direction); // * Sets the Direction, or "Action" of the controller. DIRECT
// means the output will increase when error is positive. REVERSE
// means the opposite. it's very unlikely that this will be needed
// once it is set in the constructor.
void pid_setSampleTime(pid_t* p, int NewSampleTime); // * sets the frequency, in Milliseconds, with which
// the PID calculation is performed. default is 100
void pid_initialize(pid_t* p);
#endif