ChibiOS-Contrib/os/hal/ports/GD/GD32VF103/CAN/hal_can_lld.c

826 lines
21 KiB
C

/*
ChibiOS - Copyright (C) 2006..2018 Giovanni Di Sirio
ChibiOS - Copyright (C) 2021 Stefan Kerkmann
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/**
* @file CAN/hal_can_lld.c
* @brief GD32 CAN subsystem low level driver source.
*
* @addtogroup CAN
* @{
*/
#include "hal.h"
#if HAL_USE_CAN || defined(__DOXYGEN__)
/*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
/*
* Addressing differences in the headers, they seem unable to agree on names.
*/
#if GD32_CAN_USE_CAN0
#if !defined(CAN0)
#define CAN0 CAN
#endif
#endif
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
/** @brief CAN0 driver identifier.*/
#if GD32_CAN_USE_CAN0 || defined(__DOXYGEN__)
CANDriver CAND1;
#endif
/** @brief CAN1 driver identifier.*/
#if GD32_CAN_USE_CAN1 || defined(__DOXYGEN__)
CANDriver CAND2;
#endif
/*===========================================================================*/
/* Driver local variables and types. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
/**
* @brief Programs the filters of CAN 1 and CAN 2.
*
* @param[in] canp pointer to the @p CANDriver object
* @param[in] can2sb number of the first filter assigned to CAN1
* @param[in] num number of entries in the filters array, if zero then
* a default filter is programmed
* @param[in] cfp pointer to the filters array, can be @p NULL if
* (num == 0)
*
* @notapi
*/
static void can_lld_set_filters(CANDriver* canp,
uint32_t can2sb,
uint32_t num,
const CANFilter *cfp) {
#if GD32_CAN_USE_CAN1
if (canp == &CAND2) {
/* Set handle to CAN0, because CAN0 manages the filters of CAN1.*/
canp = &CAND1;
}
#endif
/* Temporarily enabling CAN clock.*/
#if GD32_CAN_USE_CAN0
if (canp == &CAND1) {
rcuEnableCAN0(true);
/* Filters initialization.*/
canp->can->FCTL = (canp->can->FCTL & 0xFFFF0000) | CAN_FCTL_FLD;
canp->can->FCTL = (canp->can->FCTL & 0xFFFF0000) | (can2sb << 8) | CAN_FCTL_FLD;
}
#endif
if (num > 0) {
uint32_t i, fmask;
/* All filters cleared.*/
canp->can->FW = 0;
canp->can->FMCFG = 0;
canp->can->FSCFG = 0;
canp->can->FAFIFO = 0;
#if GD32_CAN_USE_CAN0
if (canp == &CAND1) {
for (i = 0; i < GD32_CAN_MAX_FILTERS; i++) {
canp->can->sFilterRegister[i].FR1 = 0;
canp->can->sFilterRegister[i].FR2 = 0;
}
}
#endif
/* Scanning the filters array.*/
for (i = 0; i < num; i++) {
fmask = 1 << cfp->filter;
if (cfp->mode)
canp->can->FMCFG |= fmask;
if (cfp->scale)
canp->can->FSCFG |= fmask;
if (cfp->assignment)
canp->can->FAFIFO |= fmask;
canp->can->sFilterRegister[cfp->filter].FR1 = cfp->register1;
canp->can->sFilterRegister[cfp->filter].FR2 = cfp->register2;
canp->can->FW |= fmask;
cfp++;
}
}
else {
/* Setting up a single default filter that enables everything for both
CANs.*/
canp->can->sFilterRegister[0].FR1 = 0;
canp->can->sFilterRegister[0].FR2 = 0;
#if GD32_CAN_USE_CAN1
if (canp == &CAND1) {
canp->can->sFilterRegister[can2sb].FR1 = 0;
canp->can->sFilterRegister[can2sb].FR2 = 0;
}
#endif
canp->can->FMCFG = 0;
canp->can->FAFIFO = 0;
canp->can->FSCFG = 1;
canp->can->FW = 1;
#if GD32_CAN_USE_CAN1
if (canp == &CAND1) {
canp->can->FSCFG |= 1 << can2sb;
canp->can->FW |= 1 << can2sb;
}
#endif
}
canp->can->FCTL &= ~CAN_FCTL_FLD;
/* Clock disabled, it will be enabled again in can_lld_start().*/
/* Temporarily enabling CAN clock.*/
#if GD32_CAN_USE_CAN0
if (canp == &CAND1) {
rcuDisableCAN0();
}
#endif
}
/**
* @brief Common TX ISR handler.
*
* @param[in] canp pointer to the @p CANDriver object
*
* @notapi
*/
static void can_lld_tx_handler(CANDriver *canp) {
uint32_t tstat;
eventflags_t flags;
/* Clearing IRQ sources.*/
tstat = canp->can->TSTAT;
canp->can->TSTAT = tstat;
/* Flags to be signaled through the TX event source.*/
flags = 0U;
/* Checking mailbox 0.*/
if ((tstat & CAN_TSTAT_MTF0) != 0U) {
if ((tstat & (CAN_TSTAT_MAL0 | CAN_TSTAT_MTE0)) != 0U) {
flags |= CAN_MAILBOX_TO_MASK(1U) << 16U;
}
else {
flags |= CAN_MAILBOX_TO_MASK(1U);
}
}
/* Checking mailbox 1.*/
if ((tstat & CAN_TSTAT_MTF1) != 0U) {
if ((tstat & (CAN_TSTAT_MAL1 | CAN_TSTAT_MTE1)) != 0U) {
flags |= CAN_MAILBOX_TO_MASK(2U) << 16U;
}
else {
flags |= CAN_MAILBOX_TO_MASK(2U);
}
}
/* Checking mailbox 2.*/
if ((tstat & CAN_TSTAT_MTF2) != 0U) {
if ((tstat & (CAN_TSTAT_MAL2 | CAN_TSTAT_MTE2)) != 0U) {
flags |= CAN_MAILBOX_TO_MASK(3U) << 16U;
}
else {
flags |= CAN_MAILBOX_TO_MASK(3U);
}
}
/* Signaling flags and waking up threads waiting for a transmission slot.*/
_can_tx_empty_isr(canp, flags);
}
/**
* @brief Common RX0 ISR handler.
*
* @param[in] canp pointer to the @p CANDriver object
*
* @notapi
*/
static void can_lld_rx0_handler(CANDriver *canp) {
uint32_t rfifo0;
rfifo0 = canp->can->RFIFO0;
if ((rfifo0 & CAN_RFIFO0_RFL0) > 0) {
/* No more receive events until the queue 0 has been emptied.*/
canp->can->INTEN &= ~CAN_INTEN_RFNEIE0;
_can_rx_full_isr(canp, CAN_MAILBOX_TO_MASK(1U));
}
if ((rfifo0 & CAN_RFIFO0_RFO0) > 0) {
/* Overflow events handling.*/
canp->can->RFIFO0 = CAN_RFIFO0_RFO0;
_can_error_isr(canp, CAN_OVERFLOW_ERROR);
}
}
/**
* @brief Common RX1 ISR handler.
*
* @param[in] canp pointer to the @p CANDriver object
*
* @notapi
*/
static void can_lld_rx1_handler(CANDriver *canp) {
uint32_t rfifo1;
rfifo1 = canp->can->RFIFO1;
if ((rfifo1 & CAN_RFIFO1_RFL1) > 0) {
/* No more receive events until the queue 0 has been emptied.*/
canp->can->INTEN &= ~CAN_INTEN_RFNEIE1;
_can_rx_full_isr(canp, CAN_MAILBOX_TO_MASK(2U));
}
if ((rfifo1 & CAN_RFIFO1_RFO1) > 0) {
/* Overflow events handling.*/
canp->can->RFIFO1 = CAN_RFIFO1_RFO1;
_can_error_isr(canp, CAN_OVERFLOW_ERROR);
}
}
/**
* @brief Common SCE ISR handler.
*
* @param[in] canp pointer to the @p CANDriver object
*
* @notapi
*/
static void can_lld_sce_handler(CANDriver *canp) {
uint32_t stat;
/* Clearing IRQ sources.*/
stat = canp->can->STAT;
canp->can->STAT = stat;
/* Wakeup event.*/
#if CAN_USE_SLEEP_MODE
if (stat & CAN_STAT_WUIF) {
canp->state = CAN_READY;
canp->can->CTL &= ~CAN_CTL_SLPWMOD;
_can_wakeup_isr(canp);
}
#endif /* CAN_USE_SLEEP_MODE */
/* Error event.*/
if (stat & CAN_STAT_ERRIF) {
eventflags_t flags;
uint32_t err = canp->can->ERR;
#if GD32_CAN_REPORT_ALL_ERRORS
flags = (eventflags_t)(err & 7);
if ((err & CAN_ERR_ERRN) > 0)
flags |= CAN_FRAMING_ERROR;
#else
flags = 0;
#endif
/* The content of the ESR register is copied unchanged in the upper
half word of the listener flags mask.*/
_can_error_isr(canp, flags | (eventflags_t)(err << 16U));
}
}
/*===========================================================================*/
/* Driver interrupt handlers. */
/*===========================================================================*/
#if GD32_CAN_USE_CAN0 || defined(__DOXYGEN__)
#if !defined(GD32_CAN0_TX_HANDLER)
#error "GD32_CAN0_TX_HANDLER not defined"
#endif
#if !defined(GD32_CAN0_RX0_HANDLER)
#error "GD32_CAN0_RX0_HANDLER not defined"
#endif
#if !defined(GD32_CAN0_RX1_HANDLER)
#error "GD32_CAN0_RX1_HANDLER not defined"
#endif
#if !defined(GD32_CAN0_EWMC_HANDLER)
#error "GD32_CAN0_EWMC_HANDLER not defined"
#endif
/**
* @brief CAN0 TX interrupt handler.
*
* @isr
*/
OSAL_IRQ_HANDLER(GD32_CAN0_TX_HANDLER) {
OSAL_IRQ_PROLOGUE();
can_lld_tx_handler(&CAND1);
OSAL_IRQ_EPILOGUE();
}
/**
* @brief CAN0 RX0 interrupt handler.
*
* @isr
*/
OSAL_IRQ_HANDLER(GD32_CAN0_RX0_HANDLER) {
OSAL_IRQ_PROLOGUE();
can_lld_rx0_handler(&CAND1);
OSAL_IRQ_EPILOGUE();
}
/**
* @brief CAN0 RX1 interrupt handler.
*
* @isr
*/
OSAL_IRQ_HANDLER(GD32_CAN0_RX1_HANDLER) {
OSAL_IRQ_PROLOGUE();
can_lld_rx1_handler(&CAND1);
OSAL_IRQ_EPILOGUE();
}
/**
* @brief CAN0 SCE interrupt handler.
*
* @isr
*/
OSAL_IRQ_HANDLER(GD32_CAN0_EWMC_HANDLER) {
OSAL_IRQ_PROLOGUE();
can_lld_sce_handler(&CAND1);
OSAL_IRQ_EPILOGUE();
}
#endif /* GD32_CAN_USE_CAN0 */
#if GD32_CAN_USE_CAN1 || defined(__DOXYGEN__)
#if !defined(GD32_CAN0_TX_HANDLER)
#error "GD32_CAN0_TX_HANDLER not defined"
#endif
#if !defined(GD32_CAN0_RX0_HANDLER)
#error "GD32_CAN0_RX0_HANDLER not defined"
#endif
#if !defined(GD32_CAN0_RX1_HANDLER)
#error "GD32_CAN0_RX1_HANDLER not defined"
#endif
#if !defined(GD32_CAN0_EWMC_HANDLER)
#error "GD32_CAN0_EWMC_HANDLER not defined"
#endif
/**
* @brief CAN1 TX interrupt handler.
*
* @isr
*/
OSAL_IRQ_HANDLER(GD32_CAN0_TX_HANDLER) {
OSAL_IRQ_PROLOGUE();
can_lld_tx_handler(&CAND2);
OSAL_IRQ_EPILOGUE();
}
/**
* @brief CAN1 RX0 interrupt handler.
*
* @isr
*/
OSAL_IRQ_HANDLER(GD32_CAN0_RX0_HANDLER) {
OSAL_IRQ_PROLOGUE();
can_lld_rx0_handler(&CAND2);
OSAL_IRQ_EPILOGUE();
}
/**
* @brief CAN1 RX1 interrupt handler.
*
* @isr
*/
OSAL_IRQ_HANDLER(GD32_CAN0_RX1_HANDLER) {
OSAL_IRQ_PROLOGUE();
can_lld_rx1_handler(&CAND2);
OSAL_IRQ_EPILOGUE();
}
/**
* @brief CAN1 SCE interrupt handler.
*
* @isr
*/
OSAL_IRQ_HANDLER(GD32_CAN0_EWMC_HANDLER) {
OSAL_IRQ_PROLOGUE();
can_lld_sce_handler(&CAND2);
OSAL_IRQ_EPILOGUE();
}
#endif /* GD32_CAN_USE_CAN1 */
/*===========================================================================*/
/* Driver exported functions. */
/*===========================================================================*/
/**
* @brief Low level CAN driver initialization.
*
* @notapi
*/
void can_lld_init(void) {
#if GD32_CAN_USE_CAN0
/* Driver initialization.*/
canObjectInit(&CAND1);
CAND1.can = CAN0;
eclicEnableVector(GD32_CAN0_TX_NUMBER, GD32_CAN_CAN0_IRQ_PRIORITY, GD32_CAN_CAN0_IRQ_TRIGGER);
eclicEnableVector(GD32_CAN0_RX0_NUMBER, GD32_CAN_CAN0_IRQ_PRIORITY, GD32_CAN_CAN0_IRQ_TRIGGER);
eclicEnableVector(GD32_CAN0_RX1_NUMBER, GD32_CAN_CAN0_IRQ_PRIORITY, GD32_CAN_CAN0_IRQ_TRIGGER);
eclicEnableVector(GD32_CAN0_EWMC_NUMBER, GD32_CAN_CAN0_IRQ_PRIORITY, GD32_CAN_CAN0_IRQ_TRIGGER);
#endif
#if GD32_CAN_USE_CAN1
/* Driver initialization.*/
canObjectInit(&CAND2);
CAND2.can = CAN1;
eclicEnableVector(GD32_CAN0_TX_NUMBER, GD32_CAN_CAN1_IRQ_PRIORITY, GD32_CAN_CAN1_IRQ_TRIGGER);
eclicEnableVector(GD32_CAN0_RX0_NUMBER, GD32_CAN_CAN1_IRQ_PRIORITY, GD32_CAN_CAN1_IRQ_TRIGGER);
eclicEnableVector(GD32_CAN0_RX1_NUMBER, GD32_CAN_CAN1_IRQ_PRIORITY, GD32_CAN_CAN1_IRQ_TRIGGER);
eclicEnableVector(GD32_CAN0_EWMC_NUMBER, GD32_CAN_CAN1_IRQ_PRIORITY, GD32_CAN_CAN1_IRQ_TRIGGER);
#endif
/* Filters initialization.*/
#if GD32_CAN_USE_CAN0
#if GD32_HAS_CAN1
can_lld_set_filters(&CAND1, GD32_CAN_MAX_FILTERS / 2, 0, NULL);
#else
can_lld_set_filters(&CAND1, GD32_CAN_MAX_FILTERS, 0, NULL);
#endif
#endif
}
/**
* @brief Configures and activates the CAN peripheral.
*
* @param[in] canp pointer to the @p CANDriver object
*
* @notapi
*/
void can_lld_start(CANDriver *canp) {
/* Clock activation.*/
#if GD32_CAN_USE_CAN0
if (&CAND1 == canp) {
rcuEnableCAN0(true);
}
#endif
#if GD32_CAN_USE_CAN1
if (&CAND2 == canp) {
rcuEnableCAN0(true); /* CAN 2 requires CAN0, so enabling it first.*/
rcuEnableCAN1(true);
}
#endif
/* Configuring CAN. */
canp->can->CTL = CAN_CTL_IWMOD;
while ((canp->can->STAT & CAN_STAT_IWS) == 0)
osalThreadSleepS(1);
canp->can->BT = canp->config->bt;
canp->can->CTL = canp->config->ctl;
/* Interrupt sources initialization.*/
#if GD32_CAN_REPORT_ALL_ERRORS
canp->can->INTEN = CAN_INTEN_TMEIE | CAN_INTEN_RFNEIE0 | CAN_INTEN_RFNEIE1 |
CAN_INTEN_WIE | CAN_INTEN_ERRIE | CAN_INTEN_ERRNIE |
CAN_INTEN_BOIE | CAN_INTEN_PERRIE | CAN_INTEN_WERRIE |
CAN_INTEN_RFOIE0 | CAN_INTEN_RFOIE1;
#else
canp->can->INTEN = CAN_INTEN_TMEIE | CAN_INTEN_RFNEIE0 | CAN_INTEN_RFNEIE1 |
CAN_INTEN_WIE | CAN_INTEN_ERRIE |
CAN_INTEN_BOIE | CAN_INTEN_PERRIE | CAN_INTEN_WERRIE |
CAN_INTEN_RFOIE0 | CAN_INTEN_RFOIE1;
#endif
}
/**
* @brief Deactivates the CAN peripheral.
*
* @param[in] canp pointer to the @p CANDriver object
*
* @notapi
*/
void can_lld_stop(CANDriver *canp) {
/* If in ready state then disables the CAN peripheral.*/
if (canp->state == CAN_READY) {
#if GD32_CAN_USE_CAN0
if (&CAND1 == canp) {
CAN0->CTL = 0x00010002; /* Register reset value. */
CAN0->INTEN = 0x00000000; /* All sources disabled. */
#if GD32_CAN_USE_CAN1
/* If CAND2 is stopped then CAN0 clock is stopped here.*/
if (CAND2.state == CAN_STOP)
#endif
{
rcuDisableCAN0();
}
}
#endif
#if GD32_CAN_USE_CAN1
if (&CAND2 == canp) {
CAN1->CTL = 0x00010002; /* Register reset value. */
CAN1->INTEN = 0x00000000; /* All sources disabled. */
#if GD32_CAN_USE_CAN0
/* If CAND1 is stopped then CAN0 clock is stopped here.*/
if (CAND1.state == CAN_STOP)
#endif
{
rcuDisableCAN0();
}
rcuDisableCAN1();
}
#endif
}
}
/**
* @brief Determines whether a frame can be transmitted.
*
* @param[in] canp pointer to the @p CANDriver object
* @param[in] mailbox mailbox number, @p CAN_ANY_MAILBOX for any mailbox
*
* @return The queue space availability.
* @retval false no space in the transmit queue.
* @retval true transmit slot available.
*
* @notapi
*/
bool can_lld_is_tx_empty(CANDriver *canp, canmbx_t mailbox) {
switch (mailbox) {
case CAN_ANY_MAILBOX:
return (canp->can->TSTAT & CAN_TSTAT_TME) != 0;
case 1:
return (canp->can->TSTAT & CAN_TSTAT_TME0) != 0;
case 2:
return (canp->can->TSTAT & CAN_TSTAT_TME1) != 0;
case 3:
return (canp->can->TSTAT & CAN_TSTAT_TME2) != 0;
default:
return false;
}
}
/**
* @brief Inserts a frame into the transmit queue.
*
* @param[in] canp pointer to the @p CANDriver object
* @param[in] ctfp pointer to the CAN frame to be transmitted
* @param[in] mailbox mailbox number, @p CAN_ANY_MAILBOX for any mailbox
*
* @notapi
*/
void can_lld_transmit(CANDriver *canp,
canmbx_t mailbox,
const CANTxFrame *ctfp) {
uint32_t tmi;
CAN_TxMailBox_TypeDef *tmbp;
/* Pointer to a free transmission mailbox.*/
switch (mailbox) {
case CAN_ANY_MAILBOX:
tmbp = &canp->can->sTxMailBox[(canp->can->TSTAT & CAN_TSTAT_NUM) >> 24];
break;
case 1:
tmbp = &canp->can->sTxMailBox[0];
break;
case 2:
tmbp = &canp->can->sTxMailBox[1];
break;
case 3:
tmbp = &canp->can->sTxMailBox[2];
break;
default:
return;
}
/* Preparing the message.*/
if (ctfp->IDE)
tmi = ((uint32_t)ctfp->EID << 3) | ((uint32_t)ctfp->RTR << 1) |
CAN_TMI0_FF;
else
tmi = ((uint32_t)ctfp->SID << 21) | ((uint32_t)ctfp->RTR << 1);
tmbp->TMP = ctfp->DLC;
tmbp->TMDATA0 = ctfp->data32[0];
tmbp->TMDATA1 = ctfp->data32[1];
tmbp->TMI = tmi | CAN_TMI0_TEN;
}
/**
* @brief Determines whether a frame has been received.
*
* @param[in] canp pointer to the @p CANDriver object
* @param[in] mailbox mailbox number, @p CAN_ANY_MAILBOX for any mailbox
*
* @return The queue space availability.
* @retval false no space in the transmit queue.
* @retval true transmit slot available.
*
* @notapi
*/
bool can_lld_is_rx_nonempty(CANDriver *canp, canmbx_t mailbox) {
switch (mailbox) {
case CAN_ANY_MAILBOX:
return ((canp->can->RFIFO0 & CAN_RFIFO0_RFL0) != 0 ||
(canp->can->RFIFO1 & CAN_RFIFO1_RFL1) != 0);
case 1:
return (canp->can->RFIFO0 & CAN_RFIFO0_RFL0) != 0;
case 2:
return (canp->can->RFIFO1 & CAN_RFIFO1_RFL1) != 0;
default:
return false;
}
}
/**
* @brief Receives a frame from the input queue.
*
* @param[in] canp pointer to the @p CANDriver object
* @param[in] mailbox mailbox number, @p CAN_ANY_MAILBOX for any mailbox
* @param[out] crfp pointer to the buffer where the CAN frame is copied
*
* @notapi
*/
void can_lld_receive(CANDriver *canp,
canmbx_t mailbox,
CANRxFrame *crfp) {
uint32_t rfifomi, rfifomp;
if (mailbox == CAN_ANY_MAILBOX) {
if ((canp->can->RFIFO0 & CAN_RFIFO0_RFL0) != 0)
mailbox = 1;
else if ((canp->can->RFIFO1 & CAN_RFIFO1_RFL1) != 0)
mailbox = 2;
else {
/* Should not happen, do nothing.*/
return;
}
}
switch (mailbox) {
case 1:
/* Fetches the message.*/
rfifomi = canp->can->sFIFOMailBox[0].RFIFOMI;
rfifomp = canp->can->sFIFOMailBox[0].RFIFOMP;
crfp->data32[0] = canp->can->sFIFOMailBox[0].RFIFOMDATA0;
crfp->data32[1] = canp->can->sFIFOMailBox[0].RFIFOMDATA1;
/* Releases the mailbox.*/
canp->can->RFIFO0 = CAN_RFIFO0_RFD0;
/* If the queue is empty re-enables the interrupt in order to generate
events again.*/
if ((canp->can->RFIFO0 & CAN_RFIFO0_RFL0) == 0)
canp->can->INTEN |= CAN_INTEN_RFNEIE0;
break;
case 2:
/* Fetches the message.*/
rfifomi = canp->can->sFIFOMailBox[1].RFIFOMI;
rfifomp = canp->can->sFIFOMailBox[1].RFIFOMP;
crfp->data32[0] = canp->can->sFIFOMailBox[1].RFIFOMDATA0;
crfp->data32[1] = canp->can->sFIFOMailBox[1].RFIFOMDATA1;
/* Releases the mailbox.*/
canp->can->RFIFO1 = CAN_RFIFO1_RFD1;
/* If the queue is empty re-enables the interrupt in order to generate
events again.*/
if ((canp->can->RFIFO1 & CAN_RFIFO1_RFL1) == 0)
canp->can->INTEN |= CAN_INTEN_RFNEIE1;
break;
default:
/* Should not happen, do nothing.*/
return;
}
/* Decodes the various fields in the RX frame.*/
crfp->RTR = (rfifomi & CAN_RFIFOMI0_FT) >> 1;
crfp->IDE = (rfifomi & CAN_RFIFOMI0_FF) >> 2;
if (crfp->IDE)
crfp->EID = rfifomi >> 3;
else
crfp->SID = rfifomi >> 21;
crfp->DLC = rfifomp & CAN_RFIFOMP0_DLENC;
crfp->FMI = (uint8_t)(rfifomp >> 8);
crfp->TIME = (uint16_t)(rfifomp >> 16);
}
/**
* @brief Tries to abort an ongoing transmission.
*
* @param[in] canp pointer to the @p CANDriver object
* @param[in] mailbox mailbox number
*
* @notapi
*/
void can_lld_abort(CANDriver *canp,
canmbx_t mailbox) {
canp->can->TSTAT = 128U << ((mailbox - 1U) * 8U);
}
#if CAN_USE_SLEEP_MODE || defined(__DOXYGEN__)
/**
* @brief Enters the sleep mode.
*
* @param[in] canp pointer to the @p CANDriver object
*
* @notapi
*/
void can_lld_sleep(CANDriver *canp) {
canp->can->CTL |= CAN_CTL_SLPWMOD;
}
/**
* @brief Enforces leaving the sleep mode.
*
* @param[in] canp pointer to the @p CANDriver object
*
* @notapi
*/
void can_lld_wakeup(CANDriver *canp) {
canp->can->CTL &= ~CAN_CTL_SLPWMOD;
}
#endif /* CAN_USE_SLEEP_MODE */
/**
* @brief Programs the filters.
* @note This is an GD32-specific API.
*
* @param[in] canp pointer to the @p CANDriver object
* @param[in] can2sb number of the first filter assigned to CAN1
* @param[in] num number of entries in the filters array, if zero then
* a default filter is programmed
* @param[in] cfp pointer to the filters array, can be @p NULL if
* (num == 0)
*
* @api
*/
void canGD32SetFilters(CANDriver *canp, uint32_t can2sb,
uint32_t num, const CANFilter *cfp) {
#if GD32_CAN_USE_CAN1
osalDbgCheck((can2sb <= GD32_CAN_MAX_FILTERS) &&
(num <= GD32_CAN_MAX_FILTERS));
#endif
#if GD32_CAN_USE_CAN0
osalDbgAssert(CAND1.state == CAN_STOP, "invalid state");
#endif
#if GD32_CAN_USE_CAN1
osalDbgAssert(CAND2.state == CAN_STOP, "invalid state");
#endif
#if GD32_CAN_USE_CAN0
if (canp == &CAND1) {
can_lld_set_filters(canp, can2sb, num, cfp);
}
#endif
}
#endif /* HAL_USE_CAN */
/** @} */