Improved RT and NIL test suite.

git-svn-id: svn://svn.code.sf.net/p/chibios/svn/trunk@10614 35acf78f-673a-0410-8e92-d51de3d6d3f4
This commit is contained in:
Giovanni Di Sirio 2017-09-17 15:38:40 +00:00
parent fb355909fa
commit 3b3afb7d55
32 changed files with 5473 additions and 4650 deletions

View File

@ -1,52 +1,52 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="org.eclipse.cdt.debug.gdbjtag.launchConfigurationType">
<stringAttribute key="bad_container_name" value="\RT-STM32F091RC-NUCLEO64\debug"/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.delay" value="1"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.doHalt" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.doReset" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.initCommands" value="set remotetimeout 20&#13;&#10;monitor reset init&#13;&#10;monitor sleep 50&#13;&#10;"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.ipAddress" value="localhost"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDevice" value="Generic TCP/IP"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.portNumber" value="3333"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.runCommands" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setResume" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useRemoteTarget" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.mi.core.DEBUG_NAME" value="arm-none-eabi-gdb"/>
<stringAttribute key="org.eclipse.cdt.debug.mi.core.commandFactory" value="Standard"/>
<stringAttribute key="org.eclipse.cdt.debug.mi.core.protocol" value="mi"/>
<booleanAttribute key="org.eclipse.cdt.debug.mi.core.verboseMode" value="false"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="arm-none-eabi-gdb"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="2"/>
<stringAttribute key="org.eclipse.cdt.launch.COREFILE_PATH" value=""/>
<stringAttribute key="org.eclipse.cdt.launch.DEBUGGER_REGISTER_GROUPS" value=""/>
<stringAttribute key="org.eclipse.cdt.launch.FORMAT" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&lt;contentList/&gt;"/>
<stringAttribute key="org.eclipse.cdt.launch.GLOBAL_VARIABLES" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;globalVariableList/&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.cdt.launch.MEMORY_BLOCKS" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#13;&#10;&lt;memoryBlockExpressionList/&gt;&#13;&#10;"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="./build/ch.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="RT-STM32F091RC-NUCLEO64"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="true"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_ID_ATTR" value="0.1984968159"/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/RT-STM32F091RC-NUCLEO64"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.ui.favoriteGroups">
<listEntry value="org.eclipse.debug.ui.launchGroup.debug"/>
</listAttribute>
</launchConfiguration>
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="org.eclipse.cdt.debug.gdbjtag.launchConfigurationType">
<stringAttribute key="bad_container_name" value="\RT-STM32F091RC-NUCLEO64\debug"/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.delay" value="1"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.doHalt" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.doReset" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.imageOffset" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.initCommands" value="set remotetimeout 20&#13;&#10;monitor reset init&#13;&#10;monitor sleep 50&#13;&#10;"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.ipAddress" value="localhost"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.jtagDevice" value="Generic TCP/IP"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.loadSymbols" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.pcRegister" value=""/>
<intAttribute key="org.eclipse.cdt.debug.gdbjtag.core.portNumber" value="3333"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.runCommands" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setPcRegister" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setResume" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.setStopAt" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.stopAt" value="main"/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsFileName" value=""/>
<stringAttribute key="org.eclipse.cdt.debug.gdbjtag.core.symbolsOffset" value=""/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForImage" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useFileForSymbols" value="false"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForImage" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useProjBinaryForSymbols" value="true"/>
<booleanAttribute key="org.eclipse.cdt.debug.gdbjtag.core.useRemoteTarget" value="true"/>
<stringAttribute key="org.eclipse.cdt.debug.mi.core.DEBUG_NAME" value="arm-none-eabi-gdb"/>
<stringAttribute key="org.eclipse.cdt.debug.mi.core.commandFactory" value="Standard"/>
<stringAttribute key="org.eclipse.cdt.debug.mi.core.protocol" value="mi"/>
<booleanAttribute key="org.eclipse.cdt.debug.mi.core.verboseMode" value="false"/>
<stringAttribute key="org.eclipse.cdt.dsf.gdb.DEBUG_NAME" value="arm-none-eabi-gdb"/>
<intAttribute key="org.eclipse.cdt.launch.ATTR_BUILD_BEFORE_LAUNCH_ATTR" value="2"/>
<stringAttribute key="org.eclipse.cdt.launch.COREFILE_PATH" value=""/>
<stringAttribute key="org.eclipse.cdt.launch.DEBUGGER_REGISTER_GROUPS" value=""/>
<stringAttribute key="org.eclipse.cdt.launch.FORMAT" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&lt;contentList/&gt;"/>
<stringAttribute key="org.eclipse.cdt.launch.GLOBAL_VARIABLES" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#10;&lt;globalVariableList/&gt;&#10;"/>
<stringAttribute key="org.eclipse.cdt.launch.MEMORY_BLOCKS" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot; standalone=&quot;no&quot;?&gt;&#10;&lt;memoryBlockExpressionList/&gt;&#10;"/>
<stringAttribute key="org.eclipse.cdt.launch.PROGRAM_NAME" value="./build/ch.elf"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_ATTR" value="RT-STM32F091RC-NUCLEO64"/>
<booleanAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_AUTO_ATTR" value="true"/>
<stringAttribute key="org.eclipse.cdt.launch.PROJECT_BUILD_CONFIG_ID_ATTR" value="0.1984968159"/>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">
<listEntry value="/RT-STM32F091RC-NUCLEO64"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">
<listEntry value="4"/>
</listAttribute>
<listAttribute key="org.eclipse.debug.ui.favoriteGroups">
<listEntry value="org.eclipse.debug.ui.launchGroup.debug"/>
</listAttribute>
</launchConfiguration>

View File

@ -89,6 +89,8 @@
*****************************************************************************
*** Next ***
- NEW: Improved RT and NIL test suite to report version numbers and
configuration settings.
- NEW: Added a multi-target demo applications for PAL, SPI and USB-CDC
showcasing how to manage a project with multiple target boards/devices
and handle portability issues.

View File

@ -77,6 +77,156 @@ THD_FUNCTION(test_support, arg) {
</global_code>
</global_data_and_code>
<sequences>
<sequence>
<type index="0">
<value>Internal Tests</value>
</type>
<brief>
<value>Information.</value>
</brief>
<description>
<value>This sequence reports configuration and version information about the NIL kernel.</value>
</description>
<condition>
<value />
</condition>
<shared_code>
<value><![CDATA[#include "ch.h"]]></value>
</shared_code>
<cases>
<case>
<brief>
<value>Kernel Info.</value>
</brief>
<description>
<value>The version numbers are reported.</value>
</description>
<condition>
<value />
</condition>
<various_code>
<setup_code>
<value />
</setup_code>
<teardown_code>
<value />
</teardown_code>
<local_variables>
<value />
</local_variables>
</various_code>
<steps>
<step>
<description>
<value>Prints the version string.</value>
</description>
<tags>
<value />
</tags>
<code>
<value><![CDATA[test_println("*** Product: ChibiOS/NIL");
test_print("*** Stable Flag: ");
test_printn(CH_KERNEL_STABLE);
test_println("");
test_print("*** Version String: ");
test_println(CH_KERNEL_VERSION);
test_print("*** Major Number: ");
test_printn(CH_KERNEL_MAJOR);
test_println("");
test_print("*** Minor Number: ");
test_printn(CH_KERNEL_MINOR);
test_println("");
test_print("*** Patch Number: ");
test_printn(CH_KERNEL_PATCH);
test_println("");]]></value>
</code>
</step>
</steps>
</case>
<case>
<brief>
<value>Kernel Settings.</value>
</brief>
<description>
<value>The static kernel settings are reported.</value>
</description>
<condition>
<value />
</condition>
<various_code>
<setup_code>
<value />
</setup_code>
<teardown_code>
<value />
</teardown_code>
<local_variables>
<value />
</local_variables>
</various_code>
<steps>
<step>
<description>
<value>Prints the configuration options settings.</value>
</description>
<tags>
<value />
</tags>
<code>
<value><![CDATA[test_print("*** CH_CFG_NUM_THREADS: ");
test_printn(CH_CFG_NUM_THREADS);
test_println("");
test_print("*** CH_CFG_ST_RESOLUTION: ");
test_printn(CH_CFG_ST_RESOLUTION);
test_println("");
test_print("*** CH_CFG_ST_FREQUENCY: ");
test_printn(CH_CFG_ST_FREQUENCY);
test_println("");
test_print("*** CH_CFG_ST_TIMEDELTA: ");
test_printn(CH_CFG_ST_TIMEDELTA);
test_println("");
test_print("*** CH_CFG_USE_SEMAPHORES: ");
test_printn(CH_CFG_USE_SEMAPHORES);
test_println("");
test_print("*** CH_CFG_USE_MUTEXES: ");
test_printn(CH_CFG_USE_MUTEXES);
test_println("");
test_print("*** CH_CFG_USE_EVENTS: ");
test_printn(CH_CFG_USE_EVENTS);
test_println("");
test_print("*** CH_CFG_USE_MAILBOXES: ");
test_printn(CH_CFG_USE_MAILBOXES);
test_println("");
test_print("*** CH_CFG_USE_MEMCORE: ");
test_printn(CH_CFG_USE_MEMCORE);
test_println("");
test_print("*** CH_CFG_USE_HEAP: ");
test_printn(CH_CFG_USE_HEAP);
test_println("");
test_print("*** CH_CFG_USE_MEMPOOLS: ");
test_printn(CH_CFG_USE_MEMPOOLS);
test_println("");
test_print("*** CH_DBG_STATISTICS: ");
test_printn(CH_DBG_STATISTICS);
test_println("");
test_print("*** CH_DBG_SYSTEM_STATE_CHECK: ");
test_printn(CH_DBG_SYSTEM_STATE_CHECK);
test_println("");
test_print("*** CH_DBG_ENABLE_CHECKS: ");
test_printn(CH_DBG_ENABLE_CHECKS);
test_println("");
test_print("*** CH_DBG_ENABLE_ASSERTS: ");
test_printn(CH_DBG_ENABLE_ASSERTS);
test_println("");
test_print("*** CH_DBG_ENABLE_STACK_CHECK: ");
test_printn(CH_DBG_ENABLE_STACK_CHECK);
test_println("");]]></value>
</code>
</step>
</steps>
</case>
</cases>
</sequence>
<sequence>
<type index="0">
<value>Internal Tests</value>

View File

@ -27,6 +27,7 @@
* - @subpage test_sequence_004
* - @subpage test_sequence_005
* - @subpage test_sequence_006
* - @subpage test_sequence_007
* .
*/
@ -50,18 +51,19 @@
*/
const testcase_t * const *test_suite[] = {
test_sequence_001,
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
test_sequence_002,
#endif
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
test_sequence_003,
#if (CH_CFG_USE_MAILBOXES) || defined(__DOXYGEN__)
test_sequence_004,
#endif
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
test_sequence_004,
#if (CH_CFG_USE_MAILBOXES) || defined(__DOXYGEN__)
test_sequence_005,
#endif
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
test_sequence_006,
#endif
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
test_sequence_007,
#endif
NULL
};

View File

@ -28,6 +28,7 @@
#include "test_sequence_004.h"
#include "test_sequence_005.h"
#include "test_sequence_006.h"
#include "test_sequence_007.h"
#if !defined(__DOXYGEN__)

View File

@ -22,13 +22,13 @@
* @file test_sequence_001.c
* @brief Test Sequence 001 code.
*
* @page test_sequence_001 [1] Threads Functionality
* @page test_sequence_001 [1] Information
*
* File: @ref test_sequence_001.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/NIL functionalities related to
* threading.
* This sequence reports configuration and version information about
* the NIL kernel.
*
* <h2>Test Cases</h2>
* - @subpage test_001_001
@ -47,123 +47,115 @@
****************************************************************************/
/**
* @page test_001_001 [1.1] System Tick Counter functionality
* @page test_001_001 [1.1] Kernel Info
*
* <h2>Description</h2>
* The functionality of the API @p chVTGetSystemTimeX() is tested.
* The version numbers are reported.
*
* <h2>Test Steps</h2>
* - [1.1.1] A System Tick Counter increment is expected, the test
* simply hangs if it does not happen.
* - [1.1.1] Prints the version string.
* .
*/
static void test_001_001_execute(void) {
/* [1.1.1] A System Tick Counter increment is expected, the test
simply hangs if it does not happen.*/
/* [1.1.1] Prints the version string.*/
test_set_step(1);
{
systime_t time = chVTGetSystemTimeX();
while (time == chVTGetSystemTimeX()) {
}
test_println("*** Product: ChibiOS/NIL");
test_print("*** Stable Flag: ");
test_printn(CH_KERNEL_STABLE);
test_println("");
test_print("*** Version String: ");
test_println(CH_KERNEL_VERSION);
test_print("*** Major Number: ");
test_printn(CH_KERNEL_MAJOR);
test_println("");
test_print("*** Minor Number: ");
test_printn(CH_KERNEL_MINOR);
test_println("");
test_print("*** Patch Number: ");
test_printn(CH_KERNEL_PATCH);
test_println("");
}
}
static const testcase_t test_001_001 = {
"System Tick Counter functionality",
"Kernel Info",
NULL,
NULL,
test_001_001_execute
};
/**
* @page test_001_002 [1.2] Thread Sleep functionality
* @page test_001_002 [1.2] Kernel Settings
*
* <h2>Description</h2>
* The functionality of @p chThdSleep() and derivatives is tested.
* The static kernel settings are reported.
*
* <h2>Test Steps</h2>
* - [1.2.1] The current system time is read then a sleep is performed
* for 100 system ticks and on exit the system time is verified
* again.
* - [1.2.2] The current system time is read then a sleep is performed
* for 100000 microseconds and on exit the system time is verified
* again.
* - [1.2.3] The current system time is read then a sleep is performed
* for 100 milliseconds and on exit the system time is verified
* again.
* - [1.2.4] The current system time is read then a sleep is performed
* for 1 second and on exit the system time is verified again.
* - [1.2.5] Function chThdSleepUntil() is tested with a timeline of
* "now" + 100 ticks.
* - [1.2.1] Prints the configuration options settings.
* .
*/
static void test_001_002_execute(void) {
systime_t time;
/* [1.2.1] The current system time is read then a sleep is performed
for 100 system ticks and on exit the system time is verified
again.*/
/* [1.2.1] Prints the configuration options settings.*/
test_set_step(1);
{
time = chVTGetSystemTimeX();
chThdSleep(100);
test_assert_time_window(time + 100,
time + 100 + 1,
"out of time window");
}
/* [1.2.2] The current system time is read then a sleep is performed
for 100000 microseconds and on exit the system time is verified
again.*/
test_set_step(2);
{
time = chVTGetSystemTimeX();
chThdSleepMicroseconds(100000);
test_assert_time_window(time + US2ST(100000),
time + US2ST(100000) + 1,
"out of time window");
}
/* [1.2.3] The current system time is read then a sleep is performed
for 100 milliseconds and on exit the system time is verified
again.*/
test_set_step(3);
{
time = chVTGetSystemTimeX();
chThdSleepMilliseconds(100);
test_assert_time_window(time + MS2ST(100),
time + MS2ST(100) + 1,
"out of time window");
}
/* [1.2.4] The current system time is read then a sleep is performed
for 1 second and on exit the system time is verified again.*/
test_set_step(4);
{
time = chVTGetSystemTimeX();
chThdSleepSeconds(1);
test_assert_time_window(time + S2ST(1),
time + S2ST(1) + 1,
"out of time window");
}
/* [1.2.5] Function chThdSleepUntil() is tested with a timeline of
"now" + 100 ticks.*/
test_set_step(5);
{
time = chVTGetSystemTimeX();
chThdSleepUntil(time + 100);
test_assert_time_window(time + 100,
time + 100 + 1,
"out of time window");
test_print("*** CH_CFG_NUM_THREADS: ");
test_printn(CH_CFG_NUM_THREADS);
test_println("");
test_print("*** CH_CFG_ST_RESOLUTION: ");
test_printn(CH_CFG_ST_RESOLUTION);
test_println("");
test_print("*** CH_CFG_ST_FREQUENCY: ");
test_printn(CH_CFG_ST_FREQUENCY);
test_println("");
test_print("*** CH_CFG_ST_TIMEDELTA: ");
test_printn(CH_CFG_ST_TIMEDELTA);
test_println("");
test_print("*** CH_CFG_USE_SEMAPHORES: ");
test_printn(CH_CFG_USE_SEMAPHORES);
test_println("");
test_print("*** CH_CFG_USE_MUTEXES: ");
test_printn(CH_CFG_USE_MUTEXES);
test_println("");
test_print("*** CH_CFG_USE_EVENTS: ");
test_printn(CH_CFG_USE_EVENTS);
test_println("");
test_print("*** CH_CFG_USE_MAILBOXES: ");
test_printn(CH_CFG_USE_MAILBOXES);
test_println("");
test_print("*** CH_CFG_USE_MEMCORE: ");
test_printn(CH_CFG_USE_MEMCORE);
test_println("");
test_print("*** CH_CFG_USE_HEAP: ");
test_printn(CH_CFG_USE_HEAP);
test_println("");
test_print("*** CH_CFG_USE_MEMPOOLS: ");
test_printn(CH_CFG_USE_MEMPOOLS);
test_println("");
test_print("*** CH_DBG_STATISTICS: ");
test_printn(CH_DBG_STATISTICS);
test_println("");
test_print("*** CH_DBG_SYSTEM_STATE_CHECK: ");
test_printn(CH_DBG_SYSTEM_STATE_CHECK);
test_println("");
test_print("*** CH_DBG_ENABLE_CHECKS: ");
test_printn(CH_DBG_ENABLE_CHECKS);
test_println("");
test_print("*** CH_DBG_ENABLE_ASSERTS: ");
test_printn(CH_DBG_ENABLE_ASSERTS);
test_println("");
test_print("*** CH_DBG_ENABLE_STACK_CHECK: ");
test_printn(CH_DBG_ENABLE_STACK_CHECK);
test_println("");
}
}
static const testcase_t test_001_002 = {
"Thread Sleep functionality",
"Kernel Settings",
NULL,
NULL,
test_001_002_execute
@ -174,7 +166,7 @@ static const testcase_t test_001_002 = {
****************************************************************************/
/**
* @brief Threads Functionality.
* @brief Information.
*/
const testcase_t * const test_sequence_001[] = {
&test_001_001,

View File

@ -22,238 +22,162 @@
* @file test_sequence_002.c
* @brief Test Sequence 002 code.
*
* @page test_sequence_002 [2] Semaphores
* @page test_sequence_002 [2] Threads Functionality
*
* File: @ref test_sequence_002.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/NIL functionalities related to
* counter semaphores.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
* threading.
*
* <h2>Test Cases</h2>
* - @subpage test_002_001
* - @subpage test_002_002
* - @subpage test_002_003
* .
*/
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#include "ch.h"
static semaphore_t sem1;
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_002_001 [2.1] Semaphore primitives, no state change
* @page test_002_001 [2.1] System Tick Counter functionality
*
* <h2>Description</h2>
* Wait, Signal and Reset primitives are tested. The testing thread
* does not trigger a state change.
* The functionality of the API @p chVTGetSystemTimeX() is tested.
*
* <h2>Test Steps</h2>
* - [2.1.1] The function chSemWait() is invoked, after return the
* counter and the returned message are tested.
* - [2.1.2] The function chSemSignal() is invoked, after return the
* counter is tested.
* - [2.1.3] The function chSemReset() is invoked, after return the
* counter is tested.
* - [2.1.1] A System Tick Counter increment is expected, the test
* simply hangs if it does not happen.
* .
*/
static void test_002_001_setup(void) {
chSemObjectInit(&sem1, 1);
}
static void test_002_001_teardown(void) {
chSemReset(&sem1, 0);
}
static void test_002_001_execute(void) {
/* [2.1.1] The function chSemWait() is invoked, after return the
counter and the returned message are tested.*/
/* [2.1.1] A System Tick Counter increment is expected, the test
simply hangs if it does not happen.*/
test_set_step(1);
{
msg_t msg;
msg = chSemWait(&sem1);
test_assert_lock(chSemGetCounterI(&sem1) == 0, "wrong counter value");
test_assert(MSG_OK == msg, "wrong returned message");
}
/* [2.1.2] The function chSemSignal() is invoked, after return the
counter is tested.*/
test_set_step(2);
{
chSemSignal(&sem1);
test_assert_lock(chSemGetCounterI(&sem1) == 1, "wrong counter value");
}
/* [2.1.3] The function chSemReset() is invoked, after return the
counter is tested.*/
test_set_step(3);
{
chSemReset(&sem1, 2);
test_assert_lock(chSemGetCounterI(&sem1) == 2, "wrong counter value");
systime_t time = chVTGetSystemTimeX();
while (time == chVTGetSystemTimeX()) {
}
}
}
static const testcase_t test_002_001 = {
"Semaphore primitives, no state change",
test_002_001_setup,
test_002_001_teardown,
"System Tick Counter functionality",
NULL,
NULL,
test_002_001_execute
};
/**
* @page test_002_002 [2.2] Semaphore primitives, with state change
* @page test_002_002 [2.2] Thread Sleep functionality
*
* <h2>Description</h2>
* Wait, Signal and Reset primitives are tested. The testing thread
* triggers a state change.
* The functionality of @p chThdSleep() and derivatives is tested.
*
* <h2>Test Steps</h2>
* - [2.2.1] The function chSemWait() is invoked, after return the
* counter and the returned message are tested. The semaphore is
* signaled by another thread.
* - [2.2.2] The function chSemWait() is invoked, after return the
* counter and the returned message are tested. The semaphore is
* reset by another thread.
* - [2.2.1] The current system time is read then a sleep is performed
* for 100 system ticks and on exit the system time is verified
* again.
* - [2.2.2] The current system time is read then a sleep is performed
* for 100000 microseconds and on exit the system time is verified
* again.
* - [2.2.3] The current system time is read then a sleep is performed
* for 100 milliseconds and on exit the system time is verified
* again.
* - [2.2.4] The current system time is read then a sleep is performed
* for 1 second and on exit the system time is verified again.
* - [2.2.5] Function chThdSleepUntil() is tested with a timeline of
* "now" + 100 ticks.
* .
*/
static void test_002_002_setup(void) {
chSemObjectInit(&gsem1, 0);
}
static void test_002_002_teardown(void) {
chSemReset(&gsem1, 0);
}
static void test_002_002_execute(void) {
systime_t time;
/* [2.2.1] The function chSemWait() is invoked, after return the
counter and the returned message are tested. The semaphore is
signaled by another thread.*/
/* [2.2.1] The current system time is read then a sleep is performed
for 100 system ticks and on exit the system time is verified
again.*/
test_set_step(1);
{
msg_t msg;
msg = chSemWait(&gsem1);
test_assert_lock(chSemGetCounterI(&gsem1) == 0, "wrong counter value");
test_assert(MSG_OK == msg, "wrong returned message");
time = chVTGetSystemTimeX();
chThdSleep(100);
test_assert_time_window(time + 100,
time + 100 + 1,
"out of time window");
}
/* [2.2.2] The function chSemWait() is invoked, after return the
counter and the returned message are tested. The semaphore is
reset by another thread.*/
/* [2.2.2] The current system time is read then a sleep is performed
for 100000 microseconds and on exit the system time is verified
again.*/
test_set_step(2);
{
msg_t msg;
time = chVTGetSystemTimeX();
chThdSleepMicroseconds(100000);
test_assert_time_window(time + US2ST(100000),
time + US2ST(100000) + 1,
"out of time window");
}
msg = chSemWait(&gsem2);
test_assert_lock(chSemGetCounterI(&gsem2) == 0,"wrong counter value");
test_assert(MSG_RESET == msg, "wrong returned message");
/* [2.2.3] The current system time is read then a sleep is performed
for 100 milliseconds and on exit the system time is verified
again.*/
test_set_step(3);
{
time = chVTGetSystemTimeX();
chThdSleepMilliseconds(100);
test_assert_time_window(time + MS2ST(100),
time + MS2ST(100) + 1,
"out of time window");
}
/* [2.2.4] The current system time is read then a sleep is performed
for 1 second and on exit the system time is verified again.*/
test_set_step(4);
{
time = chVTGetSystemTimeX();
chThdSleepSeconds(1);
test_assert_time_window(time + S2ST(1),
time + S2ST(1) + 1,
"out of time window");
}
/* [2.2.5] Function chThdSleepUntil() is tested with a timeline of
"now" + 100 ticks.*/
test_set_step(5);
{
time = chVTGetSystemTimeX();
chThdSleepUntil(time + 100);
test_assert_time_window(time + 100,
time + 100 + 1,
"out of time window");
}
}
static const testcase_t test_002_002 = {
"Semaphore primitives, with state change",
test_002_002_setup,
test_002_002_teardown,
"Thread Sleep functionality",
NULL,
NULL,
test_002_002_execute
};
/**
* @page test_002_003 [2.3] Semaphores timeout
*
* <h2>Description</h2>
* Timeout on semaphores is tested.
*
* <h2>Test Steps</h2>
* - [2.3.1] The function chSemWaitTimeout() is invoked a first time,
* after return the system time, the counter and the returned message
* are tested.
* - [2.3.2] The function chSemWaitTimeout() is invoked again, after
* return the system time, the counter and the returned message are
* tested.
* .
*/
static void test_002_003_setup(void) {
chSemObjectInit(&sem1, 0);
}
static void test_002_003_teardown(void) {
chSemReset(&sem1, 0);
}
static void test_002_003_execute(void) {
systime_t time;
msg_t msg;
/* [2.3.1] The function chSemWaitTimeout() is invoked a first time,
after return the system time, the counter and the returned message
are tested.*/
test_set_step(1);
{
time = chVTGetSystemTimeX();
msg = chSemWaitTimeout(&sem1, MS2ST(1000));
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + 1,
"out of time window");
test_assert_lock(chSemGetCounterI(&sem1) == 0, "wrong counter value");
test_assert(MSG_TIMEOUT == msg, "wrong timeout message");
}
/* [2.3.2] The function chSemWaitTimeout() is invoked again, after
return the system time, the counter and the returned message are
tested.*/
test_set_step(2);
{
time = chVTGetSystemTimeX();
msg = chSemWaitTimeout(&sem1, MS2ST(1000));
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + 1,
"out of time window");
test_assert_lock(chSemGetCounterI(&sem1) == 0, "wrong counter value");
test_assert(MSG_TIMEOUT == msg, "wrong timeout message");
}
}
static const testcase_t test_002_003 = {
"Semaphores timeout",
test_002_003_setup,
test_002_003_teardown,
test_002_003_execute
};
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Semaphores.
* @brief Threads Functionality.
*/
const testcase_t * const test_sequence_002[] = {
&test_002_001,
&test_002_002,
&test_002_003,
NULL
};
#endif /* CH_CFG_USE_SEMAPHORES */

View File

@ -22,178 +22,238 @@
* @file test_sequence_003.c
* @brief Test Sequence 003 code.
*
* @page test_sequence_003 [3] Suspend/Resume and Event Flags
* @page test_sequence_003 [3] Semaphores
*
* File: @ref test_sequence_003.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/NIL functionalities related to
* threads suspend/resume and event flags.
* counter semaphores.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
*
* <h2>Test Cases</h2>
* - @subpage test_003_001
* - @subpage test_003_002
* - @subpage test_003_003
* .
*/
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
static thread_reference_t tr1;
#include "ch.h"
static semaphore_t sem1;
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_003_001 [3.1] Suspend and Resume functionality
* @page test_003_001 [3.1] Semaphore primitives, no state change
*
* <h2>Description</h2>
* The functionality of chThdSuspendTimeoutS() and chThdResumeI() is
* tested.
* Wait, Signal and Reset primitives are tested. The testing thread
* does not trigger a state change.
*
* <h2>Test Steps</h2>
* - [3.1.1] The function chThdSuspendTimeoutS() is invoked, the thread
* is remotely resumed with message @p MSG_OK. On return the message
* and the state of the reference are tested.
* - [3.1.2] The function chThdSuspendTimeoutS() is invoked, the thread
* is not resumed so a timeout must occur. On return the message and
* the state of the reference are tested.
* - [3.1.1] The function chSemWait() is invoked, after return the
* counter and the returned message are tested.
* - [3.1.2] The function chSemSignal() is invoked, after return the
* counter is tested.
* - [3.1.3] The function chSemReset() is invoked, after return the
* counter is tested.
* .
*/
static void test_003_001_setup(void) {
tr1 = NULL;
chSemObjectInit(&sem1, 1);
}
static void test_003_001_teardown(void) {
chSemReset(&sem1, 0);
}
static void test_003_001_execute(void) {
systime_t time;
msg_t msg;
/* [3.1.1] The function chThdSuspendTimeoutS() is invoked, the thread
is remotely resumed with message @p MSG_OK. On return the message
and the state of the reference are tested.*/
/* [3.1.1] The function chSemWait() is invoked, after return the
counter and the returned message are tested.*/
test_set_step(1);
{
chSysLock();
msg = chThdSuspendTimeoutS(&gtr1, TIME_INFINITE);
chSysUnlock();
test_assert(NULL == gtr1, "not NULL");
test_assert(MSG_OK == msg,"wrong returned message");
msg_t msg;
msg = chSemWait(&sem1);
test_assert_lock(chSemGetCounterI(&sem1) == 0, "wrong counter value");
test_assert(MSG_OK == msg, "wrong returned message");
}
/* [3.1.2] The function chThdSuspendTimeoutS() is invoked, the thread
is not resumed so a timeout must occur. On return the message and
the state of the reference are tested.*/
/* [3.1.2] The function chSemSignal() is invoked, after return the
counter is tested.*/
test_set_step(2);
{
chSysLock();
time = chVTGetSystemTimeX();
msg = chThdSuspendTimeoutS(&tr1, MS2ST(1000));
chSysUnlock();
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + 1,
"out of time window");
test_assert(NULL == tr1, "not NULL");
test_assert(MSG_TIMEOUT == msg, "wrong returned message");
chSemSignal(&sem1);
test_assert_lock(chSemGetCounterI(&sem1) == 1, "wrong counter value");
}
/* [3.1.3] The function chSemReset() is invoked, after return the
counter is tested.*/
test_set_step(3);
{
chSemReset(&sem1, 2);
test_assert_lock(chSemGetCounterI(&sem1) == 2, "wrong counter value");
}
}
static const testcase_t test_003_001 = {
"Suspend and Resume functionality",
"Semaphore primitives, no state change",
test_003_001_setup,
NULL,
test_003_001_teardown,
test_003_001_execute
};
#if (CH_CFG_USE_EVENTS) || defined(__DOXYGEN__)
/**
* @page test_003_002 [3.2] Events Flags functionality
* @page test_003_002 [3.2] Semaphore primitives, with state change
*
* <h2>Description</h2>
* Event flags functionality is tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_EVENTS
* .
* Wait, Signal and Reset primitives are tested. The testing thread
* triggers a state change.
*
* <h2>Test Steps</h2>
* - [3.2.1] A set of event flags are set on the current thread then
* the function chEvtWaitAnyTimeout() is invoked, the function is
* supposed to return immediately because the event flags are already
* pending, after return the events mask is tested.
* - [3.2.2] The pending event flags mask is cleared then the function
* chEvtWaitAnyTimeout() is invoked, after return the events mask is
* tested. The thread is signaled by another thread.
* - [3.2.3] The function chEvtWaitAnyTimeout() is invoked, no event
* can wakeup the thread, the function must return because timeout.
* - [3.2.1] The function chSemWait() is invoked, after return the
* counter and the returned message are tested. The semaphore is
* signaled by another thread.
* - [3.2.2] The function chSemWait() is invoked, after return the
* counter and the returned message are tested. The semaphore is
* reset by another thread.
* .
*/
static void test_003_002_execute(void) {
systime_t time;
eventmask_t events;
static void test_003_002_setup(void) {
chSemObjectInit(&gsem1, 0);
}
/* [3.2.1] A set of event flags are set on the current thread then
the function chEvtWaitAnyTimeout() is invoked, the function is
supposed to return immediately because the event flags are already
pending, after return the events mask is tested.*/
static void test_003_002_teardown(void) {
chSemReset(&gsem1, 0);
}
static void test_003_002_execute(void) {
/* [3.2.1] The function chSemWait() is invoked, after return the
counter and the returned message are tested. The semaphore is
signaled by another thread.*/
test_set_step(1);
{
time = chVTGetSystemTimeX();
chEvtSignal(chThdGetSelfX(), 0x55);
events = chEvtWaitAnyTimeout(ALL_EVENTS, MS2ST(1000));
test_assert((eventmask_t)0 != events, "timed out");
test_assert((eventmask_t)0x55 == events, "wrong events mask");
msg_t msg;
msg = chSemWait(&gsem1);
test_assert_lock(chSemGetCounterI(&gsem1) == 0, "wrong counter value");
test_assert(MSG_OK == msg, "wrong returned message");
}
/* [3.2.2] The pending event flags mask is cleared then the function
chEvtWaitAnyTimeout() is invoked, after return the events mask is
tested. The thread is signaled by another thread.*/
/* [3.2.2] The function chSemWait() is invoked, after return the
counter and the returned message are tested. The semaphore is
reset by another thread.*/
test_set_step(2);
{
time = chVTGetSystemTimeX();
chThdGetSelfX()->epmask = 0;
events = chEvtWaitAnyTimeout(ALL_EVENTS, MS2ST(1000));
test_assert((eventmask_t)0 != events, "timed out");
test_assert((eventmask_t)0x55 == events, "wrong events mask");
}
msg_t msg;
/* [3.2.3] The function chEvtWaitAnyTimeout() is invoked, no event
can wakeup the thread, the function must return because timeout.*/
test_set_step(3);
{
time = chVTGetSystemTimeX();
events = chEvtWaitAnyTimeout(0, MS2ST(1000));
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + 1,
"out of time window");
test_assert((eventmask_t)0 == events, "wrong events mask");
msg = chSemWait(&gsem2);
test_assert_lock(chSemGetCounterI(&gsem2) == 0,"wrong counter value");
test_assert(MSG_RESET == msg, "wrong returned message");
}
}
static const testcase_t test_003_002 = {
"Events Flags functionality",
NULL,
NULL,
"Semaphore primitives, with state change",
test_003_002_setup,
test_003_002_teardown,
test_003_002_execute
};
#endif /* CH_CFG_USE_EVENTS */
/**
* @page test_003_003 [3.3] Semaphores timeout
*
* <h2>Description</h2>
* Timeout on semaphores is tested.
*
* <h2>Test Steps</h2>
* - [3.3.1] The function chSemWaitTimeout() is invoked a first time,
* after return the system time, the counter and the returned message
* are tested.
* - [3.3.2] The function chSemWaitTimeout() is invoked again, after
* return the system time, the counter and the returned message are
* tested.
* .
*/
static void test_003_003_setup(void) {
chSemObjectInit(&sem1, 0);
}
static void test_003_003_teardown(void) {
chSemReset(&sem1, 0);
}
static void test_003_003_execute(void) {
systime_t time;
msg_t msg;
/* [3.3.1] The function chSemWaitTimeout() is invoked a first time,
after return the system time, the counter and the returned message
are tested.*/
test_set_step(1);
{
time = chVTGetSystemTimeX();
msg = chSemWaitTimeout(&sem1, MS2ST(1000));
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + 1,
"out of time window");
test_assert_lock(chSemGetCounterI(&sem1) == 0, "wrong counter value");
test_assert(MSG_TIMEOUT == msg, "wrong timeout message");
}
/* [3.3.2] The function chSemWaitTimeout() is invoked again, after
return the system time, the counter and the returned message are
tested.*/
test_set_step(2);
{
time = chVTGetSystemTimeX();
msg = chSemWaitTimeout(&sem1, MS2ST(1000));
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + 1,
"out of time window");
test_assert_lock(chSemGetCounterI(&sem1) == 0, "wrong counter value");
test_assert(MSG_TIMEOUT == msg, "wrong timeout message");
}
}
static const testcase_t test_003_003 = {
"Semaphores timeout",
test_003_003_setup,
test_003_003_teardown,
test_003_003_execute
};
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Suspend/Resume and Event Flags.
* @brief Semaphores.
*/
const testcase_t * const test_sequence_003[] = {
&test_003_001,
#if (CH_CFG_USE_EVENTS) || defined(__DOXYGEN__)
&test_003_002,
#endif
&test_003_003,
NULL
};
#endif /* CH_CFG_USE_SEMAPHORES */

View File

@ -22,387 +22,178 @@
* @file test_sequence_004.c
* @brief Test Sequence 004 code.
*
* @page test_sequence_004 [4] Mailboxes
* @page test_sequence_004 [4] Suspend/Resume and Event Flags
*
* File: @ref test_sequence_004.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/NIL functionalities related to
* mailboxes.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_MAILBOXES
* .
* threads suspend/resume and event flags.
*
* <h2>Test Cases</h2>
* - @subpage test_004_001
* - @subpage test_004_002
* - @subpage test_004_003
* .
*/
#if (CH_CFG_USE_MAILBOXES) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define ALLOWED_DELAY MS2ST(5)
#define MB_SIZE 4
static msg_t mb_buffer[MB_SIZE];
static MAILBOX_DECL(mb1, mb_buffer, MB_SIZE);
static thread_reference_t tr1;
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_004_001 [4.1] Mailbox normal API, non-blocking tests
* @page test_004_001 [4.1] Suspend and Resume functionality
*
* <h2>Description</h2>
* The mailbox normal API is tested without triggering blocking
* conditions.
* The functionality of chThdSuspendTimeoutS() and chThdResumeI() is
* tested.
*
* <h2>Test Steps</h2>
* - [4.1.1] Testing the mailbox size.
* - [4.1.2] Resetting the mailbox, conditions are checked, no errors
* expected.
* - [4.1.3] Testing the behavior of API when the mailbox is in reset
* state then return in active state.
* - [4.1.4] Filling the mailbox using chMBPost() and chMBPostAhead()
* once, no errors expected.
* - [4.1.5] Testing intermediate conditions. Data pointers must be
* aligned, semaphore counters are checked.
* - [4.1.6] Emptying the mailbox using chMBFetch(), no errors
* expected.
* - [4.1.7] Posting and then fetching one more message, no errors
* expected.
* - [4.1.8] Testing final conditions. Data pointers must be aligned to
* buffer start, semaphore counters are checked.
* - [4.1.1] The function chThdSuspendTimeoutS() is invoked, the thread
* is remotely resumed with message @p MSG_OK. On return the message
* and the state of the reference are tested.
* - [4.1.2] The function chThdSuspendTimeoutS() is invoked, the thread
* is not resumed so a timeout must occur. On return the message and
* the state of the reference are tested.
* .
*/
static void test_004_001_setup(void) {
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_004_001_teardown(void) {
chMBReset(&mb1);
tr1 = NULL;
}
static void test_004_001_execute(void) {
msg_t msg1, msg2;
unsigned i;
systime_t time;
msg_t msg;
/* [4.1.1] Testing the mailbox size.*/
/* [4.1.1] The function chThdSuspendTimeoutS() is invoked, the thread
is remotely resumed with message @p MSG_OK. On return the message
and the state of the reference are tested.*/
test_set_step(1);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
chSysLock();
msg = chThdSuspendTimeoutS(&gtr1, TIME_INFINITE);
chSysUnlock();
test_assert(NULL == gtr1, "not NULL");
test_assert(MSG_OK == msg,"wrong returned message");
}
/* [4.1.2] Resetting the mailbox, conditions are checked, no errors
expected.*/
/* [4.1.2] The function chThdSuspendTimeoutS() is invoked, the thread
is not resumed so a timeout must occur. On return the message and
the state of the reference are tested.*/
test_set_step(2);
{
chMBReset(&mb1);
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert_lock(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
/* [4.1.3] Testing the behavior of API when the mailbox is in reset
state then return in active state.*/
test_set_step(3);
{
msg1 = chMBPost(&mb1, (msg_t)0, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
msg1 = chMBPostAhead(&mb1, (msg_t)0, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
chMBResumeX(&mb1);
}
/* [4.1.4] Filling the mailbox using chMBPost() and chMBPostAhead()
once, no errors expected.*/
test_set_step(4);
{
for (i = 0; i < MB_SIZE - 1; i++) {
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
msg1 = chMBPostAhead(&mb1, 'A', TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [4.1.5] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
test_set_step(5);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == 0, "still empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
/* [4.1.6] Emptying the mailbox using chMBFetch(), no errors
expected.*/
test_set_step(6);
{
for (i = 0; i < MB_SIZE; i++) {
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
test_emit_token(msg2);
}
test_assert_sequence("ABCD", "wrong get sequence");
}
/* [4.1.7] Posting and then fetching one more message, no errors
expected.*/
test_set_step(7);
{
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [4.1.8] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
test_set_step(8);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
chSysLock();
time = chVTGetSystemTimeX();
msg = chThdSuspendTimeoutS(&tr1, MS2ST(1000));
chSysUnlock();
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + 1,
"out of time window");
test_assert(NULL == tr1, "not NULL");
test_assert(MSG_TIMEOUT == msg, "wrong returned message");
}
}
static const testcase_t test_004_001 = {
"Mailbox normal API, non-blocking tests",
"Suspend and Resume functionality",
test_004_001_setup,
test_004_001_teardown,
NULL,
test_004_001_execute
};
#if (CH_CFG_USE_EVENTS) || defined(__DOXYGEN__)
/**
* @page test_004_002 [4.2] Mailbox I-Class API, non-blocking tests
* @page test_004_002 [4.2] Events Flags functionality
*
* <h2>Description</h2>
* The mailbox I-Class API is tested without triggering blocking
* conditions.
* Event flags functionality is tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_EVENTS
* .
*
* <h2>Test Steps</h2>
* - [4.2.1] Testing the mailbox size.
* - [4.2.2] Resetting the mailbox, conditions are checked, no errors
* expected.
* - [4.2.3] Filling the mailbox using chMBPostI() and chMBPostAheadI()
* once, no errors expected.
* - [4.2.4] Testing intermediate conditions. Data pointers must be
* aligned, semaphore counters are checked.
* - [4.2.5] Emptying the mailbox using chMBFetchI(), no errors
* expected.
* - [4.2.6] Posting and then fetching one more message, no errors
* expected.
* - [4.2.7] Testing final conditions. Data pointers must be aligned to
* buffer start, semaphore counters are checked.
* - [4.2.1] A set of event flags are set on the current thread then
* the function chEvtWaitAnyTimeout() is invoked, the function is
* supposed to return immediately because the event flags are already
* pending, after return the events mask is tested.
* - [4.2.2] The pending event flags mask is cleared then the function
* chEvtWaitAnyTimeout() is invoked, after return the events mask is
* tested. The thread is signaled by another thread.
* - [4.2.3] The function chEvtWaitAnyTimeout() is invoked, no event
* can wakeup the thread, the function must return because timeout.
* .
*/
static void test_004_002_setup(void) {
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_004_002_teardown(void) {
chMBReset(&mb1);
}
static void test_004_002_execute(void) {
msg_t msg1, msg2;
unsigned i;
systime_t time;
eventmask_t events;
/* [4.2.1] Testing the mailbox size.*/
/* [4.2.1] A set of event flags are set on the current thread then
the function chEvtWaitAnyTimeout() is invoked, the function is
supposed to return immediately because the event flags are already
pending, after return the events mask is tested.*/
test_set_step(1);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
time = chVTGetSystemTimeX();
chEvtSignal(chThdGetSelfX(), 0x55);
events = chEvtWaitAnyTimeout(ALL_EVENTS, MS2ST(1000));
test_assert((eventmask_t)0 != events, "timed out");
test_assert((eventmask_t)0x55 == events, "wrong events mask");
}
/* [4.2.2] Resetting the mailbox, conditions are checked, no errors
expected.*/
/* [4.2.2] The pending event flags mask is cleared then the function
chEvtWaitAnyTimeout() is invoked, after return the events mask is
tested. The thread is signaled by another thread.*/
test_set_step(2);
{
chSysLock();
chMBResetI(&mb1);
chSysUnlock();
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert_lock(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
chMBResumeX(&mb1);
time = chVTGetSystemTimeX();
chThdGetSelfX()->epmask = 0;
events = chEvtWaitAnyTimeout(ALL_EVENTS, MS2ST(1000));
test_assert((eventmask_t)0 != events, "timed out");
test_assert((eventmask_t)0x55 == events, "wrong events mask");
}
/* [4.2.3] Filling the mailbox using chMBPostI() and chMBPostAheadI()
once, no errors expected.*/
/* [4.2.3] The function chEvtWaitAnyTimeout() is invoked, no event
can wakeup the thread, the function must return because timeout.*/
test_set_step(3);
{
for (i = 0; i < MB_SIZE - 1; i++) {
chSysLock();
msg1 = chMBPostI(&mb1, 'B' + i);
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
chSysLock();
msg1 = chMBPostAheadI(&mb1, 'A');
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [4.2.4] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
test_set_step(4);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == 0, "still empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
/* [4.2.5] Emptying the mailbox using chMBFetchI(), no errors
expected.*/
test_set_step(5);
{
for (i = 0; i < MB_SIZE; i++) {
chSysLock();
msg1 = chMBFetchI(&mb1, &msg2);
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
test_emit_token(msg2);
}
test_assert_sequence("ABCD", "wrong get sequence");
}
/* [4.2.6] Posting and then fetching one more message, no errors
expected.*/
test_set_step(6);
{
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [4.2.7] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
test_set_step(7);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
time = chVTGetSystemTimeX();
events = chEvtWaitAnyTimeout(0, MS2ST(1000));
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + 1,
"out of time window");
test_assert((eventmask_t)0 == events, "wrong events mask");
}
}
static const testcase_t test_004_002 = {
"Mailbox I-Class API, non-blocking tests",
test_004_002_setup,
test_004_002_teardown,
"Events Flags functionality",
NULL,
NULL,
test_004_002_execute
};
/**
* @page test_004_003 [4.3] Mailbox timeouts
*
* <h2>Description</h2>
* The mailbox API is tested for timeouts.
*
* <h2>Test Steps</h2>
* - [4.3.1] Filling the mailbox.
* - [4.3.2] Testing chMBPost(), chMBPostI(), chMBPostAhead() and
* chMBPostAheadI() timeout.
* - [4.3.3] Resetting the mailbox.
* - [4.3.4] Testing chMBFetch() and chMBFetchI() timeout.
* .
*/
static void test_004_003_setup(void) {
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_004_003_teardown(void) {
chMBReset(&mb1);
}
static void test_004_003_execute(void) {
msg_t msg1, msg2;
unsigned i;
/* [4.3.1] Filling the mailbox.*/
test_set_step(1);
{
for (i = 0; i < MB_SIZE; i++) {
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
}
/* [4.3.2] Testing chMBPost(), chMBPostI(), chMBPostAhead() and
chMBPostAheadI() timeout.*/
test_set_step(2);
{
msg1 = chMBPost(&mb1, 'X', 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBPostI(&mb1, 'X');
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
msg1 = chMBPostAhead(&mb1, 'X', 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBPostAheadI(&mb1, 'X');
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
}
/* [4.3.3] Resetting the mailbox.*/
test_set_step(3);
{
chMBReset(&mb1);;
chMBResumeX(&mb1);
}
/* [4.3.4] Testing chMBFetch() and chMBFetchI() timeout.*/
test_set_step(4);
{
msg1 = chMBFetch(&mb1, &msg2, 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBFetchI(&mb1, &msg2);
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
}
}
static const testcase_t test_004_003 = {
"Mailbox timeouts",
test_004_003_setup,
test_004_003_teardown,
test_004_003_execute
};
#endif /* CH_CFG_USE_EVENTS */
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Mailboxes.
* @brief Suspend/Resume and Event Flags.
*/
const testcase_t * const test_sequence_004[] = {
&test_004_001,
#if (CH_CFG_USE_EVENTS) || defined(__DOXYGEN__)
&test_004_002,
&test_004_003,
#endif
NULL
};
#endif /* CH_CFG_USE_MAILBOXES */

View File

@ -22,18 +22,18 @@
* @file test_sequence_005.c
* @brief Test Sequence 005 code.
*
* @page test_sequence_005 [5] Memory Pools
* @page test_sequence_005 [5] Mailboxes
*
* File: @ref test_sequence_005.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/NIL functionalities related to
* memory pools.
* mailboxes.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_MEMPOOLS
* - CH_CFG_USE_MAILBOXES
* .
*
* <h2>Test Cases</h2>
@ -43,254 +43,366 @@
* .
*/
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MAILBOXES) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define MEMORY_POOL_SIZE 4
#define ALLOWED_DELAY MS2ST(5)
#define MB_SIZE 4
static uint32_t objects[MEMORY_POOL_SIZE];
static MEMORYPOOL_DECL(mp1, sizeof (uint32_t), NULL);
#if CH_CFG_USE_SEMAPHORES
static GUARDEDMEMORYPOOL_DECL(gmp1, sizeof (uint32_t));
#endif
static void *null_provider(size_t size, unsigned align) {
(void)size;
(void)align;
return NULL;
}
static msg_t mb_buffer[MB_SIZE];
static MAILBOX_DECL(mb1, mb_buffer, MB_SIZE);
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_005_001 [5.1] Loading and emptying a memory pool
* @page test_005_001 [5.1] Mailbox normal API, non-blocking tests
*
* <h2>Description</h2>
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
* The mailbox normal API is tested without triggering blocking
* conditions.
*
* <h2>Test Steps</h2>
* - [5.1.1] Adding the objects to the pool using chPoolLoadArray().
* - [5.1.2] Emptying the pool using chPoolAlloc().
* - [5.1.3] Now must be empty.
* - [5.1.4] Adding the objects to the pool using chPoolFree().
* - [5.1.5] Emptying the pool using chPoolAlloc() again.
* - [5.1.6] Now must be empty again.
* - [5.1.7] Covering the case where a provider is unable to return
* more memory.
* - [5.1.1] Testing the mailbox size.
* - [5.1.2] Resetting the mailbox, conditions are checked, no errors
* expected.
* - [5.1.3] Testing the behavior of API when the mailbox is in reset
* state then return in active state.
* - [5.1.4] Filling the mailbox using chMBPost() and chMBPostAhead()
* once, no errors expected.
* - [5.1.5] Testing intermediate conditions. Data pointers must be
* aligned, semaphore counters are checked.
* - [5.1.6] Emptying the mailbox using chMBFetch(), no errors
* expected.
* - [5.1.7] Posting and then fetching one more message, no errors
* expected.
* - [5.1.8] Testing final conditions. Data pointers must be aligned to
* buffer start, semaphore counters are checked.
* .
*/
static void test_005_001_setup(void) {
chPoolObjectInit(&mp1, sizeof (uint32_t), NULL);
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_005_001_teardown(void) {
chMBReset(&mb1);
}
static void test_005_001_execute(void) {
msg_t msg1, msg2;
unsigned i;
/* [5.1.1] Adding the objects to the pool using chPoolLoadArray().*/
/* [5.1.1] Testing the mailbox size.*/
test_set_step(1);
{
chPoolLoadArray(&mp1, objects, MEMORY_POOL_SIZE);
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
}
/* [5.1.2] Emptying the pool using chPoolAlloc().*/
/* [5.1.2] Resetting the mailbox, conditions are checked, no errors
expected.*/
test_set_step(2);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
chMBReset(&mb1);
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert_lock(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
/* [5.1.3] Now must be empty.*/
/* [5.1.3] Testing the behavior of API when the mailbox is in reset
state then return in active state.*/
test_set_step(3);
{
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
msg1 = chMBPost(&mb1, (msg_t)0, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
msg1 = chMBPostAhead(&mb1, (msg_t)0, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
chMBResumeX(&mb1);
}
/* [5.1.4] Adding the objects to the pool using chPoolFree().*/
/* [5.1.4] Filling the mailbox using chMBPost() and chMBPostAhead()
once, no errors expected.*/
test_set_step(4);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chPoolFree(&mp1, &objects[i]);
for (i = 0; i < MB_SIZE - 1; i++) {
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
msg1 = chMBPostAhead(&mb1, 'A', TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [5.1.5] Emptying the pool using chPoolAlloc() again.*/
/* [5.1.5] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
test_set_step(5);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
test_assert_lock(chMBGetFreeCountI(&mb1) == 0, "still empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
/* [5.1.6] Now must be empty again.*/
/* [5.1.6] Emptying the mailbox using chMBFetch(), no errors
expected.*/
test_set_step(6);
{
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
for (i = 0; i < MB_SIZE; i++) {
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
test_emit_token(msg2);
}
test_assert_sequence("ABCD", "wrong get sequence");
}
/* [5.1.7] Covering the case where a provider is unable to return
more memory.*/
/* [5.1.7] Posting and then fetching one more message, no errors
expected.*/
test_set_step(7);
{
chPoolObjectInit(&mp1, sizeof (uint32_t), null_provider);
test_assert(chPoolAlloc(&mp1) == NULL, "provider returned memory");
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [5.1.8] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
test_set_step(8);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
}
static const testcase_t test_005_001 = {
"Loading and emptying a memory pool",
"Mailbox normal API, non-blocking tests",
test_005_001_setup,
NULL,
test_005_001_teardown,
test_005_001_execute
};
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page test_005_002 [5.2] Loading and emptying a guarded memory pool without waiting
* @page test_005_002 [5.2] Mailbox I-Class API, non-blocking tests
*
* <h2>Description</h2>
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
* The mailbox I-Class API is tested without triggering blocking
* conditions.
*
* <h2>Test Steps</h2>
* - [5.2.1] Adding the objects to the pool using
* chGuardedPoolLoadArray().
* - [5.2.2] Emptying the pool using chGuardedPoolAllocTimeout().
* - [5.2.3] Now must be empty.
* - [5.2.4] Adding the objects to the pool using chGuardedPoolFree().
* - [5.2.5] Emptying the pool using chGuardedPoolAllocTimeout() again.
* - [5.2.6] Now must be empty again.
* - [5.2.1] Testing the mailbox size.
* - [5.2.2] Resetting the mailbox, conditions are checked, no errors
* expected.
* - [5.2.3] Filling the mailbox using chMBPostI() and chMBPostAheadI()
* once, no errors expected.
* - [5.2.4] Testing intermediate conditions. Data pointers must be
* aligned, semaphore counters are checked.
* - [5.2.5] Emptying the mailbox using chMBFetchI(), no errors
* expected.
* - [5.2.6] Posting and then fetching one more message, no errors
* expected.
* - [5.2.7] Testing final conditions. Data pointers must be aligned to
* buffer start, semaphore counters are checked.
* .
*/
static void test_005_002_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_005_002_teardown(void) {
chMBReset(&mb1);
}
static void test_005_002_execute(void) {
msg_t msg1, msg2;
unsigned i;
/* [5.2.1] Adding the objects to the pool using
chGuardedPoolLoadArray().*/
/* [5.2.1] Testing the mailbox size.*/
test_set_step(1);
{
chGuardedPoolLoadArray(&gmp1, objects, MEMORY_POOL_SIZE);
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
}
/* [5.2.2] Emptying the pool using chGuardedPoolAllocTimeout().*/
/* [5.2.2] Resetting the mailbox, conditions are checked, no errors
expected.*/
test_set_step(2);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
chSysLock();
chMBResetI(&mb1);
chSysUnlock();
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert_lock(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
chMBResumeX(&mb1);
}
/* [5.2.3] Now must be empty.*/
/* [5.2.3] Filling the mailbox using chMBPostI() and chMBPostAheadI()
once, no errors expected.*/
test_set_step(3);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
for (i = 0; i < MB_SIZE - 1; i++) {
chSysLock();
msg1 = chMBPostI(&mb1, 'B' + i);
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
chSysLock();
msg1 = chMBPostAheadI(&mb1, 'A');
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [5.2.4] Adding the objects to the pool using
chGuardedPoolFree().*/
/* [5.2.4] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
test_set_step(4);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chGuardedPoolFree(&gmp1, &objects[i]);
test_assert_lock(chMBGetFreeCountI(&mb1) == 0, "still empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
/* [5.2.5] Emptying the pool using chGuardedPoolAllocTimeout()
again.*/
/* [5.2.5] Emptying the mailbox using chMBFetchI(), no errors
expected.*/
test_set_step(5);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
for (i = 0; i < MB_SIZE; i++) {
chSysLock();
msg1 = chMBFetchI(&mb1, &msg2);
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
test_emit_token(msg2);
}
test_assert_sequence("ABCD", "wrong get sequence");
}
/* [5.2.6] Now must be empty again.*/
/* [5.2.6] Posting and then fetching one more message, no errors
expected.*/
test_set_step(6);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [5.2.7] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
test_set_step(7);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
}
static const testcase_t test_005_002 = {
"Loading and emptying a guarded memory pool without waiting",
"Mailbox I-Class API, non-blocking tests",
test_005_002_setup,
NULL,
test_005_002_teardown,
test_005_002_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page test_005_003 [5.3] Guarded Memory Pools timeout
* @page test_005_003 [5.3] Mailbox timeouts
*
* <h2>Description</h2>
* The timeout features for the Guarded Memory Pools is tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
* The mailbox API is tested for timeouts.
*
* <h2>Test Steps</h2>
* - [5.3.1] Trying to allocate with 100mS timeout, must fail because
* the pool is empty.
* - [5.3.1] Filling the mailbox.
* - [5.3.2] Testing chMBPost(), chMBPostI(), chMBPostAhead() and
* chMBPostAheadI() timeout.
* - [5.3.3] Resetting the mailbox.
* - [5.3.4] Testing chMBFetch() and chMBFetchI() timeout.
* .
*/
static void test_005_003_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_005_003_teardown(void) {
chMBReset(&mb1);
}
static void test_005_003_execute(void) {
msg_t msg1, msg2;
unsigned i;
/* [5.3.1] Trying to allocate with 100mS timeout, must fail because
the pool is empty.*/
/* [5.3.1] Filling the mailbox.*/
test_set_step(1);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, MS2ST(100)) == NULL, "list not empty");
for (i = 0; i < MB_SIZE; i++) {
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
}
/* [5.3.2] Testing chMBPost(), chMBPostI(), chMBPostAhead() and
chMBPostAheadI() timeout.*/
test_set_step(2);
{
msg1 = chMBPost(&mb1, 'X', 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBPostI(&mb1, 'X');
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
msg1 = chMBPostAhead(&mb1, 'X', 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBPostAheadI(&mb1, 'X');
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
}
/* [5.3.3] Resetting the mailbox.*/
test_set_step(3);
{
chMBReset(&mb1);;
chMBResumeX(&mb1);
}
/* [5.3.4] Testing chMBFetch() and chMBFetchI() timeout.*/
test_set_step(4);
{
msg1 = chMBFetch(&mb1, &msg2, 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBFetchI(&mb1, &msg2);
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
}
}
static const testcase_t test_005_003 = {
"Guarded Memory Pools timeout",
"Mailbox timeouts",
test_005_003_setup,
NULL,
test_005_003_teardown,
test_005_003_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Memory Pools.
* @brief Mailboxes.
*/
const testcase_t * const test_sequence_005[] = {
&test_005_001,
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&test_005_002,
#endif
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&test_005_003,
#endif
NULL
};
#endif /* CH_CFG_USE_MEMPOOLS */
#endif /* CH_CFG_USE_MAILBOXES */

View File

@ -22,252 +22,275 @@
* @file test_sequence_006.c
* @brief Test Sequence 006 code.
*
* @page test_sequence_006 [6] Memory Heaps
* @page test_sequence_006 [6] Memory Pools
*
* File: @ref test_sequence_006.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/NIL functionalities related to
* memory heaps.
* memory pools.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_HEAP
* - CH_CFG_USE_MEMPOOLS
* .
*
* <h2>Test Cases</h2>
* - @subpage test_006_001
* - @subpage test_006_002
* - @subpage test_006_003
* .
*/
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define ALLOC_SIZE 16
#define HEAP_SIZE (ALLOC_SIZE * 8)
#define MEMORY_POOL_SIZE 4
static memory_heap_t test_heap;
static CH_HEAP_AREA(myheap, HEAP_SIZE);
static uint32_t objects[MEMORY_POOL_SIZE];
static MEMORYPOOL_DECL(mp1, sizeof (uint32_t), NULL);
#if CH_CFG_USE_SEMAPHORES
static GUARDEDMEMORYPOOL_DECL(gmp1, sizeof (uint32_t));
#endif
static void *null_provider(size_t size, unsigned align) {
(void)size;
(void)align;
return NULL;
}
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_006_001 [6.1] Allocation and fragmentation
* @page test_006_001 [6.1] Loading and emptying a memory pool
*
* <h2>Description</h2>
* Series of allocations/deallocations are performed in carefully
* designed sequences in order to stimulate all the possible code paths
* inside the allocator. The test expects to find the heap back to the
* initial status after each sequence.
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
*
* <h2>Test Steps</h2>
* - [6.1.1] Testing initial conditions, the heap must not be
* fragmented and one free block present.
* - [6.1.2] Trying to allocate an block bigger than available space,
* an error is expected.
* - [6.1.3] Single block allocation using chHeapAlloc() then the block
* is freed using chHeapFree(), must not fail.
* - [6.1.4] Using chHeapStatus() to assess the heap state. There must
* be at least one free block of sufficient size.
* - [6.1.5] Allocating then freeing in the same order.
* - [6.1.6] Allocating then freeing in reverse order.
* - [6.1.7] Small fragments handling. Checking the behavior when
* allocating blocks with size not multiple of alignment unit.
* - [6.1.8] Skipping a fragment, the first fragment in the list is too
* small so the allocator must pick the second one.
* - [6.1.9] Allocating the whole available space.
* - [6.1.10] Testing final conditions. The heap geometry must be the
* same than the one registered at beginning.
* - [6.1.1] Adding the objects to the pool using chPoolLoadArray().
* - [6.1.2] Emptying the pool using chPoolAlloc().
* - [6.1.3] Now must be empty.
* - [6.1.4] Adding the objects to the pool using chPoolFree().
* - [6.1.5] Emptying the pool using chPoolAlloc() again.
* - [6.1.6] Now must be empty again.
* - [6.1.7] Covering the case where a provider is unable to return
* more memory.
* .
*/
static void test_006_001_setup(void) {
chHeapObjectInit(&test_heap, myheap, sizeof(myheap));
chPoolObjectInit(&mp1, sizeof (uint32_t), NULL);
}
static void test_006_001_execute(void) {
void *p1, *p2, *p3;
size_t n, sz;
unsigned i;
/* [6.1.1] Testing initial conditions, the heap must not be
fragmented and one free block present.*/
/* [6.1.1] Adding the objects to the pool using chPoolLoadArray().*/
test_set_step(1);
{
test_assert(chHeapStatus(&test_heap, &sz, NULL) == 1, "heap fragmented");
chPoolLoadArray(&mp1, objects, MEMORY_POOL_SIZE);
}
/* [6.1.2] Trying to allocate an block bigger than available space,
an error is expected.*/
/* [6.1.2] Emptying the pool using chPoolAlloc().*/
test_set_step(2);
{
p1 = chHeapAlloc(&test_heap, HEAP_SIZE * 2);
test_assert(p1 == NULL, "allocation not failed");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
}
/* [6.1.3] Single block allocation using chHeapAlloc() then the block
is freed using chHeapFree(), must not fail.*/
/* [6.1.3] Now must be empty.*/
test_set_step(3);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
}
/* [6.1.4] Using chHeapStatus() to assess the heap state. There must
be at least one free block of sufficient size.*/
/* [6.1.4] Adding the objects to the pool using chPoolFree().*/
test_set_step(4);
{
size_t total_size, largest_size;
n = chHeapStatus(&test_heap, &total_size, &largest_size);
test_assert(n == 1, "missing free block");
test_assert(total_size >= ALLOC_SIZE, "unexpected heap state");
test_assert(total_size == largest_size, "unexpected heap state");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chPoolFree(&mp1, &objects[i]);
}
/* [6.1.5] Allocating then freeing in the same order.*/
/* [6.1.5] Emptying the pool using chPoolAlloc() again.*/
test_set_step(5);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1); /* Does not merge.*/
chHeapFree(p2); /* Merges backward.*/
chHeapFree(p3); /* Merges both sides.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
}
/* [6.1.6] Allocating then freeing in reverse order.*/
/* [6.1.6] Now must be empty again.*/
test_set_step(6);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p3); /* Merges forward.*/
chHeapFree(p2); /* Merges forward.*/
chHeapFree(p1); /* Merges forward.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
}
/* [6.1.7] Small fragments handling. Checking the behavior when
allocating blocks with size not multiple of alignment unit.*/
/* [6.1.7] Covering the case where a provider is unable to return
more memory.*/
test_set_step(7);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE + 1);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
/* Note, the first situation happens when the alignment size is smaller
than the header size, the second in the other cases.*/
test_assert((chHeapStatus(&test_heap, &n, NULL) == 1) ||
(chHeapStatus(&test_heap, &n, NULL) == 2), "heap fragmented");
chHeapFree(p2);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [6.1.8] Skipping a fragment, the first fragment in the list is too
small so the allocator must pick the second one.*/
test_set_step(8);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert( chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE * 2); /* Skips first fragment.*/
chHeapFree(p1);
chHeapFree(p2);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [6.1.9] Allocating the whole available space.*/
test_set_step(9);
{
(void)chHeapStatus(&test_heap, &n, NULL);
p1 = chHeapAlloc(&test_heap, n);
test_assert(p1 != NULL, "allocation failed");
test_assert(chHeapStatus(&test_heap, NULL, NULL) == 0, "not empty");
chHeapFree(p1);
}
/* [6.1.10] Testing final conditions. The heap geometry must be the
same than the one registered at beginning.*/
test_set_step(10);
{
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
test_assert(n == sz, "size changed");
chPoolObjectInit(&mp1, sizeof (uint32_t), null_provider);
test_assert(chPoolAlloc(&mp1) == NULL, "provider returned memory");
}
}
static const testcase_t test_006_001 = {
"Allocation and fragmentation",
"Loading and emptying a memory pool",
test_006_001_setup,
NULL,
test_006_001_execute
};
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page test_006_002 [6.2] Default Heap
* @page test_006_002 [6.2] Loading and emptying a guarded memory pool without waiting
*
* <h2>Description</h2>
* The default heap is pre-allocated in the system. We test base
* functionality.
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
*
* <h2>Test Steps</h2>
* - [6.2.1] Single block allocation using chHeapAlloc() then the block
* is freed using chHeapFree(), must not fail.
* - [6.2.2] Testing allocation failure.
* - [6.2.1] Adding the objects to the pool using
* chGuardedPoolLoadArray().
* - [6.2.2] Emptying the pool using chGuardedPoolAllocTimeout().
* - [6.2.3] Now must be empty.
* - [6.2.4] Adding the objects to the pool using chGuardedPoolFree().
* - [6.2.5] Emptying the pool using chGuardedPoolAllocTimeout() again.
* - [6.2.6] Now must be empty again.
* .
*/
static void test_006_002_execute(void) {
void *p1;
size_t total_size, largest_size;
static void test_006_002_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
}
/* [6.2.1] Single block allocation using chHeapAlloc() then the block
is freed using chHeapFree(), must not fail.*/
static void test_006_002_execute(void) {
unsigned i;
/* [6.2.1] Adding the objects to the pool using
chGuardedPoolLoadArray().*/
test_set_step(1);
{
(void)chHeapStatus(NULL, &total_size, &largest_size);
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
chGuardedPoolLoadArray(&gmp1, objects, MEMORY_POOL_SIZE);
}
/* [6.2.2] Testing allocation failure.*/
/* [6.2.2] Emptying the pool using chGuardedPoolAllocTimeout().*/
test_set_step(2);
{
p1 = chHeapAlloc(NULL, (size_t)-256);
test_assert(p1 == NULL, "allocation not failed");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
}
/* [6.2.3] Now must be empty.*/
test_set_step(3);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
}
/* [6.2.4] Adding the objects to the pool using
chGuardedPoolFree().*/
test_set_step(4);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chGuardedPoolFree(&gmp1, &objects[i]);
}
/* [6.2.5] Emptying the pool using chGuardedPoolAllocTimeout()
again.*/
test_set_step(5);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
}
/* [6.2.6] Now must be empty again.*/
test_set_step(6);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
}
}
static const testcase_t test_006_002 = {
"Default Heap",
NULL,
"Loading and emptying a guarded memory pool without waiting",
test_006_002_setup,
NULL,
test_006_002_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page test_006_003 [6.3] Guarded Memory Pools timeout
*
* <h2>Description</h2>
* The timeout features for the Guarded Memory Pools is tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
*
* <h2>Test Steps</h2>
* - [6.3.1] Trying to allocate with 100mS timeout, must fail because
* the pool is empty.
* .
*/
static void test_006_003_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
}
static void test_006_003_execute(void) {
/* [6.3.1] Trying to allocate with 100mS timeout, must fail because
the pool is empty.*/
test_set_step(1);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, MS2ST(100)) == NULL, "list not empty");
}
}
static const testcase_t test_006_003 = {
"Guarded Memory Pools timeout",
test_006_003_setup,
NULL,
test_006_003_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Memory Heaps.
* @brief Memory Pools.
*/
const testcase_t * const test_sequence_006[] = {
&test_006_001,
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&test_006_002,
#endif
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&test_006_003,
#endif
NULL
};
#endif /* CH_CFG_USE_HEAP */
#endif /* CH_CFG_USE_MEMPOOLS */

View File

@ -0,0 +1,273 @@
/*
ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "hal.h"
#include "ch_test.h"
#include "test_root.h"
/**
* @file test_sequence_007.c
* @brief Test Sequence 007 code.
*
* @page test_sequence_007 [7] Memory Heaps
*
* File: @ref test_sequence_007.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/NIL functionalities related to
* memory heaps.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_HEAP
* .
*
* <h2>Test Cases</h2>
* - @subpage test_007_001
* - @subpage test_007_002
* .
*/
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define ALLOC_SIZE 16
#define HEAP_SIZE (ALLOC_SIZE * 8)
static memory_heap_t test_heap;
static CH_HEAP_AREA(myheap, HEAP_SIZE);
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_007_001 [7.1] Allocation and fragmentation
*
* <h2>Description</h2>
* Series of allocations/deallocations are performed in carefully
* designed sequences in order to stimulate all the possible code paths
* inside the allocator. The test expects to find the heap back to the
* initial status after each sequence.
*
* <h2>Test Steps</h2>
* - [7.1.1] Testing initial conditions, the heap must not be
* fragmented and one free block present.
* - [7.1.2] Trying to allocate an block bigger than available space,
* an error is expected.
* - [7.1.3] Single block allocation using chHeapAlloc() then the block
* is freed using chHeapFree(), must not fail.
* - [7.1.4] Using chHeapStatus() to assess the heap state. There must
* be at least one free block of sufficient size.
* - [7.1.5] Allocating then freeing in the same order.
* - [7.1.6] Allocating then freeing in reverse order.
* - [7.1.7] Small fragments handling. Checking the behavior when
* allocating blocks with size not multiple of alignment unit.
* - [7.1.8] Skipping a fragment, the first fragment in the list is too
* small so the allocator must pick the second one.
* - [7.1.9] Allocating the whole available space.
* - [7.1.10] Testing final conditions. The heap geometry must be the
* same than the one registered at beginning.
* .
*/
static void test_007_001_setup(void) {
chHeapObjectInit(&test_heap, myheap, sizeof(myheap));
}
static void test_007_001_execute(void) {
void *p1, *p2, *p3;
size_t n, sz;
/* [7.1.1] Testing initial conditions, the heap must not be
fragmented and one free block present.*/
test_set_step(1);
{
test_assert(chHeapStatus(&test_heap, &sz, NULL) == 1, "heap fragmented");
}
/* [7.1.2] Trying to allocate an block bigger than available space,
an error is expected.*/
test_set_step(2);
{
p1 = chHeapAlloc(&test_heap, HEAP_SIZE * 2);
test_assert(p1 == NULL, "allocation not failed");
}
/* [7.1.3] Single block allocation using chHeapAlloc() then the block
is freed using chHeapFree(), must not fail.*/
test_set_step(3);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
}
/* [7.1.4] Using chHeapStatus() to assess the heap state. There must
be at least one free block of sufficient size.*/
test_set_step(4);
{
size_t total_size, largest_size;
n = chHeapStatus(&test_heap, &total_size, &largest_size);
test_assert(n == 1, "missing free block");
test_assert(total_size >= ALLOC_SIZE, "unexpected heap state");
test_assert(total_size == largest_size, "unexpected heap state");
}
/* [7.1.5] Allocating then freeing in the same order.*/
test_set_step(5);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1); /* Does not merge.*/
chHeapFree(p2); /* Merges backward.*/
chHeapFree(p3); /* Merges both sides.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [7.1.6] Allocating then freeing in reverse order.*/
test_set_step(6);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p3); /* Merges forward.*/
chHeapFree(p2); /* Merges forward.*/
chHeapFree(p1); /* Merges forward.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [7.1.7] Small fragments handling. Checking the behavior when
allocating blocks with size not multiple of alignment unit.*/
test_set_step(7);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE + 1);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
/* Note, the first situation happens when the alignment size is smaller
than the header size, the second in the other cases.*/
test_assert((chHeapStatus(&test_heap, &n, NULL) == 1) ||
(chHeapStatus(&test_heap, &n, NULL) == 2), "heap fragmented");
chHeapFree(p2);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [7.1.8] Skipping a fragment, the first fragment in the list is too
small so the allocator must pick the second one.*/
test_set_step(8);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert( chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE * 2); /* Skips first fragment.*/
chHeapFree(p1);
chHeapFree(p2);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [7.1.9] Allocating the whole available space.*/
test_set_step(9);
{
(void)chHeapStatus(&test_heap, &n, NULL);
p1 = chHeapAlloc(&test_heap, n);
test_assert(p1 != NULL, "allocation failed");
test_assert(chHeapStatus(&test_heap, NULL, NULL) == 0, "not empty");
chHeapFree(p1);
}
/* [7.1.10] Testing final conditions. The heap geometry must be the
same than the one registered at beginning.*/
test_set_step(10);
{
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
test_assert(n == sz, "size changed");
}
}
static const testcase_t test_007_001 = {
"Allocation and fragmentation",
test_007_001_setup,
NULL,
test_007_001_execute
};
/**
* @page test_007_002 [7.2] Default Heap
*
* <h2>Description</h2>
* The default heap is pre-allocated in the system. We test base
* functionality.
*
* <h2>Test Steps</h2>
* - [7.2.1] Single block allocation using chHeapAlloc() then the block
* is freed using chHeapFree(), must not fail.
* - [7.2.2] Testing allocation failure.
* .
*/
static void test_007_002_execute(void) {
void *p1;
size_t total_size, largest_size;
/* [7.2.1] Single block allocation using chHeapAlloc() then the block
is freed using chHeapFree(), must not fail.*/
test_set_step(1);
{
(void)chHeapStatus(NULL, &total_size, &largest_size);
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
}
/* [7.2.2] Testing allocation failure.*/
test_set_step(2);
{
p1 = chHeapAlloc(NULL, (size_t)-256);
test_assert(p1 == NULL, "allocation not failed");
}
}
static const testcase_t test_007_002 = {
"Default Heap",
NULL,
NULL,
test_007_002_execute
};
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Memory Heaps.
*/
const testcase_t * const test_sequence_007[] = {
&test_007_001,
&test_007_002,
NULL
};
#endif /* CH_CFG_USE_HEAP */

View File

@ -0,0 +1,27 @@
/*
ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/**
* @file test_sequence_007.h
* @brief Test Sequence 007 header.
*/
#ifndef TEST_SEQUENCE_007_H
#define TEST_SEQUENCE_007_H
extern const testcase_t * const test_sequence_007[];
#endif /* TEST_SEQUENCE_007_H */

View File

@ -6,7 +6,8 @@ TESTSRC = ${CHIBIOS}/test/lib/ch_test.c \
${CHIBIOS}/test/nil/source/test/test_sequence_003.c \
${CHIBIOS}/test/nil/source/test/test_sequence_004.c \
${CHIBIOS}/test/nil/source/test/test_sequence_005.c \
${CHIBIOS}/test/nil/source/test/test_sequence_006.c
${CHIBIOS}/test/nil/source/test/test_sequence_006.c\
${CHIBIOS}/test/nil/source/test/test_sequence_007.c
# Required include directories
TESTINC = ${CHIBIOS}/test/lib \

View File

@ -126,6 +126,210 @@ systime_t test_wait_tick(void) {
</global_code>
</global_data_and_code>
<sequences>
<sequence>
<type index="0">
<value>Internal Tests</value>
</type>
<brief>
<value>Information.</value>
</brief>
<description>
<value>This sequence reports configuration and version information about the RT kernel.</value>
</description>
<condition>
<value />
</condition>
<shared_code>
<value><![CDATA[#include "ch.h"]]></value>
</shared_code>
<cases>
<case>
<brief>
<value>Kernel Info.</value>
</brief>
<description>
<value>The version numbers are reported.</value>
</description>
<condition>
<value />
</condition>
<various_code>
<setup_code>
<value />
</setup_code>
<teardown_code>
<value />
</teardown_code>
<local_variables>
<value />
</local_variables>
</various_code>
<steps>
<step>
<description>
<value>Prints the version string.</value>
</description>
<tags>
<value />
</tags>
<code>
<value><![CDATA[test_println("*** Product: ChibiOS/RT");
test_print("*** Stable Flag: ");
test_printn(CH_KERNEL_STABLE);
test_println("");
test_print("*** Version String: ");
test_println(CH_KERNEL_VERSION);
test_print("*** Major Number: ");
test_printn(CH_KERNEL_MAJOR);
test_println("");
test_print("*** Minor Number: ");
test_printn(CH_KERNEL_MINOR);
test_println("");
test_print("*** Patch Number: ");
test_printn(CH_KERNEL_PATCH);
test_println("");]]></value>
</code>
</step>
</steps>
</case>
<case>
<brief>
<value>Kernel Settings.</value>
</brief>
<description>
<value>The static kernel settings are reported.</value>
</description>
<condition>
<value />
</condition>
<various_code>
<setup_code>
<value />
</setup_code>
<teardown_code>
<value />
</teardown_code>
<local_variables>
<value />
</local_variables>
</various_code>
<steps>
<step>
<description>
<value>Prints the configuration options settings.</value>
</description>
<tags>
<value />
</tags>
<code>
<value><![CDATA[test_print("*** CH_CFG_ST_RESOLUTION: ");
test_printn(CH_CFG_ST_RESOLUTION);
test_println("");
test_print("*** CH_CFG_ST_FREQUENCY: ");
test_printn(CH_CFG_ST_FREQUENCY);
test_println("");
test_print("*** CH_CFG_ST_TIMEDELTA: ");
test_printn(CH_CFG_ST_TIMEDELTA);
test_println("");
test_print("*** CH_CFG_TIME_QUANTUM: ");
test_printn(CH_CFG_TIME_QUANTUM);
test_println("");
test_print("*** CH_CFG_MEMCORE_SIZE: ");
test_printn(CH_CFG_MEMCORE_SIZE);
test_println("");
test_print("*** CH_CFG_NO_IDLE_THREAD: ");
test_printn(CH_CFG_NO_IDLE_THREAD);
test_println("");
test_print("*** CH_CFG_OPTIMIZE_SPEED: ");
test_printn(CH_CFG_OPTIMIZE_SPEED);
test_println("");
test_print("*** CH_CFG_USE_TM: ");
test_printn(CH_CFG_USE_TM);
test_println("");
test_print("*** CH_CFG_USE_REGISTRY: ");
test_printn(CH_CFG_USE_REGISTRY);
test_println("");
test_print("*** CH_CFG_USE_WAITEXIT: ");
test_printn(CH_CFG_USE_WAITEXIT);
test_println("");
test_print("*** CH_CFG_USE_SEMAPHORES: ");
test_printn(CH_CFG_USE_SEMAPHORES);
test_println("");
test_print("*** CH_CFG_USE_SEMAPHORES_PRI: ");
test_printn(CH_CFG_USE_SEMAPHORES_PRIORITY);
test_println("");
test_print("*** CH_CFG_USE_MUTEXES: ");
test_printn(CH_CFG_USE_MUTEXES);
test_println("");
test_print("*** CH_CFG_USE_MUTEXES_RECURS: ");
test_printn(CH_CFG_USE_MUTEXES_RECURSIVE);
test_println("");
test_print("*** CH_CFG_USE_CONDVARS: ");
test_printn(CH_CFG_USE_CONDVARS);
test_println("");
test_print("*** CH_CFG_USE_CONDVARS_TIMEO: ");
test_printn(CH_CFG_USE_CONDVARS_TIMEOUT);
test_println("");
test_print("*** CH_CFG_USE_EVENTS: ");
test_printn(CH_CFG_USE_EVENTS);
test_println("");
test_print("*** CH_CFG_USE_EVENTS_TIMEOUT: ");
test_printn(CH_CFG_USE_EVENTS_TIMEOUT);
test_println("");
test_print("*** CH_CFG_USE_MESSAGES: ");
test_printn(CH_CFG_USE_MESSAGES);
test_println("");
test_print("*** CH_CFG_USE_MESSAGES_PRI: ");
test_printn(CH_CFG_USE_MESSAGES_PRIORITY);
test_println("");
test_print("*** CH_CFG_USE_MAILBOXES: ");
test_printn(CH_CFG_USE_MAILBOXES);
test_println("");
test_print("*** CH_CFG_USE_MEMCORE: ");
test_printn(CH_CFG_USE_MEMCORE);
test_println("");
test_print("*** CH_CFG_USE_HEAP: ");
test_printn(CH_CFG_USE_HEAP);
test_println("");
test_print("*** CH_CFG_USE_MEMPOOLS: ");
test_printn(CH_CFG_USE_MEMPOOLS);
test_println("");
test_print("*** CH_CFG_USE_DYNAMIC: ");
test_printn(CH_CFG_USE_DYNAMIC);
test_println("");
test_print("*** CH_DBG_STATISTICS: ");
test_printn(CH_DBG_STATISTICS);
test_println("");
test_print("*** CH_DBG_SYSTEM_STATE_CHECK: ");
test_printn(CH_DBG_SYSTEM_STATE_CHECK);
test_println("");
test_print("*** CH_DBG_ENABLE_CHECKS: ");
test_printn(CH_DBG_ENABLE_CHECKS);
test_println("");
test_print("*** CH_DBG_ENABLE_ASSERTS: ");
test_printn(CH_DBG_ENABLE_ASSERTS);
test_println("");
test_print("*** CH_DBG_TRACE_MASK: ");
test_printn(CH_DBG_TRACE_MASK);
test_println("");
test_print("*** CH_DBG_TRACE_BUFFER_SIZE: ");
test_printn(CH_DBG_TRACE_BUFFER_SIZE);
test_println("");
test_print("*** CH_DBG_ENABLE_STACK_CHECK: ");
test_printn(CH_DBG_ENABLE_STACK_CHECK);
test_println("");
test_print("*** CH_DBG_FILL_THREADS: ");
test_printn(CH_DBG_FILL_THREADS);
test_println("");
test_print("*** CH_DBG_THREADS_PROFILING: ");
test_printn(CH_DBG_THREADS_PROFILING);
test_println("");]]></value>
</code>
</step>
</steps>
</case>
</cases>
</sequence>
<sequence>
<type index="0">
<value>Internal Tests</value>

View File

@ -33,6 +33,7 @@
* - @subpage test_sequence_010
* - @subpage test_sequence_011
* - @subpage test_sequence_012
* - @subpage test_sequence_013
* .
*/
@ -58,31 +59,32 @@ const testcase_t * const *test_suite[] = {
test_sequence_001,
test_sequence_002,
test_sequence_003,
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
test_sequence_004,
#endif
#if (CH_CFG_USE_MUTEXES) || defined(__DOXYGEN__)
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
test_sequence_005,
#endif
#if (CH_CFG_USE_MESSAGES) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MUTEXES) || defined(__DOXYGEN__)
test_sequence_006,
#endif
#if (CH_CFG_USE_EVENTS) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MESSAGES) || defined(__DOXYGEN__)
test_sequence_007,
#endif
#if (CH_CFG_USE_MAILBOXES) || defined(__DOXYGEN__)
#if (CH_CFG_USE_EVENTS) || defined(__DOXYGEN__)
test_sequence_008,
#endif
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MAILBOXES) || defined(__DOXYGEN__)
test_sequence_009,
#endif
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
test_sequence_010,
#endif
#if (CH_CFG_USE_DYNAMIC) || defined(__DOXYGEN__)
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
test_sequence_011,
#endif
#if (CH_CFG_USE_DYNAMIC) || defined(__DOXYGEN__)
test_sequence_012,
#endif
test_sequence_013,
NULL
};

View File

@ -34,6 +34,7 @@
#include "test_sequence_010.h"
#include "test_sequence_011.h"
#include "test_sequence_012.h"
#include "test_sequence_013.h"
#if !defined(__DOXYGEN__)

View File

@ -22,22 +22,17 @@
* @file test_sequence_001.c
* @brief Test Sequence 001 code.
*
* @page test_sequence_001 [1] System layer and port interface
* @page test_sequence_001 [1] Information
*
* File: @ref test_sequence_001.c
*
* <h2>Description</h2>
* The functionality of the system layer and port interface is tested.
* Basic RT functionality is taken for granted or this test suite could
* not even be executed. Errors in implementation are detected by
* executing this sequence with the state checker enabled
* (CH_DBG_STATE_CHECKER=TRUE).
* This sequence reports configuration and version information about
* the RT kernel.
*
* <h2>Test Cases</h2>
* - @subpage test_001_001
* - @subpage test_001_002
* - @subpage test_001_003
* - @subpage test_001_004
* .
*/
@ -45,238 +40,190 @@
* Shared code.
****************************************************************************/
/* Timer callback for testing system functions in ISR context.*/
static void vtcb(void *p) {
syssts_t sts;
(void)p;
/* Testing normal case.*/
chSysLockFromISR();
chSysUnlockFromISR();
/* Reentrant case.*/
chSysLockFromISR();
sts = chSysGetStatusAndLockX();
chSysRestoreStatusX(sts);
chSysUnlockFromISR();
}
#include "ch.h"
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_001_001 [1.1] System integrity functionality
* @page test_001_001 [1.1] Kernel Info
*
* <h2>Description</h2>
* The system self-test functionality is invoked in order to make an
* initial system state assessment and for coverage.
* The version numbers are reported.
*
* <h2>Test Steps</h2>
* - [1.1.1] Testing Ready List integrity.
* - [1.1.2] Testing Virtual Timers List integrity.
* - [1.1.3] Testing Registry List integrity.
* - [1.1.4] Testing Port-defined integrity.
* - [1.1.1] Prints the version string.
* .
*/
static void test_001_001_execute(void) {
bool result;
/* [1.1.1] Testing Ready List integrity.*/
/* [1.1.1] Prints the version string.*/
test_set_step(1);
{
chSysLock();
result = chSysIntegrityCheckI(CH_INTEGRITY_RLIST);
chSysUnlock();
test_assert(result == false, "ready list check failed");
}
/* [1.1.2] Testing Virtual Timers List integrity.*/
test_set_step(2);
{
chSysLock();
result = chSysIntegrityCheckI(CH_INTEGRITY_VTLIST);
chSysUnlock();
test_assert(result == false, "virtual timers list check failed");
}
/* [1.1.3] Testing Registry List integrity.*/
test_set_step(3);
{
chSysLock();
result = chSysIntegrityCheckI(CH_INTEGRITY_REGISTRY);
chSysUnlock();
test_assert(result == false, "registry list check failed");
}
/* [1.1.4] Testing Port-defined integrity.*/
test_set_step(4);
{
chSysLock();
result = chSysIntegrityCheckI(CH_INTEGRITY_PORT);
chSysUnlock();
test_assert(result == false, "port layer check failed");
test_println("*** Product: ChibiOS/RT");
test_print("*** Stable Flag: ");
test_printn(CH_KERNEL_STABLE);
test_println("");
test_print("*** Version String: ");
test_println(CH_KERNEL_VERSION);
test_print("*** Major Number: ");
test_printn(CH_KERNEL_MAJOR);
test_println("");
test_print("*** Minor Number: ");
test_printn(CH_KERNEL_MINOR);
test_println("");
test_print("*** Patch Number: ");
test_printn(CH_KERNEL_PATCH);
test_println("");
}
}
static const testcase_t test_001_001 = {
"System integrity functionality",
"Kernel Info",
NULL,
NULL,
test_001_001_execute
};
/**
* @page test_001_002 [1.2] Critical zones functionality
* @page test_001_002 [1.2] Kernel Settings
*
* <h2>Description</h2>
* The critical zones API is invoked for coverage.
* The static kernel settings are reported.
*
* <h2>Test Steps</h2>
* - [1.2.1] Testing chSysGetStatusAndLockX() and
* chSysRestoreStatusX(), non reentrant case.
* - [1.2.2] Testing chSysGetStatusAndLockX() and
* chSysRestoreStatusX(), reentrant case.
* - [1.2.3] Testing chSysUnconditionalLock().
* - [1.2.4] Testing chSysUnconditionalUnlock().
* - [1.2.5] Testing from ISR context using a virtual timer.
* - [1.2.1] Prints the configuration options settings.
* .
*/
static void test_001_002_execute(void) {
syssts_t sts;
virtual_timer_t vt;
/* [1.2.1] Testing chSysGetStatusAndLockX() and
chSysRestoreStatusX(), non reentrant case.*/
/* [1.2.1] Prints the configuration options settings.*/
test_set_step(1);
{
sts = chSysGetStatusAndLockX();
chSysRestoreStatusX(sts);
}
/* [1.2.2] Testing chSysGetStatusAndLockX() and
chSysRestoreStatusX(), reentrant case.*/
test_set_step(2);
{
chSysLock();
sts = chSysGetStatusAndLockX();
chSysRestoreStatusX(sts);
chSysUnlock();
}
/* [1.2.3] Testing chSysUnconditionalLock().*/
test_set_step(3);
{
chSysUnconditionalLock();
chSysUnconditionalLock();
chSysUnlock();
}
/* [1.2.4] Testing chSysUnconditionalUnlock().*/
test_set_step(4);
{
chSysLock();
chSysUnconditionalUnlock();
chSysUnconditionalUnlock();
}
/* [1.2.5] Testing from ISR context using a virtual timer.*/
test_set_step(5);
{
chVTObjectInit(&vt);
chVTSet(&vt, 1, vtcb, NULL);
chThdSleep(10);
test_assert(chVTIsArmed(&vt) == false, "timer still armed");
test_print("*** CH_CFG_ST_RESOLUTION: ");
test_printn(CH_CFG_ST_RESOLUTION);
test_println("");
test_print("*** CH_CFG_ST_FREQUENCY: ");
test_printn(CH_CFG_ST_FREQUENCY);
test_println("");
test_print("*** CH_CFG_ST_TIMEDELTA: ");
test_printn(CH_CFG_ST_TIMEDELTA);
test_println("");
test_print("*** CH_CFG_TIME_QUANTUM: ");
test_printn(CH_CFG_TIME_QUANTUM);
test_println("");
test_print("*** CH_CFG_MEMCORE_SIZE: ");
test_printn(CH_CFG_MEMCORE_SIZE);
test_println("");
test_print("*** CH_CFG_NO_IDLE_THREAD: ");
test_printn(CH_CFG_NO_IDLE_THREAD);
test_println("");
test_print("*** CH_CFG_OPTIMIZE_SPEED: ");
test_printn(CH_CFG_OPTIMIZE_SPEED);
test_println("");
test_print("*** CH_CFG_USE_TM: ");
test_printn(CH_CFG_USE_TM);
test_println("");
test_print("*** CH_CFG_USE_REGISTRY: ");
test_printn(CH_CFG_USE_REGISTRY);
test_println("");
test_print("*** CH_CFG_USE_WAITEXIT: ");
test_printn(CH_CFG_USE_WAITEXIT);
test_println("");
test_print("*** CH_CFG_USE_SEMAPHORES: ");
test_printn(CH_CFG_USE_SEMAPHORES);
test_println("");
test_print("*** CH_CFG_USE_SEMAPHORES_PRI: ");
test_printn(CH_CFG_USE_SEMAPHORES_PRIORITY);
test_println("");
test_print("*** CH_CFG_USE_MUTEXES: ");
test_printn(CH_CFG_USE_MUTEXES);
test_println("");
test_print("*** CH_CFG_USE_MUTEXES_RECURS: ");
test_printn(CH_CFG_USE_MUTEXES_RECURSIVE);
test_println("");
test_print("*** CH_CFG_USE_CONDVARS: ");
test_printn(CH_CFG_USE_CONDVARS);
test_println("");
test_print("*** CH_CFG_USE_CONDVARS_TIMEO: ");
test_printn(CH_CFG_USE_CONDVARS_TIMEOUT);
test_println("");
test_print("*** CH_CFG_USE_EVENTS: ");
test_printn(CH_CFG_USE_EVENTS);
test_println("");
test_print("*** CH_CFG_USE_EVENTS_TIMEOUT: ");
test_printn(CH_CFG_USE_EVENTS_TIMEOUT);
test_println("");
test_print("*** CH_CFG_USE_MESSAGES: ");
test_printn(CH_CFG_USE_MESSAGES);
test_println("");
test_print("*** CH_CFG_USE_MESSAGES_PRI: ");
test_printn(CH_CFG_USE_MESSAGES_PRIORITY);
test_println("");
test_print("*** CH_CFG_USE_MAILBOXES: ");
test_printn(CH_CFG_USE_MAILBOXES);
test_println("");
test_print("*** CH_CFG_USE_MEMCORE: ");
test_printn(CH_CFG_USE_MEMCORE);
test_println("");
test_print("*** CH_CFG_USE_HEAP: ");
test_printn(CH_CFG_USE_HEAP);
test_println("");
test_print("*** CH_CFG_USE_MEMPOOLS: ");
test_printn(CH_CFG_USE_MEMPOOLS);
test_println("");
test_print("*** CH_CFG_USE_DYNAMIC: ");
test_printn(CH_CFG_USE_DYNAMIC);
test_println("");
test_print("*** CH_DBG_STATISTICS: ");
test_printn(CH_DBG_STATISTICS);
test_println("");
test_print("*** CH_DBG_SYSTEM_STATE_CHECK: ");
test_printn(CH_DBG_SYSTEM_STATE_CHECK);
test_println("");
test_print("*** CH_DBG_ENABLE_CHECKS: ");
test_printn(CH_DBG_ENABLE_CHECKS);
test_println("");
test_print("*** CH_DBG_ENABLE_ASSERTS: ");
test_printn(CH_DBG_ENABLE_ASSERTS);
test_println("");
test_print("*** CH_DBG_TRACE_MASK: ");
test_printn(CH_DBG_TRACE_MASK);
test_println("");
test_print("*** CH_DBG_TRACE_BUFFER_SIZE: ");
test_printn(CH_DBG_TRACE_BUFFER_SIZE);
test_println("");
test_print("*** CH_DBG_ENABLE_STACK_CHECK: ");
test_printn(CH_DBG_ENABLE_STACK_CHECK);
test_println("");
test_print("*** CH_DBG_FILL_THREADS: ");
test_printn(CH_DBG_FILL_THREADS);
test_println("");
test_print("*** CH_DBG_THREADS_PROFILING: ");
test_printn(CH_DBG_THREADS_PROFILING);
test_println("");
}
}
static const testcase_t test_001_002 = {
"Critical zones functionality",
"Kernel Settings",
NULL,
NULL,
test_001_002_execute
};
/**
* @page test_001_003 [1.3] Interrupts handling functionality
*
* <h2>Description</h2>
* The interrupts handling API is invoked for coverage.
*
* <h2>Test Steps</h2>
* - [1.3.1] Testing chSysSuspend(), chSysDisable() and chSysEnable().
* .
*/
static void test_001_003_execute(void) {
/* [1.3.1] Testing chSysSuspend(), chSysDisable() and
chSysEnable().*/
test_set_step(1);
{
chSysSuspend();
chSysDisable();
chSysSuspend();
chSysEnable();
}
}
static const testcase_t test_001_003 = {
"Interrupts handling functionality",
NULL,
NULL,
test_001_003_execute
};
/**
* @page test_001_004 [1.4] System Tick Counter functionality
*
* <h2>Description</h2>
* The functionality of the API @p chVTGetSystemTimeX() is tested.
*
* <h2>Test Steps</h2>
* - [1.4.1] A System Tick Counter increment is expected, the test
* simply hangs if it does not happen.
* .
*/
static void test_001_004_execute(void) {
/* [1.4.1] A System Tick Counter increment is expected, the test
simply hangs if it does not happen.*/
test_set_step(1);
{
systime_t time = chVTGetSystemTimeX();
while (time == chVTGetSystemTimeX()) {
#if defined(SIMULATOR)
_sim_check_for_interrupts();
#endif
}
}
}
static const testcase_t test_001_004 = {
"System Tick Counter functionality",
NULL,
NULL,
test_001_004_execute
};
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief System layer and port interface.
* @brief Information.
*/
const testcase_t * const test_sequence_001[] = {
&test_001_001,
&test_001_002,
&test_001_003,
&test_001_004,
NULL
};

View File

@ -22,13 +22,16 @@
* @file test_sequence_002.c
* @brief Test Sequence 002 code.
*
* @page test_sequence_002 [2] Threads Functionality
* @page test_sequence_002 [2] System layer and port interface
*
* File: @ref test_sequence_002.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/RT functionalities related to
* threading.
* The functionality of the system layer and port interface is tested.
* Basic RT functionality is taken for granted or this test suite could
* not even be executed. Errors in implementation are detected by
* executing this sequence with the state checker enabled
* (CH_DBG_STATE_CHECKER=TRUE).
*
* <h2>Test Cases</h2>
* - @subpage test_002_001
@ -42,9 +45,21 @@
* Shared code.
****************************************************************************/
static THD_FUNCTION(thread, p) {
/* Timer callback for testing system functions in ISR context.*/
static void vtcb(void *p) {
syssts_t sts;
test_emit_token(*(char *)p);
(void)p;
/* Testing normal case.*/
chSysLockFromISR();
chSysUnlockFromISR();
/* Reentrant case.*/
chSysLockFromISR();
sts = chSysGetStatusAndLockX();
chSysRestoreStatusX(sts);
chSysUnlockFromISR();
}
/****************************************************************************
@ -52,293 +67,216 @@ static THD_FUNCTION(thread, p) {
****************************************************************************/
/**
* @page test_002_001 [2.1] Thread Sleep functionality
* @page test_002_001 [2.1] System integrity functionality
*
* <h2>Description</h2>
* The functionality of @p chThdSleep() and derivatives is tested.
* The system self-test functionality is invoked in order to make an
* initial system state assessment and for coverage.
*
* <h2>Test Steps</h2>
* - [2.1.1] The current system time is read then a sleep is performed
* for 100 system ticks and on exit the system time is verified
* again.
* - [2.1.2] The current system time is read then a sleep is performed
* for 100000 microseconds and on exit the system time is verified
* again.
* - [2.1.3] The current system time is read then a sleep is performed
* for 100 milliseconds and on exit the system time is verified
* again.
* - [2.1.4] The current system time is read then a sleep is performed
* for 1 second and on exit the system time is verified again.
* - [2.1.5] Function chThdSleepUntil() is tested with a timeline of
* "now" + 100 ticks.
* - [2.1.1] Testing Ready List integrity.
* - [2.1.2] Testing Virtual Timers List integrity.
* - [2.1.3] Testing Registry List integrity.
* - [2.1.4] Testing Port-defined integrity.
* .
*/
static void test_002_001_execute(void) {
systime_t time;
bool result;
/* [2.1.1] The current system time is read then a sleep is performed
for 100 system ticks and on exit the system time is verified
again.*/
/* [2.1.1] Testing Ready List integrity.*/
test_set_step(1);
{
time = chVTGetSystemTimeX();
chThdSleep(100);
test_assert_time_window(time + 100,
time + 100 + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
chSysLock();
result = chSysIntegrityCheckI(CH_INTEGRITY_RLIST);
chSysUnlock();
test_assert(result == false, "ready list check failed");
}
/* [2.1.2] The current system time is read then a sleep is performed
for 100000 microseconds and on exit the system time is verified
again.*/
/* [2.1.2] Testing Virtual Timers List integrity.*/
test_set_step(2);
{
time = chVTGetSystemTimeX();
chThdSleepMicroseconds(100000);
test_assert_time_window(time + US2ST(100000),
time + US2ST(100000) + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
chSysLock();
result = chSysIntegrityCheckI(CH_INTEGRITY_VTLIST);
chSysUnlock();
test_assert(result == false, "virtual timers list check failed");
}
/* [2.1.3] The current system time is read then a sleep is performed
for 100 milliseconds and on exit the system time is verified
again.*/
/* [2.1.3] Testing Registry List integrity.*/
test_set_step(3);
{
time = chVTGetSystemTimeX();
chThdSleepMilliseconds(100);
test_assert_time_window(time + MS2ST(100),
time + MS2ST(100) + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
chSysLock();
result = chSysIntegrityCheckI(CH_INTEGRITY_REGISTRY);
chSysUnlock();
test_assert(result == false, "registry list check failed");
}
/* [2.1.4] The current system time is read then a sleep is performed
for 1 second and on exit the system time is verified again.*/
/* [2.1.4] Testing Port-defined integrity.*/
test_set_step(4);
{
time = chVTGetSystemTimeX();
chThdSleepSeconds(1);
test_assert_time_window(time + S2ST(1),
time + S2ST(1) + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
}
/* [2.1.5] Function chThdSleepUntil() is tested with a timeline of
"now" + 100 ticks.*/
test_set_step(5);
{
time = chVTGetSystemTimeX();
chThdSleepUntil(time + 100);
test_assert_time_window(time + 100,
time + 100 + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
chSysLock();
result = chSysIntegrityCheckI(CH_INTEGRITY_PORT);
chSysUnlock();
test_assert(result == false, "port layer check failed");
}
}
static const testcase_t test_002_001 = {
"Thread Sleep functionality",
"System integrity functionality",
NULL,
NULL,
test_002_001_execute
};
/**
* @page test_002_002 [2.2] Ready List functionality, threads priority order
* @page test_002_002 [2.2] Critical zones functionality
*
* <h2>Description</h2>
* Five threads, are enqueued in the ready list and atomically
* executed. The test expects the threads to perform their operations
* in correct priority order regardless of the initial order.
* The critical zones API is invoked for coverage.
*
* <h2>Test Steps</h2>
* - [2.2.1] Creating 5 threads with increasing priority, execution
* sequence is tested.
* - [2.2.2] Creating 5 threads with decreasing priority, execution
* sequence is tested.
* - [2.2.3] Creating 5 threads with pseudo-random priority, execution
* sequence is tested.
* - [2.2.1] Testing chSysGetStatusAndLockX() and
* chSysRestoreStatusX(), non reentrant case.
* - [2.2.2] Testing chSysGetStatusAndLockX() and
* chSysRestoreStatusX(), reentrant case.
* - [2.2.3] Testing chSysUnconditionalLock().
* - [2.2.4] Testing chSysUnconditionalUnlock().
* - [2.2.5] Testing from ISR context using a virtual timer.
* .
*/
static void test_002_002_execute(void) {
syssts_t sts;
virtual_timer_t vt;
/* [2.2.1] Creating 5 threads with increasing priority, execution
sequence is tested.*/
/* [2.2.1] Testing chSysGetStatusAndLockX() and
chSysRestoreStatusX(), non reentrant case.*/
test_set_step(1);
{
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-5, thread, "E");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriorityX()-4, thread, "D");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriorityX()-3, thread, "C");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriorityX()-2, thread, "B");
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriorityX()-1, thread, "A");
test_wait_threads();
test_assert_sequence("ABCDE", "invalid sequence");
sts = chSysGetStatusAndLockX();
chSysRestoreStatusX(sts);
}
/* [2.2.2] Creating 5 threads with decreasing priority, execution
sequence is tested.*/
/* [2.2.2] Testing chSysGetStatusAndLockX() and
chSysRestoreStatusX(), reentrant case.*/
test_set_step(2);
{
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriorityX()-1, thread, "A");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriorityX()-2, thread, "B");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriorityX()-3, thread, "C");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriorityX()-4, thread, "D");
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-5, thread, "E");
test_wait_threads();
test_assert_sequence("ABCDE", "invalid sequence");
chSysLock();
sts = chSysGetStatusAndLockX();
chSysRestoreStatusX(sts);
chSysUnlock();
}
/* [2.2.3] Creating 5 threads with pseudo-random priority, execution
sequence is tested.*/
/* [2.2.3] Testing chSysUnconditionalLock().*/
test_set_step(3);
{
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriorityX()-4, thread, "D");
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-5, thread, "E");
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriorityX()-1, thread, "A");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriorityX()-2, thread, "B");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriorityX()-3, thread, "C");
test_wait_threads();
test_assert_sequence("ABCDE", "invalid sequence");
chSysUnconditionalLock();
chSysUnconditionalLock();
chSysUnlock();
}
/* [2.2.4] Testing chSysUnconditionalUnlock().*/
test_set_step(4);
{
chSysLock();
chSysUnconditionalUnlock();
chSysUnconditionalUnlock();
}
/* [2.2.5] Testing from ISR context using a virtual timer.*/
test_set_step(5);
{
chVTObjectInit(&vt);
chVTSet(&vt, 1, vtcb, NULL);
chThdSleep(10);
test_assert(chVTIsArmed(&vt) == false, "timer still armed");
}
}
static const testcase_t test_002_002 = {
"Ready List functionality, threads priority order",
"Critical zones functionality",
NULL,
NULL,
test_002_002_execute
};
/**
* @page test_002_003 [2.3] Priority change test
* @page test_002_003 [2.3] Interrupts handling functionality
*
* <h2>Description</h2>
* A series of priority changes are performed on the current thread in
* order to verify that the priority change happens as expected.
* The interrupts handling API is invoked for coverage.
*
* <h2>Test Steps</h2>
* - [2.3.1] Thread priority is increased by one then a check is
* performed.
* - [2.3.2] Thread priority is returned to the previous value then a
* check is performed.
* - [2.3.1] Testing chSysSuspend(), chSysDisable() and chSysEnable().
* .
*/
static void test_002_003_execute(void) {
tprio_t prio, p1;
/* [2.3.1] Thread priority is increased by one then a check is
performed.*/
/* [2.3.1] Testing chSysSuspend(), chSysDisable() and
chSysEnable().*/
test_set_step(1);
{
prio = chThdGetPriorityX();
p1 = chThdSetPriority(prio + 1);
test_assert(p1 == prio, "unexpected returned priority level");
test_assert(chThdGetPriorityX() == prio + 1, "unexpected priority level");
}
/* [2.3.2] Thread priority is returned to the previous value then a
check is performed.*/
test_set_step(2);
{
p1 = chThdSetPriority(p1);
test_assert(p1 == prio + 1, "unexpected returned priority level");
test_assert(chThdGetPriorityX() == prio, "unexpected priority level");
chSysSuspend();
chSysDisable();
chSysSuspend();
chSysEnable();
}
}
static const testcase_t test_002_003 = {
"Priority change test",
"Interrupts handling functionality",
NULL,
NULL,
test_002_003_execute
};
#if (CH_CFG_USE_MUTEXES) || defined(__DOXYGEN__)
/**
* @page test_002_004 [2.4] Priority change test with Priority Inheritance
* @page test_002_004 [2.4] System Tick Counter functionality
*
* <h2>Description</h2>
* A series of priority changes are performed on the current thread in
* order to verify that the priority change happens as expected.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_MUTEXES
* .
* The functionality of the API @p chVTGetSystemTimeX() is tested.
*
* <h2>Test Steps</h2>
* - [2.4.1] Simulating a priority boost situation (prio > realprio).
* - [2.4.2] Raising thread priority above original priority but below
* the boosted level.
* - [2.4.3] Raising thread priority above the boosted level.
* - [2.4.4] Restoring original conditions.
* - [2.4.1] A System Tick Counter increment is expected, the test
* simply hangs if it does not happen.
* .
*/
static void test_002_004_execute(void) {
tprio_t prio, p1;
/* [2.4.1] Simulating a priority boost situation (prio > realprio).*/
/* [2.4.1] A System Tick Counter increment is expected, the test
simply hangs if it does not happen.*/
test_set_step(1);
{
prio = chThdGetPriorityX();
chThdGetSelfX()->prio += 2;
test_assert(chThdGetPriorityX() == prio + 2, "unexpected priority level");
}
/* [2.4.2] Raising thread priority above original priority but below
the boosted level.*/
test_set_step(2);
{
p1 = chThdSetPriority(prio + 1);
test_assert(p1 == prio, "unexpected returned priority level");
test_assert(chThdGetSelfX()->prio == prio + 2, "unexpected priority level");
test_assert(chThdGetSelfX()->realprio == prio + 1, "unexpected returned real priority level");
}
/* [2.4.3] Raising thread priority above the boosted level.*/
test_set_step(3);
{
p1 = chThdSetPriority(prio + 3);
test_assert(p1 == prio + 1, "unexpected returned priority level");
test_assert(chThdGetSelfX()->prio == prio + 3, "unexpected priority level");
test_assert(chThdGetSelfX()->realprio == prio + 3, "unexpected real priority level");
}
/* [2.4.4] Restoring original conditions.*/
test_set_step(4);
{
chSysLock();
chThdGetSelfX()->prio = prio;
chThdGetSelfX()->realprio = prio;
chSysUnlock();
systime_t time = chVTGetSystemTimeX();
while (time == chVTGetSystemTimeX()) {
#if defined(SIMULATOR)
_sim_check_for_interrupts();
#endif
}
}
}
static const testcase_t test_002_004 = {
"Priority change test with Priority Inheritance",
"System Tick Counter functionality",
NULL,
NULL,
test_002_004_execute
};
#endif /* CH_CFG_USE_MUTEXES */
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Threads Functionality.
* @brief System layer and port interface.
*/
const testcase_t * const test_sequence_002[] = {
&test_002_001,
&test_002_002,
&test_002_003,
#if (CH_CFG_USE_MUTEXES) || defined(__DOXYGEN__)
&test_002_004,
#endif
NULL
};

View File

@ -22,16 +22,19 @@
* @file test_sequence_003.c
* @brief Test Sequence 003 code.
*
* @page test_sequence_003 [3] Suspend/Resume
* @page test_sequence_003 [3] Threads Functionality
*
* File: @ref test_sequence_003.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/RT functionalities related to
* threads suspend/resume.
* threading.
*
* <h2>Test Cases</h2>
* - @subpage test_003_001
* - @subpage test_003_002
* - @subpage test_003_003
* - @subpage test_003_004
* .
*/
@ -39,14 +42,8 @@
* Shared code.
****************************************************************************/
static thread_reference_t tr1;
static THD_FUNCTION(thread, p) {
static THD_FUNCTION(thread1, p) {
chSysLock();
chThdResumeI(&tr1, MSG_OK);
chSchRescheduleS();
chSysUnlock();
test_emit_token(*(char *)p);
}
@ -55,76 +52,293 @@ static THD_FUNCTION(thread1, p) {
****************************************************************************/
/**
* @page test_003_001 [3.1] Suspend and Resume functionality
* @page test_003_001 [3.1] Thread Sleep functionality
*
* <h2>Description</h2>
* The functionality of chThdSuspendTimeoutS() and chThdResumeI() is
* tested.
* The functionality of @p chThdSleep() and derivatives is tested.
*
* <h2>Test Steps</h2>
* - [3.1.1] The function chThdSuspendTimeoutS() is invoked, the thread
* is remotely resumed with message @p MSG_OK. On return the message
* and the state of the reference are tested.
* - [3.1.2] The function chThdSuspendTimeoutS() is invoked, the thread
* is not resumed so a timeout must occur. On return the message and
* the state of the reference are tested.
* - [3.1.1] The current system time is read then a sleep is performed
* for 100 system ticks and on exit the system time is verified
* again.
* - [3.1.2] The current system time is read then a sleep is performed
* for 100000 microseconds and on exit the system time is verified
* again.
* - [3.1.3] The current system time is read then a sleep is performed
* for 100 milliseconds and on exit the system time is verified
* again.
* - [3.1.4] The current system time is read then a sleep is performed
* for 1 second and on exit the system time is verified again.
* - [3.1.5] Function chThdSleepUntil() is tested with a timeline of
* "now" + 100 ticks.
* .
*/
static void test_003_001_setup(void) {
tr1 = NULL;
}
static void test_003_001_execute(void) {
systime_t time;
msg_t msg;
/* [3.1.1] The function chThdSuspendTimeoutS() is invoked, the thread
is remotely resumed with message @p MSG_OK. On return the message
and the state of the reference are tested.*/
/* [3.1.1] The current system time is read then a sleep is performed
for 100 system ticks and on exit the system time is verified
again.*/
test_set_step(1);
{
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-1, thread1, "A");
chSysLock();
msg = chThdSuspendTimeoutS(&tr1, TIME_INFINITE);
chSysUnlock();
test_assert(NULL == tr1, "not NULL");
test_assert(MSG_OK == msg,"wrong returned message");
test_wait_threads();
time = chVTGetSystemTimeX();
chThdSleep(100);
test_assert_time_window(time + 100,
time + 100 + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
}
/* [3.1.2] The function chThdSuspendTimeoutS() is invoked, the thread
is not resumed so a timeout must occur. On return the message and
the state of the reference are tested.*/
/* [3.1.2] The current system time is read then a sleep is performed
for 100000 microseconds and on exit the system time is verified
again.*/
test_set_step(2);
{
chSysLock();
time = chVTGetSystemTimeX();
msg = chThdSuspendTimeoutS(&tr1, MS2ST(1000));
chSysUnlock();
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + CH_CFG_ST_TIMEDELTA + 1,
chThdSleepMicroseconds(100000);
test_assert_time_window(time + US2ST(100000),
time + US2ST(100000) + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
}
/* [3.1.3] The current system time is read then a sleep is performed
for 100 milliseconds and on exit the system time is verified
again.*/
test_set_step(3);
{
time = chVTGetSystemTimeX();
chThdSleepMilliseconds(100);
test_assert_time_window(time + MS2ST(100),
time + MS2ST(100) + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
}
/* [3.1.4] The current system time is read then a sleep is performed
for 1 second and on exit the system time is verified again.*/
test_set_step(4);
{
time = chVTGetSystemTimeX();
chThdSleepSeconds(1);
test_assert_time_window(time + S2ST(1),
time + S2ST(1) + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
}
/* [3.1.5] Function chThdSleepUntil() is tested with a timeline of
"now" + 100 ticks.*/
test_set_step(5);
{
time = chVTGetSystemTimeX();
chThdSleepUntil(time + 100);
test_assert_time_window(time + 100,
time + 100 + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
test_assert(NULL == tr1, "not NULL");
test_assert(MSG_TIMEOUT == msg, "wrong returned message");
}
}
static const testcase_t test_003_001 = {
"Suspend and Resume functionality",
test_003_001_setup,
"Thread Sleep functionality",
NULL,
NULL,
test_003_001_execute
};
/**
* @page test_003_002 [3.2] Ready List functionality, threads priority order
*
* <h2>Description</h2>
* Five threads, are enqueued in the ready list and atomically
* executed. The test expects the threads to perform their operations
* in correct priority order regardless of the initial order.
*
* <h2>Test Steps</h2>
* - [3.2.1] Creating 5 threads with increasing priority, execution
* sequence is tested.
* - [3.2.2] Creating 5 threads with decreasing priority, execution
* sequence is tested.
* - [3.2.3] Creating 5 threads with pseudo-random priority, execution
* sequence is tested.
* .
*/
static void test_003_002_execute(void) {
/* [3.2.1] Creating 5 threads with increasing priority, execution
sequence is tested.*/
test_set_step(1);
{
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-5, thread, "E");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriorityX()-4, thread, "D");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriorityX()-3, thread, "C");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriorityX()-2, thread, "B");
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriorityX()-1, thread, "A");
test_wait_threads();
test_assert_sequence("ABCDE", "invalid sequence");
}
/* [3.2.2] Creating 5 threads with decreasing priority, execution
sequence is tested.*/
test_set_step(2);
{
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriorityX()-1, thread, "A");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriorityX()-2, thread, "B");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriorityX()-3, thread, "C");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriorityX()-4, thread, "D");
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-5, thread, "E");
test_wait_threads();
test_assert_sequence("ABCDE", "invalid sequence");
}
/* [3.2.3] Creating 5 threads with pseudo-random priority, execution
sequence is tested.*/
test_set_step(3);
{
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriorityX()-4, thread, "D");
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-5, thread, "E");
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriorityX()-1, thread, "A");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriorityX()-2, thread, "B");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriorityX()-3, thread, "C");
test_wait_threads();
test_assert_sequence("ABCDE", "invalid sequence");
}
}
static const testcase_t test_003_002 = {
"Ready List functionality, threads priority order",
NULL,
NULL,
test_003_002_execute
};
/**
* @page test_003_003 [3.3] Priority change test
*
* <h2>Description</h2>
* A series of priority changes are performed on the current thread in
* order to verify that the priority change happens as expected.
*
* <h2>Test Steps</h2>
* - [3.3.1] Thread priority is increased by one then a check is
* performed.
* - [3.3.2] Thread priority is returned to the previous value then a
* check is performed.
* .
*/
static void test_003_003_execute(void) {
tprio_t prio, p1;
/* [3.3.1] Thread priority is increased by one then a check is
performed.*/
test_set_step(1);
{
prio = chThdGetPriorityX();
p1 = chThdSetPriority(prio + 1);
test_assert(p1 == prio, "unexpected returned priority level");
test_assert(chThdGetPriorityX() == prio + 1, "unexpected priority level");
}
/* [3.3.2] Thread priority is returned to the previous value then a
check is performed.*/
test_set_step(2);
{
p1 = chThdSetPriority(p1);
test_assert(p1 == prio + 1, "unexpected returned priority level");
test_assert(chThdGetPriorityX() == prio, "unexpected priority level");
}
}
static const testcase_t test_003_003 = {
"Priority change test",
NULL,
NULL,
test_003_003_execute
};
#if (CH_CFG_USE_MUTEXES) || defined(__DOXYGEN__)
/**
* @page test_003_004 [3.4] Priority change test with Priority Inheritance
*
* <h2>Description</h2>
* A series of priority changes are performed on the current thread in
* order to verify that the priority change happens as expected.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_MUTEXES
* .
*
* <h2>Test Steps</h2>
* - [3.4.1] Simulating a priority boost situation (prio > realprio).
* - [3.4.2] Raising thread priority above original priority but below
* the boosted level.
* - [3.4.3] Raising thread priority above the boosted level.
* - [3.4.4] Restoring original conditions.
* .
*/
static void test_003_004_execute(void) {
tprio_t prio, p1;
/* [3.4.1] Simulating a priority boost situation (prio > realprio).*/
test_set_step(1);
{
prio = chThdGetPriorityX();
chThdGetSelfX()->prio += 2;
test_assert(chThdGetPriorityX() == prio + 2, "unexpected priority level");
}
/* [3.4.2] Raising thread priority above original priority but below
the boosted level.*/
test_set_step(2);
{
p1 = chThdSetPriority(prio + 1);
test_assert(p1 == prio, "unexpected returned priority level");
test_assert(chThdGetSelfX()->prio == prio + 2, "unexpected priority level");
test_assert(chThdGetSelfX()->realprio == prio + 1, "unexpected returned real priority level");
}
/* [3.4.3] Raising thread priority above the boosted level.*/
test_set_step(3);
{
p1 = chThdSetPriority(prio + 3);
test_assert(p1 == prio + 1, "unexpected returned priority level");
test_assert(chThdGetSelfX()->prio == prio + 3, "unexpected priority level");
test_assert(chThdGetSelfX()->realprio == prio + 3, "unexpected real priority level");
}
/* [3.4.4] Restoring original conditions.*/
test_set_step(4);
{
chSysLock();
chThdGetSelfX()->prio = prio;
chThdGetSelfX()->realprio = prio;
chSysUnlock();
}
}
static const testcase_t test_003_004 = {
"Priority change test with Priority Inheritance",
NULL,
NULL,
test_003_004_execute
};
#endif /* CH_CFG_USE_MUTEXES */
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Suspend/Resume.
* @brief Threads Functionality.
*/
const testcase_t * const test_sequence_003[] = {
&test_003_001,
&test_003_002,
&test_003_003,
#if (CH_CFG_USE_MUTEXES) || defined(__DOXYGEN__)
&test_003_004,
#endif
NULL
};

View File

@ -22,66 +22,32 @@
* @file test_sequence_004.c
* @brief Test Sequence 004 code.
*
* @page test_sequence_004 [4] Counter and Binary Semaphores
* @page test_sequence_004 [4] Suspend/Resume
*
* File: @ref test_sequence_004.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/RT functionalities related to
* counter semaphores.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
* threads suspend/resume.
*
* <h2>Test Cases</h2>
* - @subpage test_004_001
* - @subpage test_004_002
* - @subpage test_004_003
* - @subpage test_004_004
* - @subpage test_004_005
* - @subpage test_004_006
* .
*/
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#include "ch.h"
static semaphore_t sem1;
static thread_reference_t tr1;
static THD_FUNCTION(thread1, p) {
chSemWait(&sem1);
test_emit_token(*(char *)p);
}
static THD_FUNCTION(thread2, p) {
(void)p;
chThdSleepMilliseconds(50);
chSysLock();
chSemSignalI(&sem1); /* For coverage reasons */
chThdResumeI(&tr1, MSG_OK);
chSchRescheduleS();
chSysUnlock();
}
static THD_FUNCTION(thread3, p) {
(void)p;
chSemWait(&sem1);
chSemSignal(&sem1);
}
static THD_FUNCTION(thread4, p) {
chBSemSignal((binary_semaphore_t *)p);
test_emit_token(*(char *)p);
}
/****************************************************************************
@ -89,420 +55,76 @@ static THD_FUNCTION(thread4, p) {
****************************************************************************/
/**
* @page test_004_001 [4.1] Semaphore primitives, no state change
* @page test_004_001 [4.1] Suspend and Resume functionality
*
* <h2>Description</h2>
* Wait, Signal and Reset primitives are tested. The testing thread
* does not trigger a state change.
* The functionality of chThdSuspendTimeoutS() and chThdResumeI() is
* tested.
*
* <h2>Test Steps</h2>
* - [4.1.1] The function chSemWait() is invoked, after return the
* counter and the returned message are tested.
* - [4.1.2] The function chSemSignal() is invoked, after return the
* counter is tested.
* - [4.1.3] The function chSemReset() is invoked, after return the
* counter is tested.
* - [4.1.1] The function chThdSuspendTimeoutS() is invoked, the thread
* is remotely resumed with message @p MSG_OK. On return the message
* and the state of the reference are tested.
* - [4.1.2] The function chThdSuspendTimeoutS() is invoked, the thread
* is not resumed so a timeout must occur. On return the message and
* the state of the reference are tested.
* .
*/
static void test_004_001_setup(void) {
chSemObjectInit(&sem1, 1);
}
static void test_004_001_teardown(void) {
chSemReset(&sem1, 0);
tr1 = NULL;
}
static void test_004_001_execute(void) {
systime_t time;
msg_t msg;
/* [4.1.1] The function chSemWait() is invoked, after return the
counter and the returned message are tested.*/
/* [4.1.1] The function chThdSuspendTimeoutS() is invoked, the thread
is remotely resumed with message @p MSG_OK. On return the message
and the state of the reference are tested.*/
test_set_step(1);
{
msg_t msg;
msg = chSemWait(&sem1);
test_assert_lock(chSemGetCounterI(&sem1) == 0, "wrong counter value");
test_assert(MSG_OK == msg, "wrong returned message");
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()-1, thread1, "A");
chSysLock();
msg = chThdSuspendTimeoutS(&tr1, TIME_INFINITE);
chSysUnlock();
test_assert(NULL == tr1, "not NULL");
test_assert(MSG_OK == msg,"wrong returned message");
test_wait_threads();
}
/* [4.1.2] The function chSemSignal() is invoked, after return the
counter is tested.*/
/* [4.1.2] The function chThdSuspendTimeoutS() is invoked, the thread
is not resumed so a timeout must occur. On return the message and
the state of the reference are tested.*/
test_set_step(2);
{
chSemSignal(&sem1);
test_assert_lock(chSemGetCounterI(&sem1) == 1, "wrong counter value");
}
/* [4.1.3] The function chSemReset() is invoked, after return the
counter is tested.*/
test_set_step(3);
{
chSemReset(&sem1, 2);
test_assert_lock(chSemGetCounterI(&sem1) == 2, "wrong counter value");
chSysLock();
time = chVTGetSystemTimeX();
msg = chThdSuspendTimeoutS(&tr1, MS2ST(1000));
chSysUnlock();
test_assert_time_window(time + MS2ST(1000),
time + MS2ST(1000) + CH_CFG_ST_TIMEDELTA + 1,
"out of time window");
test_assert(NULL == tr1, "not NULL");
test_assert(MSG_TIMEOUT == msg, "wrong returned message");
}
}
static const testcase_t test_004_001 = {
"Semaphore primitives, no state change",
"Suspend and Resume functionality",
test_004_001_setup,
test_004_001_teardown,
NULL,
test_004_001_execute
};
/**
* @page test_004_002 [4.2] Semaphore enqueuing test
*
* <h2>Description</h2>
* Five threads with randomized priorities are enqueued to a semaphore
* then awakened one at time. The test expects that the threads reach
* their goal in FIFO order or priority order depending on the @p
* CH_CFG_USE_SEMAPHORES_PRIORITY configuration setting.
*
* <h2>Test Steps</h2>
* - [4.2.1] Five threads are created with mixed priority levels (not
* increasing nor decreasing). Threads enqueue on a semaphore
* initialized to zero.
* - [4.2.2] The semaphore is signaled 5 times. The thread activation
* sequence is tested.
* .
*/
static void test_004_002_setup(void) {
chSemObjectInit(&sem1, 0);
}
static void test_004_002_execute(void) {
/* [4.2.1] Five threads are created with mixed priority levels (not
increasing nor decreasing). Threads enqueue on a semaphore
initialized to zero.*/
test_set_step(1);
{
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()+5, thread1, "A");
threads[1] = chThdCreateStatic(wa[1], WA_SIZE, chThdGetPriorityX()+1, thread1, "B");
threads[2] = chThdCreateStatic(wa[2], WA_SIZE, chThdGetPriorityX()+3, thread1, "C");
threads[3] = chThdCreateStatic(wa[3], WA_SIZE, chThdGetPriorityX()+4, thread1, "D");
threads[4] = chThdCreateStatic(wa[4], WA_SIZE, chThdGetPriorityX()+2, thread1, "E");
}
/* [4.2.2] The semaphore is signaled 5 times. The thread activation
sequence is tested.*/
test_set_step(2);
{
chSemSignal(&sem1);
chSemSignal(&sem1);
chSemSignal(&sem1);
chSemSignal(&sem1);
chSemSignal(&sem1);
test_wait_threads();
#if CH_CFG_USE_SEMAPHORES_PRIORITY
test_assert_sequence("ADCEB", "invalid sequence");
#else
test_assert_sequence("ABCDE", "invalid sequence");
#endif
}
}
static const testcase_t test_004_002 = {
"Semaphore enqueuing test",
test_004_002_setup,
NULL,
test_004_002_execute
};
/**
* @page test_004_003 [4.3] Semaphore timeout test
*
* <h2>Description</h2>
* The three possible semaphore waiting modes (do not wait, wait with
* timeout, wait without timeout) are explored. The test expects that
* the semaphore wait function returns the correct value in each of the
* above scenario and that the semaphore structure status is correct
* after each operation.
*
* <h2>Test Steps</h2>
* - [4.3.1] Testing special case TIME_IMMEDIATE.
* - [4.3.2] Testing non-timeout condition.
* - [4.3.3] Testing timeout condition.
* .
*/
static void test_004_003_setup(void) {
chSemObjectInit(&sem1, 0);
}
static void test_004_003_execute(void) {
unsigned i;
systime_t target_time;
msg_t msg;
/* [4.3.1] Testing special case TIME_IMMEDIATE.*/
test_set_step(1);
{
msg = chSemWaitTimeout(&sem1, TIME_IMMEDIATE);
test_assert(msg == MSG_TIMEOUT, "wrong wake-up message");
test_assert(queue_isempty(&sem1.queue), "queue not empty");
test_assert(sem1.cnt == 0, "counter not zero");
}
/* [4.3.2] Testing non-timeout condition.*/
test_set_step(2);
{
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() - 1,
thread2, 0);
msg = chSemWaitTimeout(&sem1, MS2ST(500));
test_wait_threads();
test_assert(msg == MSG_OK, "wrong wake-up message");
test_assert(queue_isempty(&sem1.queue), "queue not empty");
test_assert(sem1.cnt == 0, "counter not zero");
}
/* [4.3.3] Testing timeout condition.*/
test_set_step(3);
{
target_time = test_wait_tick() + MS2ST(5 * 50);
for (i = 0; i < 5; i++) {
test_emit_token('A' + i);
msg = chSemWaitTimeout(&sem1, MS2ST(50));
test_assert(msg == MSG_TIMEOUT, "wrong wake-up message");
test_assert(queue_isempty(&sem1.queue), "queue not empty");
test_assert(sem1.cnt == 0, "counter not zero");
}
test_assert_sequence("ABCDE", "invalid sequence");
test_assert_time_window(target_time, target_time + ALLOWED_DELAY,
"out of time window");
}
}
static const testcase_t test_004_003 = {
"Semaphore timeout test",
test_004_003_setup,
NULL,
test_004_003_execute
};
/**
* @page test_004_004 [4.4] Testing chSemAddCounterI() functionality
*
* <h2>Description</h2>
* The functon is tested by waking up a thread then the semaphore
* counter value is tested.
*
* <h2>Test Steps</h2>
* - [4.4.1] A thread is created, it goes to wait on the semaphore.
* - [4.4.2] The semaphore counter is increased by two, it is then
* tested to be one, the thread must have completed.
* .
*/
static void test_004_004_setup(void) {
chSemObjectInit(&sem1, 0);
}
static void test_004_004_execute(void) {
/* [4.4.1] A thread is created, it goes to wait on the semaphore.*/
test_set_step(1);
{
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()+1, thread1, "A");
}
/* [4.4.2] The semaphore counter is increased by two, it is then
tested to be one, the thread must have completed.*/
test_set_step(2);
{
chSysLock();
chSemAddCounterI(&sem1, 2);
chSchRescheduleS();
chSysUnlock();
test_wait_threads();
test_assert_lock(chSemGetCounterI(&sem1) == 1, "invalid counter");
test_assert_sequence("A", "invalid sequence");
}
}
static const testcase_t test_004_004 = {
"Testing chSemAddCounterI() functionality",
test_004_004_setup,
NULL,
test_004_004_execute
};
/**
* @page test_004_005 [4.5] Testing chSemWaitSignal() functionality
*
* <h2>Description</h2>
* This test case explicitly addresses the @p chSemWaitSignal()
* function. A thread is created that performs a wait and a signal
* operations. The tester thread is awakened from an atomic wait/signal
* operation. The test expects that the semaphore wait function returns
* the correct value in each of the above scenario and that the
* semaphore structure status is correct after each operation.
*
* <h2>Test Steps</h2>
* - [4.5.1] An higher priority thread is created that performs
* non-atomical wait and signal operations on a semaphore.
* - [4.5.2] The function chSemSignalWait() is invoked by specifying
* the same semaphore for the wait and signal phases. The counter
* value must be one on exit.
* - [4.5.3] The function chSemSignalWait() is invoked again by
* specifying the same semaphore for the wait and signal phases. The
* counter value must be one on exit.
* .
*/
static void test_004_005_setup(void) {
chSemObjectInit(&sem1, 0);
}
static void test_004_005_teardown(void) {
test_wait_threads();
}
static void test_004_005_execute(void) {
/* [4.5.1] An higher priority thread is created that performs
non-atomical wait and signal operations on a semaphore.*/
test_set_step(1);
{
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX()+1, thread3, 0);
}
/* [4.5.2] The function chSemSignalWait() is invoked by specifying
the same semaphore for the wait and signal phases. The counter
value must be one on exit.*/
test_set_step(2);
{
chSemSignalWait(&sem1, &sem1);
test_assert(queue_isempty(&sem1.queue), "queue not empty");
test_assert(sem1.cnt == 0, "counter not zero");
}
/* [4.5.3] The function chSemSignalWait() is invoked again by
specifying the same semaphore for the wait and signal phases. The
counter value must be one on exit.*/
test_set_step(3);
{
chSemSignalWait(&sem1, &sem1);
test_assert(queue_isempty(&sem1.queue), "queue not empty");
test_assert(sem1.cnt == 0, "counter not zero");
}
}
static const testcase_t test_004_005 = {
"Testing chSemWaitSignal() functionality",
test_004_005_setup,
test_004_005_teardown,
test_004_005_execute
};
/**
* @page test_004_006 [4.6] Testing Binary Semaphores special case
*
* <h2>Description</h2>
* This test case tests the binary semaphores functionality. The test
* both checks the binary semaphore status and the expected status of
* the underlying counting semaphore.
*
* <h2>Test Steps</h2>
* - [4.6.1] Creating a binary semaphore in "taken" state, the state is
* checked.
* - [4.6.2] Resetting the binary semaphore in "taken" state, the state
* must not change.
* - [4.6.3] Starting a signaler thread at a lower priority.
* - [4.6.4] Waiting for the binary semaphore to be signaled, the
* semaphore is expected to be taken.
* - [4.6.5] Signaling the binary semaphore, checking the binary
* semaphore state to be "not taken" and the underlying counter
* semaphore counter to be one.
* - [4.6.6] Signaling the binary semaphore again, the internal state
* must not change from "not taken".
* .
*/
static void test_004_006_teardown(void) {
test_wait_threads();
}
static void test_004_006_execute(void) {
binary_semaphore_t bsem;
msg_t msg;
/* [4.6.1] Creating a binary semaphore in "taken" state, the state is
checked.*/
test_set_step(1);
{
chBSemObjectInit(&bsem, true);
test_assert_lock(chBSemGetStateI(&bsem) == true, "not taken");
}
/* [4.6.2] Resetting the binary semaphore in "taken" state, the state
must not change.*/
test_set_step(2);
{
chBSemReset(&bsem, true);
test_assert_lock(chBSemGetStateI(&bsem) == true, "not taken");
}
/* [4.6.3] Starting a signaler thread at a lower priority.*/
test_set_step(3);
{
threads[0] = chThdCreateStatic(wa[0], WA_SIZE,
chThdGetPriorityX()-1, thread4, &bsem);
}
/* [4.6.4] Waiting for the binary semaphore to be signaled, the
semaphore is expected to be taken.*/
test_set_step(4);
{
msg = chBSemWait(&bsem);
test_assert_lock(chBSemGetStateI(&bsem) == true, "not taken");
test_assert(msg == MSG_OK, "unexpected message");
}
/* [4.6.5] Signaling the binary semaphore, checking the binary
semaphore state to be "not taken" and the underlying counter
semaphore counter to be one.*/
test_set_step(5);
{
chBSemSignal(&bsem);
test_assert_lock(chBSemGetStateI(&bsem) ==false, "still taken");
test_assert_lock(chSemGetCounterI(&bsem.sem) == 1, "unexpected counter");
}
/* [4.6.6] Signaling the binary semaphore again, the internal state
must not change from "not taken".*/
test_set_step(6);
{
chBSemSignal(&bsem);
test_assert_lock(chBSemGetStateI(&bsem) == false, "taken");
test_assert_lock(chSemGetCounterI(&bsem.sem) == 1, "unexpected counter");
}
}
static const testcase_t test_004_006 = {
"Testing Binary Semaphores special case",
NULL,
test_004_006_teardown,
test_004_006_execute
};
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Counter and Binary Semaphores.
* @brief Suspend/Resume.
*/
const testcase_t * const test_sequence_004[] = {
&test_004_001,
&test_004_002,
&test_004_003,
&test_004_004,
&test_004_005,
&test_004_006,
NULL
};
#endif /* CH_CFG_USE_SEMAPHORES */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -22,56 +22,37 @@
* @file test_sequence_007.c
* @brief Test Sequence 007 code.
*
* @page test_sequence_007 [7] Event Sources and Event Flags
* @page test_sequence_007 [7] Synchronous Messages
*
* File: @ref test_sequence_007.c
*
* <h2>Description</h2>
* This module implements the test sequence for the Events subsystem.
* This module implements the test sequence for the Synchronous
* Messages subsystem.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_EVENTS
* - CH_CFG_USE_MESSAGES
* .
*
* <h2>Test Cases</h2>
* - @subpage test_007_001
* - @subpage test_007_002
* - @subpage test_007_003
* - @subpage test_007_004
* - @subpage test_007_005
* - @subpage test_007_006
* - @subpage test_007_007
* .
*/
#if (CH_CFG_USE_EVENTS) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MESSAGES) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
static EVENTSOURCE_DECL(es1);
static EVENTSOURCE_DECL(es2);
static THD_FUNCTION(msg_thread1, p) {
static void h1(eventid_t id) {(void)id;test_emit_token('A');}
static void h2(eventid_t id) {(void)id;test_emit_token('B');}
static void h3(eventid_t id) {(void)id;test_emit_token('C');}
static ROMCONST evhandler_t evhndl[] = {h1, h2, h3};
static THD_FUNCTION(evt_thread3, p) {
chThdSleepMilliseconds(50);
chEvtSignal((thread_t *)p, 1);
}
static THD_FUNCTION(evt_thread7, p) {
(void)p;
chEvtBroadcast(&es1);
chThdSleepMilliseconds(50);
chEvtBroadcast(&es2);
chMsgSend(p, 'A');
chMsgSend(p, 'B');
chMsgSend(p, 'C');
chMsgSend(p, 'D');
}
/****************************************************************************
@ -79,491 +60,64 @@ static THD_FUNCTION(evt_thread7, p) {
****************************************************************************/
/**
* @page test_007_001 [7.1] Events registration
* @page test_007_001 [7.1] Messages Server loop
*
* <h2>Description</h2>
* Two event listeners are registered on an event source and then
* unregistered in the same order.<br> The test expects that the even
* source has listeners after the registrations and after the first
* unregistration, then, after the second unegistration, the test
* expects no more listeners.
* A messenger thread is spawned that sends four messages back to the
* tester thread.<br> The test expect to receive the messages in the
* correct sequence and to not find a fifth message waiting.
*
* <h2>Test Steps</h2>
* - [7.1.1] An Event Source is initialized.
* - [7.1.2] Two Event Listeners are registered on the Event Source,
* the Event Source is tested to have listeners.
* - [7.1.3] An Event Listener is unregistered, the Event Source must
* still have listeners.
* - [7.1.4] An Event Listener is unregistered, the Event Source must
* not have listeners.
* - [7.1.1] Starting the messenger thread.
* - [7.1.2] Waiting for four messages then testing the receive order.
* .
*/
static void test_007_001_execute(void) {
event_listener_t el1, el2;
thread_t *tp;
msg_t msg;
/* [7.1.1] An Event Source is initialized.*/
/* [7.1.1] Starting the messenger thread.*/
test_set_step(1);
{
chEvtObjectInit(&es1);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() + 1,
msg_thread1, chThdGetSelfX());
}
/* [7.1.2] Two Event Listeners are registered on the Event Source,
the Event Source is tested to have listeners.*/
/* [7.1.2] Waiting for four messages then testing the receive
order.*/
test_set_step(2);
{
chEvtRegisterMask(&es1, &el1, 1);
chEvtRegisterMask(&es1, &el2, 2);
test_assert_lock(chEvtIsListeningI(&es1), "no listener");
}
unsigned i;
/* [7.1.3] An Event Listener is unregistered, the Event Source must
still have listeners.*/
test_set_step(3);
{
chEvtUnregister(&es1, &el1);
test_assert_lock(chEvtIsListeningI(&es1), "no listener");
}
/* [7.1.4] An Event Listener is unregistered, the Event Source must
not have listeners.*/
test_set_step(4);
{
chEvtUnregister(&es1, &el2);
test_assert_lock(!chEvtIsListeningI(&es1), "stuck listener");
for (i = 0; i < 4; i++) {
tp = chMsgWait();
msg = chMsgGet(tp);
chMsgRelease(tp, msg);
test_emit_token(msg);
}
test_wait_threads();
test_assert_sequence("ABCD", "invalid sequence");
}
}
static const testcase_t test_007_001 = {
"Events registration",
"Messages Server loop",
NULL,
NULL,
test_007_001_execute
};
/**
* @page test_007_002 [7.2] Event Flags dispatching
*
* <h2>Description</h2>
* The test dispatches three event flags and verifies that the
* associated event handlers are invoked in LSb-first order.
*
* <h2>Test Steps</h2>
* - [7.2.1] Three evenf flag bits are raised then chEvtDispatch() is
* invoked, the sequence of handlers calls is tested.
* .
*/
static void test_007_002_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_007_002_execute(void) {
/* [7.2.1] Three evenf flag bits are raised then chEvtDispatch() is
invoked, the sequence of handlers calls is tested.*/
test_set_step(1);
{
chEvtDispatch(evhndl, 7);
test_assert_sequence("ABC", "invalid sequence");
}
}
static const testcase_t test_007_002 = {
"Event Flags dispatching",
test_007_002_setup,
NULL,
test_007_002_execute
};
/**
* @page test_007_003 [7.3] Events Flags wait using chEvtWaitOne()
*
* <h2>Description</h2>
* Functionality of chEvtWaitOne() is tested under various scenarios.
*
* <h2>Test Steps</h2>
* - [7.3.1] Setting three event flags.
* - [7.3.2] Calling chEvtWaitOne() three times, each time a single
* flag must be returned in order of priority.
* - [7.3.3] Getting current time and starting a signaler thread, the
* thread will set an event flag after 50mS.
* - [7.3.4] Calling chEvtWaitOne() then verifying that the event has
* been received after 50mS and that the event flags mask has been
* emptied.
* .
*/
static void test_007_003_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_007_003_execute(void) {
eventmask_t m;
systime_t target_time;
/* [7.3.1] Setting three event flags.*/
test_set_step(1);
{
chEvtAddEvents(7);
}
/* [7.3.2] Calling chEvtWaitOne() three times, each time a single
flag must be returned in order of priority.*/
test_set_step(2);
{
m = chEvtWaitOne(ALL_EVENTS);
test_assert(m == 1, "single event error");
m = chEvtWaitOne(ALL_EVENTS);
test_assert(m == 2, "single event error");
m = chEvtWaitOne(ALL_EVENTS);
test_assert(m == 4, "single event error");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
}
/* [7.3.3] Getting current time and starting a signaler thread, the
thread will set an event flag after 50mS.*/
test_set_step(3);
{
target_time = test_wait_tick() + MS2ST(50);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() - 1,
evt_thread3, chThdGetSelfX());
}
/* [7.3.4] Calling chEvtWaitOne() then verifying that the event has
been received after 50mS and that the event flags mask has been
emptied.*/
test_set_step(4);
{
m = chEvtWaitOne(ALL_EVENTS);
test_assert_time_window(target_time, target_time + ALLOWED_DELAY,
"out of time window");
test_assert(m == 1, "event flag error");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
test_wait_threads();
}
}
static const testcase_t test_007_003 = {
"Events Flags wait using chEvtWaitOne()",
test_007_003_setup,
NULL,
test_007_003_execute
};
/**
* @page test_007_004 [7.4] Events Flags wait using chEvtWaitAny()
*
* <h2>Description</h2>
* Functionality of chEvtWaitAny() is tested under various scenarios.
*
* <h2>Test Steps</h2>
* - [7.4.1] Setting two, non contiguous, event flags.
* - [7.4.2] Calling chEvtWaitAny() one time, the two flags must be
* returned.
* - [7.4.3] Getting current time and starting a signaler thread, the
* thread will set an event flag after 50mS.
* - [7.4.4] Calling chEvtWaitAny() then verifying that the event has
* been received after 50mS and that the event flags mask has been
* emptied.
* .
*/
static void test_007_004_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_007_004_execute(void) {
eventmask_t m;
systime_t target_time;
/* [7.4.1] Setting two, non contiguous, event flags.*/
test_set_step(1);
{
chEvtAddEvents(5);
}
/* [7.4.2] Calling chEvtWaitAny() one time, the two flags must be
returned.*/
test_set_step(2);
{
m = chEvtWaitAny(ALL_EVENTS);
test_assert(m == 5, "unexpected pending bit");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
}
/* [7.4.3] Getting current time and starting a signaler thread, the
thread will set an event flag after 50mS.*/
test_set_step(3);
{
target_time = test_wait_tick() + MS2ST(50);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() - 1,
evt_thread3, chThdGetSelfX());
}
/* [7.4.4] Calling chEvtWaitAny() then verifying that the event has
been received after 50mS and that the event flags mask has been
emptied.*/
test_set_step(4);
{
m = chEvtWaitAny(ALL_EVENTS);
test_assert_time_window(target_time, target_time + ALLOWED_DELAY,
"out of time window");
test_assert(m == 1, "event flag error");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
test_wait_threads();
}
}
static const testcase_t test_007_004 = {
"Events Flags wait using chEvtWaitAny()",
test_007_004_setup,
NULL,
test_007_004_execute
};
/**
* @page test_007_005 [7.5] Events Flags wait using chEvtWaitAll()
*
* <h2>Description</h2>
* Functionality of chEvtWaitAll() is tested under various scenarios.
*
* <h2>Test Steps</h2>
* - [7.5.1] Setting two, non contiguous, event flags.
* - [7.5.2] Calling chEvtWaitAll() one time, the two flags must be
* returned.
* - [7.5.3] Setting one event flag.
* - [7.5.4] Getting current time and starting a signaler thread, the
* thread will set another event flag after 50mS.
* - [7.5.5] Calling chEvtWaitAll() then verifying that both event
* flags have been received after 50mS and that the event flags mask
* has been emptied.
* .
*/
static void test_007_005_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_007_005_execute(void) {
eventmask_t m;
systime_t target_time;
/* [7.5.1] Setting two, non contiguous, event flags.*/
test_set_step(1);
{
chEvtAddEvents(5);
}
/* [7.5.2] Calling chEvtWaitAll() one time, the two flags must be
returned.*/
test_set_step(2);
{
m = chEvtWaitAll(5);
test_assert(m == 5, "unexpected pending bit");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
}
/* [7.5.3] Setting one event flag.*/
test_set_step(3);
{
chEvtAddEvents(4);
}
/* [7.5.4] Getting current time and starting a signaler thread, the
thread will set another event flag after 50mS.*/
test_set_step(4);
{
target_time = test_wait_tick() + MS2ST(50);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() - 1,
evt_thread3, chThdGetSelfX());
}
/* [7.5.5] Calling chEvtWaitAll() then verifying that both event
flags have been received after 50mS and that the event flags mask
has been emptied.*/
test_set_step(5);
{
m = chEvtWaitAll(5);
test_assert_time_window(target_time, target_time + ALLOWED_DELAY,
"out of time window");
test_assert(m == 5, "event flags error");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
test_wait_threads();
}
}
static const testcase_t test_007_005 = {
"Events Flags wait using chEvtWaitAll()",
test_007_005_setup,
NULL,
test_007_005_execute
};
#if (CH_CFG_USE_EVENTS_TIMEOUT) || defined(__DOXYGEN__)
/**
* @page test_007_006 [7.6] Events Flags wait timeouts
*
* <h2>Description</h2>
* Timeout functionality is tested for chEvtWaitOneTimeout(),
* chEvtWaitAnyTimeout() and chEvtWaitAllTimeout().
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_EVENTS_TIMEOUT
* .
*
* <h2>Test Steps</h2>
* - [7.6.1] The functions are invoked first with TIME_IMMEDIATE
* timeout, the timeout condition is tested.
* - [7.6.2] The functions are invoked first with a 50mS timeout, the
* timeout condition is tested.
* .
*/
static void test_007_006_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_007_006_execute(void) {
eventmask_t m;
/* [7.6.1] The functions are invoked first with TIME_IMMEDIATE
timeout, the timeout condition is tested.*/
test_set_step(1);
{
m = chEvtWaitOneTimeout(ALL_EVENTS, TIME_IMMEDIATE);
test_assert(m == 0, "spurious event");
m = chEvtWaitAnyTimeout(ALL_EVENTS, TIME_IMMEDIATE);
test_assert(m == 0, "spurious event");
m = chEvtWaitAllTimeout(ALL_EVENTS, TIME_IMMEDIATE);
test_assert(m == 0, "spurious event");
}
/* [7.6.2] The functions are invoked first with a 50mS timeout, the
timeout condition is tested.*/
test_set_step(2);
{
m = chEvtWaitOneTimeout(ALL_EVENTS, MS2ST(50));
test_assert(m == 0, "spurious event");
m = chEvtWaitAnyTimeout(ALL_EVENTS, MS2ST(50));
test_assert(m == 0, "spurious event");
m = chEvtWaitAllTimeout(ALL_EVENTS, MS2ST(50));
test_assert(m == 0, "spurious event");
}
}
static const testcase_t test_007_006 = {
"Events Flags wait timeouts",
test_007_006_setup,
NULL,
test_007_006_execute
};
#endif /* CH_CFG_USE_EVENTS_TIMEOUT */
/**
* @page test_007_007 [7.7] Broadcasting using chEvtBroadcast()
*
* <h2>Description</h2>
* Functionality of chEvtBroadcast() is tested.
*
* <h2>Test Steps</h2>
* - [7.7.1] Registering on two event sources associating them with
* flags 1 and 4.
* - [7.7.2] Getting current time and starting a broadcaster thread,
* the thread broadcast the first Event Source immediately and the
* other after 50mS.
* - [7.7.3] Calling chEvtWaitAll() then verifying that both event
* flags have been received after 50mS and that the event flags mask
* has been emptied.
* - [7.7.4] Unregistering from the Event Sources.
* .
*/
static void test_007_007_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
chEvtObjectInit(&es1);
chEvtObjectInit(&es2);
}
static void test_007_007_execute(void) {
eventmask_t m;
event_listener_t el1, el2;
systime_t target_time;
/* [7.7.1] Registering on two event sources associating them with
flags 1 and 4.*/
test_set_step(1);
{
chEvtRegisterMask(&es1, &el1, 1);
chEvtRegisterMask(&es2, &el2, 4);
}
/* [7.7.2] Getting current time and starting a broadcaster thread,
the thread broadcast the first Event Source immediately and the
other after 50mS.*/
test_set_step(2);
{
target_time = test_wait_tick() + MS2ST(50);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() - 1,
evt_thread7, "A");
}
/* [7.7.3] Calling chEvtWaitAll() then verifying that both event
flags have been received after 50mS and that the event flags mask
has been emptied.*/
test_set_step(3);
{
m = chEvtWaitAll(5);
test_assert_time_window(target_time, target_time + ALLOWED_DELAY,
"out of time window");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
test_wait_threads();
}
/* [7.7.4] Unregistering from the Event Sources.*/
test_set_step(4);
{
chEvtUnregister(&es1, &el1);
chEvtUnregister(&es2, &el2);
test_assert(!chEvtIsListeningI(&es1), "stuck listener");
test_assert(!chEvtIsListeningI(&es2), "stuck listener");
}
}
static const testcase_t test_007_007 = {
"Broadcasting using chEvtBroadcast()",
test_007_007_setup,
NULL,
test_007_007_execute
};
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Event Sources and Event Flags.
* @brief Synchronous Messages.
*/
const testcase_t * const test_sequence_007[] = {
&test_007_001,
&test_007_002,
&test_007_003,
&test_007_004,
&test_007_005,
#if (CH_CFG_USE_EVENTS_TIMEOUT) || defined(__DOXYGEN__)
&test_007_006,
#endif
&test_007_007,
NULL
};
#endif /* CH_CFG_USE_EVENTS */
#endif /* CH_CFG_USE_MESSAGES */

View File

@ -22,388 +22,548 @@
* @file test_sequence_008.c
* @brief Test Sequence 008 code.
*
* @page test_sequence_008 [8] Mailboxes
* @page test_sequence_008 [8] Event Sources and Event Flags
*
* File: @ref test_sequence_008.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/RT functionalities related to
* mailboxes.
* This module implements the test sequence for the Events subsystem.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_MAILBOXES
* - CH_CFG_USE_EVENTS
* .
*
* <h2>Test Cases</h2>
* - @subpage test_008_001
* - @subpage test_008_002
* - @subpage test_008_003
* - @subpage test_008_004
* - @subpage test_008_005
* - @subpage test_008_006
* - @subpage test_008_007
* .
*/
#if (CH_CFG_USE_MAILBOXES) || defined(__DOXYGEN__)
#if (CH_CFG_USE_EVENTS) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define MB_SIZE 4
static EVENTSOURCE_DECL(es1);
static EVENTSOURCE_DECL(es2);
static msg_t mb_buffer[MB_SIZE];
static MAILBOX_DECL(mb1, mb_buffer, MB_SIZE);
static void h1(eventid_t id) {(void)id;test_emit_token('A');}
static void h2(eventid_t id) {(void)id;test_emit_token('B');}
static void h3(eventid_t id) {(void)id;test_emit_token('C');}
static ROMCONST evhandler_t evhndl[] = {h1, h2, h3};
static THD_FUNCTION(evt_thread3, p) {
chThdSleepMilliseconds(50);
chEvtSignal((thread_t *)p, 1);
}
static THD_FUNCTION(evt_thread7, p) {
(void)p;
chEvtBroadcast(&es1);
chThdSleepMilliseconds(50);
chEvtBroadcast(&es2);
}
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_008_001 [8.1] Mailbox normal API, non-blocking tests
* @page test_008_001 [8.1] Events registration
*
* <h2>Description</h2>
* The mailbox normal API is tested without triggering blocking
* conditions.
* Two event listeners are registered on an event source and then
* unregistered in the same order.<br> The test expects that the even
* source has listeners after the registrations and after the first
* unregistration, then, after the second unegistration, the test
* expects no more listeners.
*
* <h2>Test Steps</h2>
* - [8.1.1] Testing the mailbox size.
* - [8.1.2] Resetting the mailbox, conditions are checked, no errors
* expected.
* - [8.1.3] Testing the behavior of API when the mailbox is in reset
* state then return in active state.
* - [8.1.4] Filling the mailbox using chMBPost() and chMBPostAhead()
* once, no errors expected.
* - [8.1.5] Testing intermediate conditions. Data pointers must be
* aligned, semaphore counters are checked.
* - [8.1.6] Emptying the mailbox using chMBFetch(), no errors
* expected.
* - [8.1.7] Posting and then fetching one more message, no errors
* expected.
* - [8.1.8] Testing final conditions. Data pointers must be aligned to
* buffer start, semaphore counters are checked.
* - [8.1.1] An Event Source is initialized.
* - [8.1.2] Two Event Listeners are registered on the Event Source,
* the Event Source is tested to have listeners.
* - [8.1.3] An Event Listener is unregistered, the Event Source must
* still have listeners.
* - [8.1.4] An Event Listener is unregistered, the Event Source must
* not have listeners.
* .
*/
static void test_008_001_setup(void) {
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_008_001_teardown(void) {
chMBReset(&mb1);
}
static void test_008_001_execute(void) {
msg_t msg1, msg2;
unsigned i;
event_listener_t el1, el2;
/* [8.1.1] Testing the mailbox size.*/
/* [8.1.1] An Event Source is initialized.*/
test_set_step(1);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
chEvtObjectInit(&es1);
}
/* [8.1.2] Resetting the mailbox, conditions are checked, no errors
expected.*/
/* [8.1.2] Two Event Listeners are registered on the Event Source,
the Event Source is tested to have listeners.*/
test_set_step(2);
{
chMBReset(&mb1);
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert_lock(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
chEvtRegisterMask(&es1, &el1, 1);
chEvtRegisterMask(&es1, &el2, 2);
test_assert_lock(chEvtIsListeningI(&es1), "no listener");
}
/* [8.1.3] Testing the behavior of API when the mailbox is in reset
state then return in active state.*/
/* [8.1.3] An Event Listener is unregistered, the Event Source must
still have listeners.*/
test_set_step(3);
{
msg1 = chMBPost(&mb1, (msg_t)0, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
msg1 = chMBPostAhead(&mb1, (msg_t)0, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
chMBResumeX(&mb1);
chEvtUnregister(&es1, &el1);
test_assert_lock(chEvtIsListeningI(&es1), "no listener");
}
/* [8.1.4] Filling the mailbox using chMBPost() and chMBPostAhead()
once, no errors expected.*/
/* [8.1.4] An Event Listener is unregistered, the Event Source must
not have listeners.*/
test_set_step(4);
{
for (i = 0; i < MB_SIZE - 1; i++) {
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
msg1 = chMBPostAhead(&mb1, 'A', TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [8.1.5] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
test_set_step(5);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == 0, "still empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
/* [8.1.6] Emptying the mailbox using chMBFetch(), no errors
expected.*/
test_set_step(6);
{
for (i = 0; i < MB_SIZE; i++) {
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
test_emit_token(msg2);
}
test_assert_sequence("ABCD", "wrong get sequence");
}
/* [8.1.7] Posting and then fetching one more message, no errors
expected.*/
test_set_step(7);
{
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [8.1.8] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
test_set_step(8);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
chEvtUnregister(&es1, &el2);
test_assert_lock(!chEvtIsListeningI(&es1), "stuck listener");
}
}
static const testcase_t test_008_001 = {
"Mailbox normal API, non-blocking tests",
test_008_001_setup,
test_008_001_teardown,
"Events registration",
NULL,
NULL,
test_008_001_execute
};
/**
* @page test_008_002 [8.2] Mailbox I-Class API, non-blocking tests
* @page test_008_002 [8.2] Event Flags dispatching
*
* <h2>Description</h2>
* The mailbox I-Class API is tested without triggering blocking
* conditions.
* The test dispatches three event flags and verifies that the
* associated event handlers are invoked in LSb-first order.
*
* <h2>Test Steps</h2>
* - [8.2.1] Testing the mailbox size.
* - [8.2.2] Resetting the mailbox, conditions are checked, no errors
* expected. The mailbox is then returned in active state.
* - [8.2.3] Filling the mailbox using chMBPostI() and chMBPostAheadI()
* once, no errors expected.
* - [8.2.4] Testing intermediate conditions. Data pointers must be
* aligned, semaphore counters are checked.
* - [8.2.5] Emptying the mailbox using chMBFetchI(), no errors
* expected.
* - [8.2.6] Posting and then fetching one more message, no errors
* expected.
* - [8.2.7] Testing final conditions. Data pointers must be aligned to
* buffer start, semaphore counters are checked.
* - [8.2.1] Three evenf flag bits are raised then chEvtDispatch() is
* invoked, the sequence of handlers calls is tested.
* .
*/
static void test_008_002_setup(void) {
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_008_002_teardown(void) {
chMBReset(&mb1);
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_008_002_execute(void) {
msg_t msg1, msg2;
unsigned i;
/* [8.2.1] Testing the mailbox size.*/
/* [8.2.1] Three evenf flag bits are raised then chEvtDispatch() is
invoked, the sequence of handlers calls is tested.*/
test_set_step(1);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
}
/* [8.2.2] Resetting the mailbox, conditions are checked, no errors
expected. The mailbox is then returned in active state.*/
test_set_step(2);
{
chSysLock();
chMBResetI(&mb1);
chSysUnlock();
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert_lock(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
chMBResumeX(&mb1);
}
/* [8.2.3] Filling the mailbox using chMBPostI() and chMBPostAheadI()
once, no errors expected.*/
test_set_step(3);
{
for (i = 0; i < MB_SIZE - 1; i++) {
chSysLock();
msg1 = chMBPostI(&mb1, 'B' + i);
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
chSysLock();
msg1 = chMBPostAheadI(&mb1, 'A');
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [8.2.4] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
test_set_step(4);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == 0, "still empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
/* [8.2.5] Emptying the mailbox using chMBFetchI(), no errors
expected.*/
test_set_step(5);
{
for (i = 0; i < MB_SIZE; i++) {
chSysLock();
msg1 = chMBFetchI(&mb1, &msg2);
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
test_emit_token(msg2);
}
test_assert_sequence("ABCD", "wrong get sequence");
}
/* [8.2.6] Posting and then fetching one more message, no errors
expected.*/
test_set_step(6);
{
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [8.2.7] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
test_set_step(7);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
chEvtDispatch(evhndl, 7);
test_assert_sequence("ABC", "invalid sequence");
}
}
static const testcase_t test_008_002 = {
"Mailbox I-Class API, non-blocking tests",
"Event Flags dispatching",
test_008_002_setup,
test_008_002_teardown,
NULL,
test_008_002_execute
};
/**
* @page test_008_003 [8.3] Mailbox timeouts
* @page test_008_003 [8.3] Events Flags wait using chEvtWaitOne()
*
* <h2>Description</h2>
* The mailbox API is tested for timeouts.
* Functionality of chEvtWaitOne() is tested under various scenarios.
*
* <h2>Test Steps</h2>
* - [8.3.1] Filling the mailbox.
* - [8.3.2] Testing chMBPost(), chMBPostI(), chMBPostAhead() and
* chMBPostAheadI() timeout.
* - [8.3.3] Resetting the mailbox. The mailbox is then returned in
* active state.
* - [8.3.4] Testing chMBFetch() and chMBFetchI() timeout.
* - [8.3.1] Setting three event flags.
* - [8.3.2] Calling chEvtWaitOne() three times, each time a single
* flag must be returned in order of priority.
* - [8.3.3] Getting current time and starting a signaler thread, the
* thread will set an event flag after 50mS.
* - [8.3.4] Calling chEvtWaitOne() then verifying that the event has
* been received after 50mS and that the event flags mask has been
* emptied.
* .
*/
static void test_008_003_setup(void) {
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_008_003_teardown(void) {
chMBReset(&mb1);
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_008_003_execute(void) {
msg_t msg1, msg2;
unsigned i;
eventmask_t m;
systime_t target_time;
/* [8.3.1] Filling the mailbox.*/
/* [8.3.1] Setting three event flags.*/
test_set_step(1);
{
for (i = 0; i < MB_SIZE; i++) {
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
chEvtAddEvents(7);
}
/* [8.3.2] Testing chMBPost(), chMBPostI(), chMBPostAhead() and
chMBPostAheadI() timeout.*/
/* [8.3.2] Calling chEvtWaitOne() three times, each time a single
flag must be returned in order of priority.*/
test_set_step(2);
{
msg1 = chMBPost(&mb1, 'X', 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBPostI(&mb1, 'X');
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
msg1 = chMBPostAhead(&mb1, 'X', 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBPostAheadI(&mb1, 'X');
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
m = chEvtWaitOne(ALL_EVENTS);
test_assert(m == 1, "single event error");
m = chEvtWaitOne(ALL_EVENTS);
test_assert(m == 2, "single event error");
m = chEvtWaitOne(ALL_EVENTS);
test_assert(m == 4, "single event error");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
}
/* [8.3.3] Resetting the mailbox. The mailbox is then returned in
active state.*/
/* [8.3.3] Getting current time and starting a signaler thread, the
thread will set an event flag after 50mS.*/
test_set_step(3);
{
chMBReset(&mb1);
chMBResumeX(&mb1);
target_time = test_wait_tick() + MS2ST(50);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() - 1,
evt_thread3, chThdGetSelfX());
}
/* [8.3.4] Testing chMBFetch() and chMBFetchI() timeout.*/
/* [8.3.4] Calling chEvtWaitOne() then verifying that the event has
been received after 50mS and that the event flags mask has been
emptied.*/
test_set_step(4);
{
msg1 = chMBFetch(&mb1, &msg2, 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBFetchI(&mb1, &msg2);
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
m = chEvtWaitOne(ALL_EVENTS);
test_assert_time_window(target_time, target_time + ALLOWED_DELAY,
"out of time window");
test_assert(m == 1, "event flag error");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
test_wait_threads();
}
}
static const testcase_t test_008_003 = {
"Mailbox timeouts",
"Events Flags wait using chEvtWaitOne()",
test_008_003_setup,
test_008_003_teardown,
NULL,
test_008_003_execute
};
/**
* @page test_008_004 [8.4] Events Flags wait using chEvtWaitAny()
*
* <h2>Description</h2>
* Functionality of chEvtWaitAny() is tested under various scenarios.
*
* <h2>Test Steps</h2>
* - [8.4.1] Setting two, non contiguous, event flags.
* - [8.4.2] Calling chEvtWaitAny() one time, the two flags must be
* returned.
* - [8.4.3] Getting current time and starting a signaler thread, the
* thread will set an event flag after 50mS.
* - [8.4.4] Calling chEvtWaitAny() then verifying that the event has
* been received after 50mS and that the event flags mask has been
* emptied.
* .
*/
static void test_008_004_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_008_004_execute(void) {
eventmask_t m;
systime_t target_time;
/* [8.4.1] Setting two, non contiguous, event flags.*/
test_set_step(1);
{
chEvtAddEvents(5);
}
/* [8.4.2] Calling chEvtWaitAny() one time, the two flags must be
returned.*/
test_set_step(2);
{
m = chEvtWaitAny(ALL_EVENTS);
test_assert(m == 5, "unexpected pending bit");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
}
/* [8.4.3] Getting current time and starting a signaler thread, the
thread will set an event flag after 50mS.*/
test_set_step(3);
{
target_time = test_wait_tick() + MS2ST(50);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() - 1,
evt_thread3, chThdGetSelfX());
}
/* [8.4.4] Calling chEvtWaitAny() then verifying that the event has
been received after 50mS and that the event flags mask has been
emptied.*/
test_set_step(4);
{
m = chEvtWaitAny(ALL_EVENTS);
test_assert_time_window(target_time, target_time + ALLOWED_DELAY,
"out of time window");
test_assert(m == 1, "event flag error");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
test_wait_threads();
}
}
static const testcase_t test_008_004 = {
"Events Flags wait using chEvtWaitAny()",
test_008_004_setup,
NULL,
test_008_004_execute
};
/**
* @page test_008_005 [8.5] Events Flags wait using chEvtWaitAll()
*
* <h2>Description</h2>
* Functionality of chEvtWaitAll() is tested under various scenarios.
*
* <h2>Test Steps</h2>
* - [8.5.1] Setting two, non contiguous, event flags.
* - [8.5.2] Calling chEvtWaitAll() one time, the two flags must be
* returned.
* - [8.5.3] Setting one event flag.
* - [8.5.4] Getting current time and starting a signaler thread, the
* thread will set another event flag after 50mS.
* - [8.5.5] Calling chEvtWaitAll() then verifying that both event
* flags have been received after 50mS and that the event flags mask
* has been emptied.
* .
*/
static void test_008_005_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_008_005_execute(void) {
eventmask_t m;
systime_t target_time;
/* [8.5.1] Setting two, non contiguous, event flags.*/
test_set_step(1);
{
chEvtAddEvents(5);
}
/* [8.5.2] Calling chEvtWaitAll() one time, the two flags must be
returned.*/
test_set_step(2);
{
m = chEvtWaitAll(5);
test_assert(m == 5, "unexpected pending bit");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
}
/* [8.5.3] Setting one event flag.*/
test_set_step(3);
{
chEvtAddEvents(4);
}
/* [8.5.4] Getting current time and starting a signaler thread, the
thread will set another event flag after 50mS.*/
test_set_step(4);
{
target_time = test_wait_tick() + MS2ST(50);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() - 1,
evt_thread3, chThdGetSelfX());
}
/* [8.5.5] Calling chEvtWaitAll() then verifying that both event
flags have been received after 50mS and that the event flags mask
has been emptied.*/
test_set_step(5);
{
m = chEvtWaitAll(5);
test_assert_time_window(target_time, target_time + ALLOWED_DELAY,
"out of time window");
test_assert(m == 5, "event flags error");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
test_wait_threads();
}
}
static const testcase_t test_008_005 = {
"Events Flags wait using chEvtWaitAll()",
test_008_005_setup,
NULL,
test_008_005_execute
};
#if (CH_CFG_USE_EVENTS_TIMEOUT) || defined(__DOXYGEN__)
/**
* @page test_008_006 [8.6] Events Flags wait timeouts
*
* <h2>Description</h2>
* Timeout functionality is tested for chEvtWaitOneTimeout(),
* chEvtWaitAnyTimeout() and chEvtWaitAllTimeout().
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_EVENTS_TIMEOUT
* .
*
* <h2>Test Steps</h2>
* - [8.6.1] The functions are invoked first with TIME_IMMEDIATE
* timeout, the timeout condition is tested.
* - [8.6.2] The functions are invoked first with a 50mS timeout, the
* timeout condition is tested.
* .
*/
static void test_008_006_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
}
static void test_008_006_execute(void) {
eventmask_t m;
/* [8.6.1] The functions are invoked first with TIME_IMMEDIATE
timeout, the timeout condition is tested.*/
test_set_step(1);
{
m = chEvtWaitOneTimeout(ALL_EVENTS, TIME_IMMEDIATE);
test_assert(m == 0, "spurious event");
m = chEvtWaitAnyTimeout(ALL_EVENTS, TIME_IMMEDIATE);
test_assert(m == 0, "spurious event");
m = chEvtWaitAllTimeout(ALL_EVENTS, TIME_IMMEDIATE);
test_assert(m == 0, "spurious event");
}
/* [8.6.2] The functions are invoked first with a 50mS timeout, the
timeout condition is tested.*/
test_set_step(2);
{
m = chEvtWaitOneTimeout(ALL_EVENTS, MS2ST(50));
test_assert(m == 0, "spurious event");
m = chEvtWaitAnyTimeout(ALL_EVENTS, MS2ST(50));
test_assert(m == 0, "spurious event");
m = chEvtWaitAllTimeout(ALL_EVENTS, MS2ST(50));
test_assert(m == 0, "spurious event");
}
}
static const testcase_t test_008_006 = {
"Events Flags wait timeouts",
test_008_006_setup,
NULL,
test_008_006_execute
};
#endif /* CH_CFG_USE_EVENTS_TIMEOUT */
/**
* @page test_008_007 [8.7] Broadcasting using chEvtBroadcast()
*
* <h2>Description</h2>
* Functionality of chEvtBroadcast() is tested.
*
* <h2>Test Steps</h2>
* - [8.7.1] Registering on two event sources associating them with
* flags 1 and 4.
* - [8.7.2] Getting current time and starting a broadcaster thread,
* the thread broadcast the first Event Source immediately and the
* other after 50mS.
* - [8.7.3] Calling chEvtWaitAll() then verifying that both event
* flags have been received after 50mS and that the event flags mask
* has been emptied.
* - [8.7.4] Unregistering from the Event Sources.
* .
*/
static void test_008_007_setup(void) {
chEvtGetAndClearEvents(ALL_EVENTS);
chEvtObjectInit(&es1);
chEvtObjectInit(&es2);
}
static void test_008_007_execute(void) {
eventmask_t m;
event_listener_t el1, el2;
systime_t target_time;
/* [8.7.1] Registering on two event sources associating them with
flags 1 and 4.*/
test_set_step(1);
{
chEvtRegisterMask(&es1, &el1, 1);
chEvtRegisterMask(&es2, &el2, 4);
}
/* [8.7.2] Getting current time and starting a broadcaster thread,
the thread broadcast the first Event Source immediately and the
other after 50mS.*/
test_set_step(2);
{
target_time = test_wait_tick() + MS2ST(50);
threads[0] = chThdCreateStatic(wa[0], WA_SIZE, chThdGetPriorityX() - 1,
evt_thread7, "A");
}
/* [8.7.3] Calling chEvtWaitAll() then verifying that both event
flags have been received after 50mS and that the event flags mask
has been emptied.*/
test_set_step(3);
{
m = chEvtWaitAll(5);
test_assert_time_window(target_time, target_time + ALLOWED_DELAY,
"out of time window");
m = chEvtGetAndClearEvents(ALL_EVENTS);
test_assert(m == 0, "stuck event");
test_wait_threads();
}
/* [8.7.4] Unregistering from the Event Sources.*/
test_set_step(4);
{
chEvtUnregister(&es1, &el1);
chEvtUnregister(&es2, &el2);
test_assert(!chEvtIsListeningI(&es1), "stuck listener");
test_assert(!chEvtIsListeningI(&es2), "stuck listener");
}
}
static const testcase_t test_008_007 = {
"Broadcasting using chEvtBroadcast()",
test_008_007_setup,
NULL,
test_008_007_execute
};
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Mailboxes.
* @brief Event Sources and Event Flags.
*/
const testcase_t * const test_sequence_008[] = {
&test_008_001,
&test_008_002,
&test_008_003,
&test_008_004,
&test_008_005,
#if (CH_CFG_USE_EVENTS_TIMEOUT) || defined(__DOXYGEN__)
&test_008_006,
#endif
&test_008_007,
NULL
};
#endif /* CH_CFG_USE_MAILBOXES */
#endif /* CH_CFG_USE_EVENTS */

View File

@ -22,18 +22,18 @@
* @file test_sequence_009.c
* @brief Test Sequence 009 code.
*
* @page test_sequence_009 [9] Memory Pools
* @page test_sequence_009 [9] Mailboxes
*
* File: @ref test_sequence_009.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/RT functionalities related to memory
* pools.
* This sequence tests the ChibiOS/RT functionalities related to
* mailboxes.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_MEMPOOLS
* - CH_CFG_USE_MAILBOXES
* .
*
* <h2>Test Cases</h2>
@ -43,254 +43,367 @@
* .
*/
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MAILBOXES) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define MEMORY_POOL_SIZE 4
#define MB_SIZE 4
static uint32_t objects[MEMORY_POOL_SIZE];
static MEMORYPOOL_DECL(mp1, sizeof (uint32_t), NULL);
#if CH_CFG_USE_SEMAPHORES
static GUARDEDMEMORYPOOL_DECL(gmp1, sizeof (uint32_t));
#endif
static void *null_provider(size_t size, unsigned align) {
(void)size;
(void)align;
return NULL;
}
static msg_t mb_buffer[MB_SIZE];
static MAILBOX_DECL(mb1, mb_buffer, MB_SIZE);
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_009_001 [9.1] Loading and emptying a memory pool
* @page test_009_001 [9.1] Mailbox normal API, non-blocking tests
*
* <h2>Description</h2>
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
* The mailbox normal API is tested without triggering blocking
* conditions.
*
* <h2>Test Steps</h2>
* - [9.1.1] Adding the objects to the pool using chPoolLoadArray().
* - [9.1.2] Emptying the pool using chPoolAlloc().
* - [9.1.3] Now must be empty.
* - [9.1.4] Adding the objects to the pool using chPoolFree().
* - [9.1.5] Emptying the pool using chPoolAlloc() again.
* - [9.1.6] Now must be empty again.
* - [9.1.7] Covering the case where a provider is unable to return
* more memory.
* - [9.1.1] Testing the mailbox size.
* - [9.1.2] Resetting the mailbox, conditions are checked, no errors
* expected.
* - [9.1.3] Testing the behavior of API when the mailbox is in reset
* state then return in active state.
* - [9.1.4] Filling the mailbox using chMBPost() and chMBPostAhead()
* once, no errors expected.
* - [9.1.5] Testing intermediate conditions. Data pointers must be
* aligned, semaphore counters are checked.
* - [9.1.6] Emptying the mailbox using chMBFetch(), no errors
* expected.
* - [9.1.7] Posting and then fetching one more message, no errors
* expected.
* - [9.1.8] Testing final conditions. Data pointers must be aligned to
* buffer start, semaphore counters are checked.
* .
*/
static void test_009_001_setup(void) {
chPoolObjectInit(&mp1, sizeof (uint32_t), NULL);
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_009_001_teardown(void) {
chMBReset(&mb1);
}
static void test_009_001_execute(void) {
msg_t msg1, msg2;
unsigned i;
/* [9.1.1] Adding the objects to the pool using chPoolLoadArray().*/
/* [9.1.1] Testing the mailbox size.*/
test_set_step(1);
{
chPoolLoadArray(&mp1, objects, MEMORY_POOL_SIZE);
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
}
/* [9.1.2] Emptying the pool using chPoolAlloc().*/
/* [9.1.2] Resetting the mailbox, conditions are checked, no errors
expected.*/
test_set_step(2);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
chMBReset(&mb1);
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert_lock(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
/* [9.1.3] Now must be empty.*/
/* [9.1.3] Testing the behavior of API when the mailbox is in reset
state then return in active state.*/
test_set_step(3);
{
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
msg1 = chMBPost(&mb1, (msg_t)0, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
msg1 = chMBPostAhead(&mb1, (msg_t)0, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_RESET, "not in reset state");
chMBResumeX(&mb1);
}
/* [9.1.4] Adding the objects to the pool using chPoolFree().*/
/* [9.1.4] Filling the mailbox using chMBPost() and chMBPostAhead()
once, no errors expected.*/
test_set_step(4);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chPoolFree(&mp1, &objects[i]);
for (i = 0; i < MB_SIZE - 1; i++) {
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
msg1 = chMBPostAhead(&mb1, 'A', TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [9.1.5] Emptying the pool using chPoolAlloc() again.*/
/* [9.1.5] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
test_set_step(5);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
test_assert_lock(chMBGetFreeCountI(&mb1) == 0, "still empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
/* [9.1.6] Now must be empty again.*/
/* [9.1.6] Emptying the mailbox using chMBFetch(), no errors
expected.*/
test_set_step(6);
{
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
for (i = 0; i < MB_SIZE; i++) {
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
test_emit_token(msg2);
}
test_assert_sequence("ABCD", "wrong get sequence");
}
/* [9.1.7] Covering the case where a provider is unable to return
more memory.*/
/* [9.1.7] Posting and then fetching one more message, no errors
expected.*/
test_set_step(7);
{
chPoolObjectInit(&mp1, sizeof (uint32_t), null_provider);
test_assert(chPoolAlloc(&mp1) == NULL, "provider returned memory");
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [9.1.8] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
test_set_step(8);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
}
static const testcase_t test_009_001 = {
"Loading and emptying a memory pool",
"Mailbox normal API, non-blocking tests",
test_009_001_setup,
NULL,
test_009_001_teardown,
test_009_001_execute
};
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page test_009_002 [9.2] Loading and emptying a guarded memory pool without waiting
* @page test_009_002 [9.2] Mailbox I-Class API, non-blocking tests
*
* <h2>Description</h2>
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
* The mailbox I-Class API is tested without triggering blocking
* conditions.
*
* <h2>Test Steps</h2>
* - [9.2.1] Adding the objects to the pool using
* chGuardedPoolLoadArray().
* - [9.2.2] Emptying the pool using chGuardedPoolAllocTimeout().
* - [9.2.3] Now must be empty.
* - [9.2.4] Adding the objects to the pool using chGuardedPoolFree().
* - [9.2.5] Emptying the pool using chGuardedPoolAllocTimeout() again.
* - [9.2.6] Now must be empty again.
* - [9.2.1] Testing the mailbox size.
* - [9.2.2] Resetting the mailbox, conditions are checked, no errors
* expected. The mailbox is then returned in active state.
* - [9.2.3] Filling the mailbox using chMBPostI() and chMBPostAheadI()
* once, no errors expected.
* - [9.2.4] Testing intermediate conditions. Data pointers must be
* aligned, semaphore counters are checked.
* - [9.2.5] Emptying the mailbox using chMBFetchI(), no errors
* expected.
* - [9.2.6] Posting and then fetching one more message, no errors
* expected.
* - [9.2.7] Testing final conditions. Data pointers must be aligned to
* buffer start, semaphore counters are checked.
* .
*/
static void test_009_002_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_009_002_teardown(void) {
chMBReset(&mb1);
}
static void test_009_002_execute(void) {
msg_t msg1, msg2;
unsigned i;
/* [9.2.1] Adding the objects to the pool using
chGuardedPoolLoadArray().*/
/* [9.2.1] Testing the mailbox size.*/
test_set_step(1);
{
chGuardedPoolLoadArray(&gmp1, objects, MEMORY_POOL_SIZE);
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
}
/* [9.2.2] Emptying the pool using chGuardedPoolAllocTimeout().*/
/* [9.2.2] Resetting the mailbox, conditions are checked, no errors
expected. The mailbox is then returned in active state.*/
test_set_step(2);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
chSysLock();
chMBResetI(&mb1);
chSysUnlock();
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert_lock(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
chMBResumeX(&mb1);
}
/* [9.2.3] Now must be empty.*/
/* [9.2.3] Filling the mailbox using chMBPostI() and chMBPostAheadI()
once, no errors expected.*/
test_set_step(3);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
for (i = 0; i < MB_SIZE - 1; i++) {
chSysLock();
msg1 = chMBPostI(&mb1, 'B' + i);
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
chSysLock();
msg1 = chMBPostAheadI(&mb1, 'A');
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [9.2.4] Adding the objects to the pool using
chGuardedPoolFree().*/
/* [9.2.4] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
test_set_step(4);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chGuardedPoolFree(&gmp1, &objects[i]);
test_assert_lock(chMBGetFreeCountI(&mb1) == 0, "still empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
/* [9.2.5] Emptying the pool using chGuardedPoolAllocTimeout()
again.*/
/* [9.2.5] Emptying the mailbox using chMBFetchI(), no errors
expected.*/
test_set_step(5);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
for (i = 0; i < MB_SIZE; i++) {
chSysLock();
msg1 = chMBFetchI(&mb1, &msg2);
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
test_emit_token(msg2);
}
test_assert_sequence("ABCD", "wrong get sequence");
}
/* [9.2.6] Now must be empty again.*/
/* [9.2.6] Posting and then fetching one more message, no errors
expected.*/
test_set_step(6);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
msg1 = chMBFetch(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
/* [9.2.7] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
test_set_step(7);
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "not empty");
test_assert_lock(chMBGetUsedCountI(&mb1) == 0, "still full");
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
}
static const testcase_t test_009_002 = {
"Loading and emptying a guarded memory pool without waiting",
"Mailbox I-Class API, non-blocking tests",
test_009_002_setup,
NULL,
test_009_002_teardown,
test_009_002_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page test_009_003 [9.3] Guarded Memory Pools timeout
* @page test_009_003 [9.3] Mailbox timeouts
*
* <h2>Description</h2>
* The timeout features for the Guarded Memory Pools is tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
* The mailbox API is tested for timeouts.
*
* <h2>Test Steps</h2>
* - [9.3.1] Trying to allocate with 100mS timeout, must fail because
* the pool is empty.
* - [9.3.1] Filling the mailbox.
* - [9.3.2] Testing chMBPost(), chMBPostI(), chMBPostAhead() and
* chMBPostAheadI() timeout.
* - [9.3.3] Resetting the mailbox. The mailbox is then returned in
* active state.
* - [9.3.4] Testing chMBFetch() and chMBFetchI() timeout.
* .
*/
static void test_009_003_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
chMBObjectInit(&mb1, mb_buffer, MB_SIZE);
}
static void test_009_003_teardown(void) {
chMBReset(&mb1);
}
static void test_009_003_execute(void) {
msg_t msg1, msg2;
unsigned i;
/* [9.3.1] Trying to allocate with 100mS timeout, must fail because
the pool is empty.*/
/* [9.3.1] Filling the mailbox.*/
test_set_step(1);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, MS2ST(100)) == NULL, "list not empty");
for (i = 0; i < MB_SIZE; i++) {
msg1 = chMBPost(&mb1, 'B' + i, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
}
/* [9.3.2] Testing chMBPost(), chMBPostI(), chMBPostAhead() and
chMBPostAheadI() timeout.*/
test_set_step(2);
{
msg1 = chMBPost(&mb1, 'X', 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBPostI(&mb1, 'X');
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
msg1 = chMBPostAhead(&mb1, 'X', 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBPostAheadI(&mb1, 'X');
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
}
/* [9.3.3] Resetting the mailbox. The mailbox is then returned in
active state.*/
test_set_step(3);
{
chMBReset(&mb1);
chMBResumeX(&mb1);
}
/* [9.3.4] Testing chMBFetch() and chMBFetchI() timeout.*/
test_set_step(4);
{
msg1 = chMBFetch(&mb1, &msg2, 1);
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
chSysLock();
msg1 = chMBFetchI(&mb1, &msg2);
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
}
}
static const testcase_t test_009_003 = {
"Guarded Memory Pools timeout",
"Mailbox timeouts",
test_009_003_setup,
NULL,
test_009_003_teardown,
test_009_003_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Memory Pools.
* @brief Mailboxes.
*/
const testcase_t * const test_sequence_009[] = {
&test_009_001,
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&test_009_002,
#endif
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&test_009_003,
#endif
NULL
};
#endif /* CH_CFG_USE_MEMPOOLS */
#endif /* CH_CFG_USE_MAILBOXES */

View File

@ -22,251 +22,276 @@
* @file test_sequence_010.c
* @brief Test Sequence 010 code.
*
* @page test_sequence_010 [10] Memory Heaps
* @page test_sequence_010 [10] Memory Pools
*
* File: @ref test_sequence_010.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS/RT functionalities related to memory
* heaps.
* pools.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_HEAP
* - CH_CFG_USE_MEMPOOLS
* .
*
* <h2>Test Cases</h2>
* - @subpage test_010_001
* - @subpage test_010_002
* - @subpage test_010_003
* .
*/
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define ALLOC_SIZE 16
#define HEAP_SIZE (ALLOC_SIZE * 8)
#define MEMORY_POOL_SIZE 4
memory_heap_t test_heap;
static uint32_t objects[MEMORY_POOL_SIZE];
static MEMORYPOOL_DECL(mp1, sizeof (uint32_t), NULL);
#if CH_CFG_USE_SEMAPHORES
static GUARDEDMEMORYPOOL_DECL(gmp1, sizeof (uint32_t));
#endif
static void *null_provider(size_t size, unsigned align) {
(void)size;
(void)align;
return NULL;
}
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page test_010_001 [10.1] Allocation and fragmentation
* @page test_010_001 [10.1] Loading and emptying a memory pool
*
* <h2>Description</h2>
* Series of allocations/deallocations are performed in carefully
* designed sequences in order to stimulate all the possible code paths
* inside the allocator. The test expects to find the heap back to the
* initial status after each sequence.
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
*
* <h2>Test Steps</h2>
* - [10.1.1] Testing initial conditions, the heap must not be
* fragmented and one free block present.
* - [10.1.2] Trying to allocate an block bigger than available space,
* an error is expected.
* - [10.1.3] Single block allocation using chHeapAlloc() then the
* block is freed using chHeapFree(), must not fail.
* - [10.1.4] Using chHeapStatus() to assess the heap state. There must
* be at least one free block of sufficient size.
* - [10.1.5] Allocating then freeing in the same order.
* - [10.1.6] Allocating then freeing in reverse order.
* - [10.1.7] Small fragments handling. Checking the behavior when
* allocating blocks with size not multiple of alignment unit.
* - [10.1.8] Skipping a fragment, the first fragment in the list is
* too small so the allocator must pick the second one.
* - [10.1.9] Allocating the whole available space.
* - [10.1.10] Testing final conditions. The heap geometry must be the
* same than the one registered at beginning.
* - [10.1.1] Adding the objects to the pool using chPoolLoadArray().
* - [10.1.2] Emptying the pool using chPoolAlloc().
* - [10.1.3] Now must be empty.
* - [10.1.4] Adding the objects to the pool using chPoolFree().
* - [10.1.5] Emptying the pool using chPoolAlloc() again.
* - [10.1.6] Now must be empty again.
* - [10.1.7] Covering the case where a provider is unable to return
* more memory.
* .
*/
static void test_010_001_setup(void) {
chHeapObjectInit(&test_heap, test_buffer, sizeof(test_buffer));
chPoolObjectInit(&mp1, sizeof (uint32_t), NULL);
}
static void test_010_001_execute(void) {
void *p1, *p2, *p3;
size_t n, sz;
unsigned i;
/* [10.1.1] Testing initial conditions, the heap must not be
fragmented and one free block present.*/
/* [10.1.1] Adding the objects to the pool using chPoolLoadArray().*/
test_set_step(1);
{
test_assert(chHeapStatus(&test_heap, &sz, NULL) == 1, "heap fragmented");
chPoolLoadArray(&mp1, objects, MEMORY_POOL_SIZE);
}
/* [10.1.2] Trying to allocate an block bigger than available space,
an error is expected.*/
/* [10.1.2] Emptying the pool using chPoolAlloc().*/
test_set_step(2);
{
p1 = chHeapAlloc(&test_heap, sizeof test_buffer * 2);
test_assert(p1 == NULL, "allocation not failed");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
}
/* [10.1.3] Single block allocation using chHeapAlloc() then the
block is freed using chHeapFree(), must not fail.*/
/* [10.1.3] Now must be empty.*/
test_set_step(3);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
}
/* [10.1.4] Using chHeapStatus() to assess the heap state. There must
be at least one free block of sufficient size.*/
/* [10.1.4] Adding the objects to the pool using chPoolFree().*/
test_set_step(4);
{
size_t total_size, largest_size;
n = chHeapStatus(&test_heap, &total_size, &largest_size);
test_assert(n == 1, "missing free block");
test_assert(total_size >= ALLOC_SIZE, "unexpected heap state");
test_assert(total_size == largest_size, "unexpected heap state");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chPoolFree(&mp1, &objects[i]);
}
/* [10.1.5] Allocating then freeing in the same order.*/
/* [10.1.5] Emptying the pool using chPoolAlloc() again.*/
test_set_step(5);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1); /* Does not merge.*/
chHeapFree(p2); /* Merges backward.*/
chHeapFree(p3); /* Merges both sides.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
}
/* [10.1.6] Allocating then freeing in reverse order.*/
/* [10.1.6] Now must be empty again.*/
test_set_step(6);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p3); /* Merges forward.*/
chHeapFree(p2); /* Merges forward.*/
chHeapFree(p1); /* Merges forward.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
}
/* [10.1.7] Small fragments handling. Checking the behavior when
allocating blocks with size not multiple of alignment unit.*/
/* [10.1.7] Covering the case where a provider is unable to return
more memory.*/
test_set_step(7);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE + 1);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
/* Note, the first situation happens when the alignment size is smaller
than the header size, the second in the other cases.*/
test_assert((chHeapStatus(&test_heap, &n, NULL) == 1) ||
(chHeapStatus(&test_heap, &n, NULL) == 2), "heap fragmented");
chHeapFree(p2);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [10.1.8] Skipping a fragment, the first fragment in the list is
too small so the allocator must pick the second one.*/
test_set_step(8);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert( chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE * 2); /* Skips first fragment.*/
chHeapFree(p1);
chHeapFree(p2);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [10.1.9] Allocating the whole available space.*/
test_set_step(9);
{
(void)chHeapStatus(&test_heap, &n, NULL);
p1 = chHeapAlloc(&test_heap, n);
test_assert(p1 != NULL, "allocation failed");
test_assert(chHeapStatus(&test_heap, NULL, NULL) == 0, "not empty");
chHeapFree(p1);
}
/* [10.1.10] Testing final conditions. The heap geometry must be the
same than the one registered at beginning.*/
test_set_step(10);
{
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
test_assert(n == sz, "size changed");
chPoolObjectInit(&mp1, sizeof (uint32_t), null_provider);
test_assert(chPoolAlloc(&mp1) == NULL, "provider returned memory");
}
}
static const testcase_t test_010_001 = {
"Allocation and fragmentation",
"Loading and emptying a memory pool",
test_010_001_setup,
NULL,
test_010_001_execute
};
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page test_010_002 [10.2] Default Heap
* @page test_010_002 [10.2] Loading and emptying a guarded memory pool without waiting
*
* <h2>Description</h2>
* The default heap is pre-allocated in the system. We test base
* functionality.
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
*
* <h2>Test Steps</h2>
* - [10.2.1] Single block allocation using chHeapAlloc() then the
* block is freed using chHeapFree(), must not fail.
* - [10.2.2] Testing allocation failure.
* - [10.2.1] Adding the objects to the pool using
* chGuardedPoolLoadArray().
* - [10.2.2] Emptying the pool using chGuardedPoolAllocTimeout().
* - [10.2.3] Now must be empty.
* - [10.2.4] Adding the objects to the pool using chGuardedPoolFree().
* - [10.2.5] Emptying the pool using chGuardedPoolAllocTimeout()
* again.
* - [10.2.6] Now must be empty again.
* .
*/
static void test_010_002_execute(void) {
void *p1;
size_t total_size, largest_size;
static void test_010_002_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
}
/* [10.2.1] Single block allocation using chHeapAlloc() then the
block is freed using chHeapFree(), must not fail.*/
static void test_010_002_execute(void) {
unsigned i;
/* [10.2.1] Adding the objects to the pool using
chGuardedPoolLoadArray().*/
test_set_step(1);
{
(void)chHeapStatus(NULL, &total_size, &largest_size);
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
chGuardedPoolLoadArray(&gmp1, objects, MEMORY_POOL_SIZE);
}
/* [10.2.2] Testing allocation failure.*/
/* [10.2.2] Emptying the pool using chGuardedPoolAllocTimeout().*/
test_set_step(2);
{
p1 = chHeapAlloc(NULL, (size_t)-256);
test_assert(p1 == NULL, "allocation not failed");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
}
/* [10.2.3] Now must be empty.*/
test_set_step(3);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
}
/* [10.2.4] Adding the objects to the pool using
chGuardedPoolFree().*/
test_set_step(4);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chGuardedPoolFree(&gmp1, &objects[i]);
}
/* [10.2.5] Emptying the pool using chGuardedPoolAllocTimeout()
again.*/
test_set_step(5);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
}
/* [10.2.6] Now must be empty again.*/
test_set_step(6);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
}
}
static const testcase_t test_010_002 = {
"Default Heap",
NULL,
"Loading and emptying a guarded memory pool without waiting",
test_010_002_setup,
NULL,
test_010_002_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page test_010_003 [10.3] Guarded Memory Pools timeout
*
* <h2>Description</h2>
* The timeout features for the Guarded Memory Pools is tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
*
* <h2>Test Steps</h2>
* - [10.3.1] Trying to allocate with 100mS timeout, must fail because
* the pool is empty.
* .
*/
static void test_010_003_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
}
static void test_010_003_execute(void) {
/* [10.3.1] Trying to allocate with 100mS timeout, must fail because
the pool is empty.*/
test_set_step(1);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, MS2ST(100)) == NULL, "list not empty");
}
}
static const testcase_t test_010_003 = {
"Guarded Memory Pools timeout",
test_010_003_setup,
NULL,
test_010_003_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Memory Heaps.
* @brief Memory Pools.
*/
const testcase_t * const test_sequence_010[] = {
&test_010_001,
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&test_010_002,
#endif
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&test_010_003,
#endif
NULL
};
#endif /* CH_CFG_USE_HEAP */
#endif /* CH_CFG_USE_MEMPOOLS */

View File

@ -22,18 +22,18 @@
* @file test_sequence_011.c
* @brief Test Sequence 011 code.
*
* @page test_sequence_011 [11] Dynamic threads
* @page test_sequence_011 [11] Memory Heaps
*
* File: @ref test_sequence_011.c
*
* <h2>Description</h2>
* This module implements the test sequence for the dynamic thread
* creation APIs.
* This sequence tests the ChibiOS/RT functionalities related to memory
* heaps.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_DYNAMIC
* - CH_CFG_USE_HEAP
* .
*
* <h2>Test Cases</h2>
@ -42,243 +42,231 @@
* .
*/
#if (CH_CFG_USE_DYNAMIC) || defined(__DOXYGEN__)
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#if CH_CFG_USE_HEAP
static memory_heap_t heap1;
#endif
#if CH_CFG_USE_MEMPOOLS
static memory_pool_t mp1;
#endif
#define ALLOC_SIZE 16
#define HEAP_SIZE (ALLOC_SIZE * 8)
static THD_FUNCTION(dyn_thread1, p) {
test_emit_token(*(char *)p);
}
memory_heap_t test_heap;
/****************************************************************************
* Test cases.
****************************************************************************/
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
/**
* @page test_011_001 [11.1] Threads creation from Memory Heap
* @page test_011_001 [11.1] Allocation and fragmentation
*
* <h2>Description</h2>
* Two threads are started by allocating the memory from the Memory
* Heap then a third thread is started with a huge stack
* requirement.<br> The test expects the first two threads to
* successfully start and the third one to fail.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_HEAP
* .
* Series of allocations/deallocations are performed in carefully
* designed sequences in order to stimulate all the possible code paths
* inside the allocator. The test expects to find the heap back to the
* initial status after each sequence.
*
* <h2>Test Steps</h2>
* - [11.1.1] Getting base priority for threads.
* - [11.1.2] Getting heap info before the test.
* - [11.1.3] Creating thread 1, it is expected to succeed.
* - [11.1.4] Creating thread 2, it is expected to succeed.
* - [11.1.5] Creating thread 3, it is expected to fail.
* - [11.1.6] Letting threads execute then checking the start order and
* freeing memory.
* - [11.1.7] Getting heap info again for verification.
* - [11.1.1] Testing initial conditions, the heap must not be
* fragmented and one free block present.
* - [11.1.2] Trying to allocate an block bigger than available space,
* an error is expected.
* - [11.1.3] Single block allocation using chHeapAlloc() then the
* block is freed using chHeapFree(), must not fail.
* - [11.1.4] Using chHeapStatus() to assess the heap state. There must
* be at least one free block of sufficient size.
* - [11.1.5] Allocating then freeing in the same order.
* - [11.1.6] Allocating then freeing in reverse order.
* - [11.1.7] Small fragments handling. Checking the behavior when
* allocating blocks with size not multiple of alignment unit.
* - [11.1.8] Skipping a fragment, the first fragment in the list is
* too small so the allocator must pick the second one.
* - [11.1.9] Allocating the whole available space.
* - [11.1.10] Testing final conditions. The heap geometry must be the
* same than the one registered at beginning.
* .
*/
static void test_011_001_setup(void) {
chHeapObjectInit(&heap1, test_buffer, sizeof test_buffer);
chHeapObjectInit(&test_heap, test_buffer, sizeof(test_buffer));
}
static void test_011_001_execute(void) {
size_t n1, total1, largest1;
size_t n2, total2, largest2;
tprio_t prio;
void *p1, *p2, *p3;
size_t n, sz;
/* [11.1.1] Getting base priority for threads.*/
/* [11.1.1] Testing initial conditions, the heap must not be
fragmented and one free block present.*/
test_set_step(1);
{
prio = chThdGetPriorityX();
test_assert(chHeapStatus(&test_heap, &sz, NULL) == 1, "heap fragmented");
}
/* [11.1.2] Getting heap info before the test.*/
/* [11.1.2] Trying to allocate an block bigger than available space,
an error is expected.*/
test_set_step(2);
{
n1 = chHeapStatus(&heap1, &total1, &largest1);
test_assert(n1 == 1, "heap fragmented");
p1 = chHeapAlloc(&test_heap, sizeof test_buffer * 2);
test_assert(p1 == NULL, "allocation not failed");
}
/* [11.1.3] Creating thread 1, it is expected to succeed.*/
/* [11.1.3] Single block allocation using chHeapAlloc() then the
block is freed using chHeapFree(), must not fail.*/
test_set_step(3);
{
threads[0] = chThdCreateFromHeap(&heap1,
THD_WORKING_AREA_SIZE(THREADS_STACK_SIZE),
"dyn1",
prio-1, dyn_thread1, "A");
test_assert(threads[0] != NULL, "thread creation failed");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
}
/* [11.1.4] Creating thread 2, it is expected to succeed.*/
/* [11.1.4] Using chHeapStatus() to assess the heap state. There must
be at least one free block of sufficient size.*/
test_set_step(4);
{
threads[1] = chThdCreateFromHeap(&heap1,
THD_WORKING_AREA_SIZE(THREADS_STACK_SIZE),
"dyn2",
prio-2, dyn_thread1, "B");
test_assert(threads[1] != NULL, "thread creation failed");
size_t total_size, largest_size;
n = chHeapStatus(&test_heap, &total_size, &largest_size);
test_assert(n == 1, "missing free block");
test_assert(total_size >= ALLOC_SIZE, "unexpected heap state");
test_assert(total_size == largest_size, "unexpected heap state");
}
/* [11.1.5] Creating thread 3, it is expected to fail.*/
/* [11.1.5] Allocating then freeing in the same order.*/
test_set_step(5);
{
threads[2] = chThdCreateFromHeap(&heap1,
THD_WORKING_AREA_SIZE(THREADS_STACK_SIZE * 1024),
"dyn3",
prio-3, dyn_thread1, "C");
test_assert(threads[2] == NULL, "thread creation not failed");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1); /* Does not merge.*/
chHeapFree(p2); /* Merges backward.*/
chHeapFree(p3); /* Merges both sides.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [11.1.6] Letting threads execute then checking the start order and
freeing memory.*/
/* [11.1.6] Allocating then freeing in reverse order.*/
test_set_step(6);
{
test_wait_threads();
test_assert_sequence("AB", "invalid sequence");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p3); /* Merges forward.*/
chHeapFree(p2); /* Merges forward.*/
chHeapFree(p1); /* Merges forward.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [11.1.7] Getting heap info again for verification.*/
/* [11.1.7] Small fragments handling. Checking the behavior when
allocating blocks with size not multiple of alignment unit.*/
test_set_step(7);
{
n2 = chHeapStatus(&heap1, &total2, &largest2);
test_assert(n1 == n2, "fragmentation changed");
test_assert(total1 == total2, "total free space changed");
test_assert(largest1 == largest2, "largest fragment size changed");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE + 1);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
/* Note, the first situation happens when the alignment size is smaller
than the header size, the second in the other cases.*/
test_assert((chHeapStatus(&test_heap, &n, NULL) == 1) ||
(chHeapStatus(&test_heap, &n, NULL) == 2), "heap fragmented");
chHeapFree(p2);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [11.1.8] Skipping a fragment, the first fragment in the list is
too small so the allocator must pick the second one.*/
test_set_step(8);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert( chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE * 2); /* Skips first fragment.*/
chHeapFree(p1);
chHeapFree(p2);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [11.1.9] Allocating the whole available space.*/
test_set_step(9);
{
(void)chHeapStatus(&test_heap, &n, NULL);
p1 = chHeapAlloc(&test_heap, n);
test_assert(p1 != NULL, "allocation failed");
test_assert(chHeapStatus(&test_heap, NULL, NULL) == 0, "not empty");
chHeapFree(p1);
}
/* [11.1.10] Testing final conditions. The heap geometry must be the
same than the one registered at beginning.*/
test_set_step(10);
{
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
test_assert(n == sz, "size changed");
}
}
static const testcase_t test_011_001 = {
"Threads creation from Memory Heap",
"Allocation and fragmentation",
test_011_001_setup,
NULL,
test_011_001_execute
};
#endif /* CH_CFG_USE_HEAP */
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
/**
* @page test_011_002 [11.2] Threads creation from Memory Pool
* @page test_011_002 [11.2] Default Heap
*
* <h2>Description</h2>
* Five thread creation are attempted from a pool containing only four
* elements.<br> The test expects the first four threads to
* successfully start and the last one to fail.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_MEMPOOLS
* .
* The default heap is pre-allocated in the system. We test base
* functionality.
*
* <h2>Test Steps</h2>
* - [11.2.1] Adding four working areas to the pool.
* - [11.2.2] Getting base priority for threads.
* - [11.2.3] Creating the five threads.
* - [11.2.4] Testing that only the fifth thread creation failed.
* - [11.2.5] Letting them run, free the memory then checking the
* execution sequence.
* - [11.2.6] Testing that the pool contains four elements again.
* - [11.2.1] Single block allocation using chHeapAlloc() then the
* block is freed using chHeapFree(), must not fail.
* - [11.2.2] Testing allocation failure.
* .
*/
static void test_011_002_setup(void) {
chPoolObjectInit(&mp1, THD_WORKING_AREA_SIZE(THREADS_STACK_SIZE), NULL);
}
static void test_011_002_execute(void) {
unsigned i;
tprio_t prio;
void *p1;
size_t total_size, largest_size;
/* [11.2.1] Adding four working areas to the pool.*/
/* [11.2.1] Single block allocation using chHeapAlloc() then the
block is freed using chHeapFree(), must not fail.*/
test_set_step(1);
{
for (i = 0; i < 4; i++)
chPoolFree(&mp1, wa[i]);
(void)chHeapStatus(NULL, &total_size, &largest_size);
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
}
/* [11.2.2] Getting base priority for threads.*/
/* [11.2.2] Testing allocation failure.*/
test_set_step(2);
{
prio = chThdGetPriorityX();
}
/* [11.2.3] Creating the five threads.*/
test_set_step(3);
{
threads[0] = chThdCreateFromMemoryPool(&mp1, "dyn1", prio-1, dyn_thread1, "A");
threads[1] = chThdCreateFromMemoryPool(&mp1, "dyn2", prio-2, dyn_thread1, "B");
threads[2] = chThdCreateFromMemoryPool(&mp1, "dyn3", prio-3, dyn_thread1, "C");
threads[3] = chThdCreateFromMemoryPool(&mp1, "dyn4", prio-4, dyn_thread1, "D");
threads[4] = chThdCreateFromMemoryPool(&mp1, "dyn5", prio-5, dyn_thread1, "E");
}
/* [11.2.4] Testing that only the fifth thread creation failed.*/
test_set_step(4);
{
test_assert((threads[0] != NULL) &&
(threads[1] != NULL) &&
(threads[2] != NULL) &&
(threads[3] != NULL),
"thread creation failed");
test_assert(threads[4] == NULL,
"thread creation not failed");
}
/* [11.2.5] Letting them run, free the memory then checking the
execution sequence.*/
test_set_step(5);
{
test_wait_threads();
test_assert_sequence("ABCD", "invalid sequence");
}
/* [11.2.6] Testing that the pool contains four elements again.*/
test_set_step(6);
{
for (i = 0; i < 4; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "pool list empty");
test_assert(chPoolAlloc(&mp1) == NULL, "pool list not empty");
p1 = chHeapAlloc(NULL, (size_t)-256);
test_assert(p1 == NULL, "allocation not failed");
}
}
static const testcase_t test_011_002 = {
"Threads creation from Memory Pool",
test_011_002_setup,
"Default Heap",
NULL,
NULL,
test_011_002_execute
};
#endif /* CH_CFG_USE_MEMPOOLS */
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Dynamic threads.
* @brief Memory Heaps.
*/
const testcase_t * const test_sequence_011[] = {
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
&test_011_001,
#endif
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
&test_011_002,
#endif
NULL
};
#endif /* CH_CFG_USE_DYNAMIC */
#endif /* CH_CFG_USE_HEAP */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,27 @@
/*
ChibiOS - Copyright (C) 2006..2016 Giovanni Di Sirio
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/**
* @file test_sequence_013.h
* @brief Test Sequence 013 header.
*/
#ifndef TEST_SEQUENCE_013_H
#define TEST_SEQUENCE_013_H
extern const testcase_t * const test_sequence_013[];
#endif /* TEST_SEQUENCE_013_H */

View File

@ -12,7 +12,8 @@ TESTSRC = ${CHIBIOS}/test/lib/ch_test.c \
${CHIBIOS}/test/rt/source/test/test_sequence_009.c \
${CHIBIOS}/test/rt/source/test/test_sequence_010.c \
${CHIBIOS}/test/rt/source/test/test_sequence_011.c \
${CHIBIOS}/test/rt/source/test/test_sequence_012.c
${CHIBIOS}/test/rt/source/test/test_sequence_012.c \
${CHIBIOS}/test/rt/source/test/test_sequence_013.c
# Required include directories
TESTINC = ${CHIBIOS}/test/lib \