Test code for objects caches, to be enhanced.

git-svn-id: svn://svn.code.sf.net/p/chibios/svn/trunk@12959 27425a3e-05d8-49a3-a47f-9c15f0e5edd8
This commit is contained in:
Giovanni Di Sirio 2019-08-28 09:04:03 +00:00
parent 07e1919e90
commit be0fa896d4
13 changed files with 1649 additions and 983 deletions

View File

@ -184,11 +184,11 @@ struct ch_oc_object {
* @note This pointer can be used to refer to external buffers,
* @p chCacheObjectInit() initializes it to @p NULL.
*/
void *dptr;
void *dptr;
/**
* @brief Embedded data as an open array.
*/
uint8_t dbuf[];
uint8_t dbuf[];
};
/**
@ -275,6 +275,32 @@ extern "C" {
/* Module inline functions. */
/*===========================================================================*/
/**
* @brief Releases an object into the cache.
* @note This function gives a meaning to the following flags:
* - @p OC_FLAG_INLRU must be cleared.
* - @p OC_FLAG_INHASH must be set.
* - @p OC_FLAG_SHARED must be cleared.
* - @p OC_FLAG_NOTSYNC invalidates the object and queues it on
* the LRU tail.
* - @p OC_FLAG_LAZYWRITE is ignored and kept, a write will occur
* when the object is removed from the LRU list (lazy write).
* .
*
* @param[in] ocp pointer to the @p objects_cache_t structure
* @param[in] objp pointer to the @p oc_object_t structure
*
* @api
*/
static inline void chCacheReleaseObject(objects_cache_t *ocp,
oc_object_t *objp) {
chSysLock();
chCacheReleaseObjectI(ocp, objp);
chSchRescheduleS();
chSysUnlock();
}
#endif /* CH_CFG_USE_OBJ_CACHES == TRUE */
#endif /* CHOBJCACHES_H */

View File

@ -1008,6 +1008,247 @@ test_assert((pipe1.rdptr == pipe1.wrptr) &&
</case>
</cases>
</sequence>
<sequence>
<type index="0">
<value>Internal Tests</value>
</type>
<brief>
<value>Objects Caches</value>
</brief>
<description>
<value>This sequence tests the ChibiOS library functionalities related to Objects Caches.</value>
</description>
<condition>
<value>CH_CFG_USE_OBJ_CACHES</value>
</condition>
<shared_code>
<value><![CDATA[#include <string.h>
#define SIZE_OBJECTS 16
#define NUM_OBJECTS 4
#define NUM_HASH_ENTRIES (NUM_OBJECTS * 2)
/* Cached object type used for test.*/
typedef struct {
oc_object_t header;
uint8_t data[SIZE_OBJECTS];
} cached_object_t;
static oc_hash_header_t hash_headers[NUM_HASH_ENTRIES];
static cached_object_t objects[NUM_OBJECTS];
static objects_cache_t cache1;
static bool obj_read(objects_cache_t *ocp,
oc_object_t *objp,
bool async) {
test_emit_token('a' + objp->obj_key);
objp->obj_flags &= ~OC_FLAG_NOTSYNC;
if (async) {
chCacheReleaseObject(ocp, objp);
}
return false;
}
static bool obj_write(objects_cache_t *ocp,
oc_object_t *objp,
bool async) {
(void)ocp;
(void)async;
test_emit_token('A' + objp->obj_key);
return false;
}]]></value>
</shared_code>
<cases>
<case>
<brief>
<value>Cache initialization.</value>
</brief>
<description>
<value>A cache object is initialized, some initial conditions are checked.</value>
</description>
<condition>
<value>
</value>
</condition>
<various_code>
<setup_code>
<value />
</setup_code>
<teardown_code>
<value/>
</teardown_code>
<local_variables>
<value></value>
</local_variables>
</various_code>
<steps>
<step>
<description>
<value>Cache initialization.</value>
</description>
<tags>
<value></value>
</tags>
<code>
<value><![CDATA[
chCacheObjectInit(&cache1,
NUM_HASH_ENTRIES,
hash_headers,
NUM_OBJECTS,
sizeof (cached_object_t),
objects,
obj_read,
obj_write);
]]></value>
</code>
</step>
<step>
<description>
<value>Getting and releasing objects without initialization.</value>
</description>
<tags>
<value></value>
</tags>
<code>
<value><![CDATA[
uint32_t i;
for (i = 0; i < (NUM_OBJECTS * 2); i++) {
oc_object_t * objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) != 0U, "should not be in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("", "unexpected tokens");
]]></value>
</code>
</step>
<step>
<description>
<value>Getting and releasing objects with synchronous initialization.</value>
</description>
<tags>
<value></value>
</tags>
<code>
<value><![CDATA[
uint32_t i;
bool error;
for (i = 0; i < (NUM_OBJECTS * 2); i++) {
oc_object_t *objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) != 0U, "in sync");
error = chCacheReadObject(&cache1, objp, false);
test_assert(error == false, "returned error");
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) == 0U, "not in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("abcdefgh", "unexpected tokens");
]]></value>
</code>
</step>
<step>
<description>
<value>Getting and releasing objects with asynchronous initialization.</value>
</description>
<tags>
<value></value>
</tags>
<code>
<value><![CDATA[
uint32_t i;
bool error;
for (i = 0; i < (NUM_OBJECTS * 2); i++) {
oc_object_t *objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) != 0U, "in sync");
error = chCacheReadObject(&cache1, objp, true);
test_assert(error == false, "returned error");
objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) == 0U, "not in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("abcdefgh", "unexpected tokens");
]]></value>
</code>
</step>
<step>
<description>
<value>Checking cached objects.</value>
</description>
<tags>
<value></value>
</tags>
<code>
<value><![CDATA[
uint32_t i;
for (i = NUM_OBJECTS; i < (NUM_OBJECTS * 2); i++) {
oc_object_t *objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) == 0U, "not in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("", "unexpected tokens");
]]></value>
</code>
</step>
<step>
<description>
<value>Checking non-cached objects.</value>
</description>
<tags>
<value></value>
</tags>
<code>
<value><![CDATA[
uint32_t i;
for (i = 0; i < NUM_OBJECTS; i++) {
oc_object_t *objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) != 0U, "in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("", "unexpected tokens");
]]></value>
</code>
</step>
</steps>
</case>
</cases>
</sequence>
<sequence>
<type index="0">
<value>Internal Tests</value>

View File

@ -5,7 +5,8 @@ TESTSRC += ${CHIBIOS}/test/oslib/source/test/oslib_test_root.c \
${CHIBIOS}/test/oslib/source/test/oslib_test_sequence_003.c \
${CHIBIOS}/test/oslib/source/test/oslib_test_sequence_004.c \
${CHIBIOS}/test/oslib/source/test/oslib_test_sequence_005.c \
${CHIBIOS}/test/oslib/source/test/oslib_test_sequence_006.c
${CHIBIOS}/test/oslib/source/test/oslib_test_sequence_006.c \
${CHIBIOS}/test/oslib/source/test/oslib_test_sequence_007.c
# Required include directories
TESTINC += ${CHIBIOS}/test/oslib/source/test

View File

@ -27,6 +27,7 @@
* - @subpage oslib_test_sequence_004
* - @subpage oslib_test_sequence_005
* - @subpage oslib_test_sequence_006
* - @subpage oslib_test_sequence_007
* .
*/
@ -55,14 +56,17 @@ const testsequence_t * const oslib_test_suite_array[] = {
#if (CH_CFG_USE_PIPES) || defined(__DOXYGEN__)
&oslib_test_sequence_003,
#endif
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
#if (CH_CFG_USE_OBJ_CACHES) || defined(__DOXYGEN__)
&oslib_test_sequence_004,
#endif
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
&oslib_test_sequence_005,
#endif
#if ((CH_CFG_USE_FACTORY == TRUE) && (CH_CFG_USE_MEMPOOLS == TRUE) && (CH_CFG_USE_HEAP == TRUE)) || defined(__DOXYGEN__)
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
&oslib_test_sequence_006,
#endif
#if ((CH_CFG_USE_FACTORY == TRUE) && (CH_CFG_USE_MEMPOOLS == TRUE) && (CH_CFG_USE_HEAP == TRUE)) || defined(__DOXYGEN__)
&oslib_test_sequence_007,
#endif
NULL
};

View File

@ -30,6 +30,7 @@
#include "oslib_test_sequence_004.h"
#include "oslib_test_sequence_005.h"
#include "oslib_test_sequence_006.h"
#include "oslib_test_sequence_007.h"
#if !defined(__DOXYGEN__)

View File

@ -94,6 +94,7 @@ static void oslib_test_001_001_execute(void) {
test_println("");
#endif
}
test_end_step(1);
}
static const testcase_t oslib_test_001_001 = {
@ -135,6 +136,7 @@ static void oslib_test_001_002_execute(void) {
test_printn(CH_OSLIB_PATCH);
test_println("");
}
test_end_step(1);
}
static const testcase_t oslib_test_001_002 = {
@ -200,6 +202,7 @@ static void oslib_test_001_003_execute(void) {
test_printn(CH_CFG_FACTORY_PIPES);
test_println("");
}
test_end_step(1);
}
static const testcase_t oslib_test_001_003 = {

View File

@ -100,6 +100,7 @@ static void oslib_test_002_001_execute(void) {
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
}
test_end_step(1);
/* [2.1.2] Resetting the mailbox, conditions are checked, no errors
expected.*/
@ -111,6 +112,7 @@ static void oslib_test_002_001_execute(void) {
test_assert_lock(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
test_end_step(2);
/* [2.1.3] Testing the behavior of API when the mailbox is in reset
state then return in active state.*/
@ -124,6 +126,7 @@ static void oslib_test_002_001_execute(void) {
test_assert(msg1 == MSG_RESET, "not in reset state");
chMBResumeX(&mb1);
}
test_end_step(3);
/* [2.1.4] Filling the mailbox using chMBPostTimeout() and
chMBPostAheadTimeout() once, no errors expected.*/
@ -136,6 +139,7 @@ static void oslib_test_002_001_execute(void) {
msg1 = chMBPostAheadTimeout(&mb1, 'A', TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
test_end_step(4);
/* [2.1.5] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
@ -145,6 +149,7 @@ static void oslib_test_002_001_execute(void) {
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
test_end_step(5);
/* [2.1.6] Emptying the mailbox using chMBFetchTimeout(), no errors
expected.*/
@ -157,6 +162,7 @@ static void oslib_test_002_001_execute(void) {
}
test_assert_sequence("ABCD", "wrong get sequence");
}
test_end_step(6);
/* [2.1.7] Posting and then fetching one more message, no errors
expected.*/
@ -167,6 +173,7 @@ static void oslib_test_002_001_execute(void) {
msg1 = chMBFetchTimeout(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
test_end_step(7);
/* [2.1.8] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
@ -177,6 +184,7 @@ static void oslib_test_002_001_execute(void) {
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
test_end_step(8);
}
static const testcase_t oslib_test_002_001 = {
@ -227,6 +235,7 @@ static void oslib_test_002_002_execute(void) {
{
test_assert_lock(chMBGetFreeCountI(&mb1) == MB_SIZE, "wrong size");
}
test_end_step(1);
/* [2.2.2] Resetting the mailbox, conditions are checked, no errors
expected. The mailbox is then returned in active state.*/
@ -241,6 +250,7 @@ static void oslib_test_002_002_execute(void) {
test_assert_lock(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
chMBResumeX(&mb1);
}
test_end_step(2);
/* [2.2.3] Filling the mailbox using chMBPostI() and chMBPostAheadI()
once, no errors expected.*/
@ -257,6 +267,7 @@ static void oslib_test_002_002_execute(void) {
chSysUnlock();
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
test_end_step(3);
/* [2.2.4] Testing intermediate conditions. Data pointers must be
aligned, semaphore counters are checked.*/
@ -266,6 +277,7 @@ static void oslib_test_002_002_execute(void) {
test_assert_lock(chMBGetUsedCountI(&mb1) == MB_SIZE, "not full");
test_assert_lock(mb1.rdptr == mb1.wrptr, "pointers not aligned");
}
test_end_step(4);
/* [2.2.5] Emptying the mailbox using chMBFetchI(), no errors
expected.*/
@ -280,6 +292,7 @@ static void oslib_test_002_002_execute(void) {
}
test_assert_sequence("ABCD", "wrong get sequence");
}
test_end_step(5);
/* [2.2.6] Posting and then fetching one more message, no errors
expected.*/
@ -290,6 +303,7 @@ static void oslib_test_002_002_execute(void) {
msg1 = chMBFetchTimeout(&mb1, &msg2, TIME_INFINITE);
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
test_end_step(6);
/* [2.2.7] Testing final conditions. Data pointers must be aligned to
buffer start, semaphore counters are checked.*/
@ -300,6 +314,7 @@ static void oslib_test_002_002_execute(void) {
test_assert(mb1.buffer == mb1.wrptr, "write pointer not aligned to base");
test_assert(mb1.buffer == mb1.rdptr, "read pointer not aligned to base");
}
test_end_step(7);
}
static const testcase_t oslib_test_002_002 = {
@ -345,6 +360,7 @@ static void oslib_test_002_003_execute(void) {
test_assert(msg1 == MSG_OK, "wrong wake-up message");
}
}
test_end_step(1);
/* [2.3.2] Testing chMBPostTimeout(), chMBPostI(),
chMBPostAheadTimeout() and chMBPostAheadI() timeout.*/
@ -363,6 +379,7 @@ static void oslib_test_002_003_execute(void) {
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
}
test_end_step(2);
/* [2.3.3] Resetting the mailbox. The mailbox is then returned in
active state.*/
@ -371,6 +388,7 @@ static void oslib_test_002_003_execute(void) {
chMBReset(&mb1);
chMBResumeX(&mb1);
}
test_end_step(3);
/* [2.3.4] Testing chMBFetchTimeout() and chMBFetchI() timeout.*/
test_set_step(4);
@ -382,6 +400,7 @@ static void oslib_test_002_003_execute(void) {
chSysUnlock();
test_assert(msg1 == MSG_TIMEOUT, "wrong wake-up message");
}
test_end_step(4);
}
static const testcase_t oslib_test_002_003 = {

View File

@ -101,6 +101,7 @@ static void oslib_test_003_001_execute(void) {
(pipe1.cnt == 0),
"invalid pipe state");
}
test_end_step(1);
/* [3.1.2] Writing data, must fail.*/
test_set_step(2);
@ -114,6 +115,7 @@ static void oslib_test_003_001_execute(void) {
(pipe1.cnt == 0),
"invalid pipe state");
}
test_end_step(2);
/* [3.1.3] Reading data, must fail.*/
test_set_step(3);
@ -128,6 +130,7 @@ static void oslib_test_003_001_execute(void) {
(pipe1.cnt == 0),
"invalid pipe state");
}
test_end_step(3);
/* [3.1.4] Reactivating pipe.*/
test_set_step(4);
@ -138,6 +141,7 @@ static void oslib_test_003_001_execute(void) {
(pipe1.cnt == 0),
"invalid pipe state");
}
test_end_step(4);
/* [3.1.5] Filling whole pipe.*/
test_set_step(5);
@ -151,6 +155,7 @@ static void oslib_test_003_001_execute(void) {
(pipe1.cnt == PIPE_SIZE),
"invalid pipe state");
}
test_end_step(5);
/* [3.1.6] Emptying pipe.*/
test_set_step(6);
@ -166,6 +171,7 @@ static void oslib_test_003_001_execute(void) {
"invalid pipe state");
test_assert(memcmp(pipe_pattern, buf, PIPE_SIZE) == 0, "content mismatch");
}
test_end_step(6);
/* [3.1.7] Small write.*/
test_set_step(7);
@ -179,6 +185,7 @@ static void oslib_test_003_001_execute(void) {
(pipe1.cnt == 4),
"invalid pipe state");
}
test_end_step(7);
/* [3.1.8] Filling remaining space.*/
test_set_step(8);
@ -192,6 +199,7 @@ static void oslib_test_003_001_execute(void) {
(pipe1.cnt == PIPE_SIZE),
"invalid pipe state");
}
test_end_step(8);
/* [3.1.9] Small Read.*/
test_set_step(9);
@ -207,6 +215,7 @@ static void oslib_test_003_001_execute(void) {
"invalid pipe state");
test_assert(memcmp(pipe_pattern, buf, 4) == 0, "content mismatch");
}
test_end_step(9);
/* [3.1.10] Reading remaining data.*/
test_set_step(10);
@ -222,6 +231,7 @@ static void oslib_test_003_001_execute(void) {
"invalid pipe state");
test_assert(memcmp(pipe_pattern, buf, PIPE_SIZE - 4) == 0, "content mismatch");
}
test_end_step(10);
/* [3.1.11] Small Write.*/
test_set_step(11);
@ -235,6 +245,7 @@ static void oslib_test_003_001_execute(void) {
(pipe1.cnt == 5),
"invalid pipe state");
}
test_end_step(11);
/* [3.1.12] Small Read.*/
test_set_step(12);
@ -250,6 +261,7 @@ static void oslib_test_003_001_execute(void) {
"invalid pipe state");
test_assert(memcmp(pipe_pattern, buf, 5) == 0, "content mismatch");
}
test_end_step(12);
/* [3.1.13] Write wrapping buffer boundary.*/
test_set_step(13);
@ -263,6 +275,7 @@ static void oslib_test_003_001_execute(void) {
(pipe1.cnt == PIPE_SIZE),
"invalid pipe state");
}
test_end_step(13);
/* [3.1.14] Read wrapping buffer boundary.*/
test_set_step(14);
@ -278,6 +291,7 @@ static void oslib_test_003_001_execute(void) {
"invalid pipe state");
test_assert(memcmp(pipe_pattern, buf, PIPE_SIZE) == 0, "content mismatch");
}
test_end_step(14);
}
static const testcase_t oslib_test_003_001 = {
@ -318,6 +332,7 @@ static void oslib_test_003_002_execute(void) {
(pipe1.cnt == 0),
"invalid pipe state");
}
test_end_step(1);
/* [3.2.2] Writing a string larger than pipe buffer.*/
test_set_step(2);
@ -331,6 +346,7 @@ static void oslib_test_003_002_execute(void) {
(pipe1.cnt == PIPE_SIZE / 2),
"invalid pipe state");
}
test_end_step(2);
}
static const testcase_t oslib_test_003_002 = {

View File

@ -21,48 +21,71 @@
* @file oslib_test_sequence_004.c
* @brief Test Sequence 004 code.
*
* @page oslib_test_sequence_004 [4] Memory Pools
* @page oslib_test_sequence_004 [4] Objects Caches
*
* File: @ref oslib_test_sequence_004.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS library functionalities related to
* memory pools.
* Objects Caches.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_MEMPOOLS
* - CH_CFG_USE_OBJ_CACHES
* .
*
* <h2>Test Cases</h2>
* - @subpage oslib_test_004_001
* - @subpage oslib_test_004_002
* - @subpage oslib_test_004_003
* .
*/
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
#if (CH_CFG_USE_OBJ_CACHES) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define MEMORY_POOL_SIZE 4
#include <string.h>
static uint32_t objects[MEMORY_POOL_SIZE];
static MEMORYPOOL_DECL(mp1, sizeof (uint32_t), PORT_NATURAL_ALIGN, NULL);
#define SIZE_OBJECTS 16
#define NUM_OBJECTS 4
#define NUM_HASH_ENTRIES (NUM_OBJECTS * 2)
#if CH_CFG_USE_SEMAPHORES
static GUARDEDMEMORYPOOL_DECL(gmp1, sizeof (uint32_t), PORT_NATURAL_ALIGN);
#endif
/* Cached object type used for test.*/
typedef struct {
oc_object_t header;
uint8_t data[SIZE_OBJECTS];
} cached_object_t;
static void *null_provider(size_t size, unsigned align) {
static oc_hash_header_t hash_headers[NUM_HASH_ENTRIES];
static cached_object_t objects[NUM_OBJECTS];
static objects_cache_t cache1;
(void)size;
(void)align;
static bool obj_read(objects_cache_t *ocp,
oc_object_t *objp,
bool async) {
return NULL;
test_emit_token('a' + objp->obj_key);
objp->obj_flags &= ~OC_FLAG_NOTSYNC;
if (async) {
chCacheReleaseObject(ocp, objp);
}
return false;
}
static bool obj_write(objects_cache_t *ocp,
oc_object_t *objp,
bool async) {
(void)ocp;
(void)async;
test_emit_token('A' + objp->obj_key);
return false;
}
/****************************************************************************
@ -70,210 +93,156 @@ static void *null_provider(size_t size, unsigned align) {
****************************************************************************/
/**
* @page oslib_test_004_001 [4.1] Loading and emptying a memory pool
* @page oslib_test_004_001 [4.1] Cache initialization
*
* <h2>Description</h2>
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
* A cache object is initialized, some initial conditions are checked.
*
* <h2>Test Steps</h2>
* - [4.1.1] Adding the objects to the pool using chPoolLoadArray().
* - [4.1.2] Emptying the pool using chPoolAlloc().
* - [4.1.3] Now must be empty.
* - [4.1.4] Adding the objects to the pool using chPoolFree().
* - [4.1.5] Emptying the pool using chPoolAlloc() again.
* - [4.1.6] Now must be empty again.
* - [4.1.7] Covering the case where a provider is unable to return
* more memory.
* - [4.1.1] Cache initialization.
* - [4.1.2] Getting and releasing objects without initialization.
* - [4.1.3] Getting and releasing objects with synchronous
* initialization.
* - [4.1.4] Getting and releasing objects with asynchronous
* initialization.
* - [4.1.5] Checking cached objects.
* - [4.1.6] Checking non-cached objects.
* .
*/
static void oslib_test_004_001_setup(void) {
chPoolObjectInit(&mp1, sizeof (uint32_t), NULL);
}
static void oslib_test_004_001_execute(void) {
unsigned i;
/* [4.1.1] Adding the objects to the pool using chPoolLoadArray().*/
/* [4.1.1] Cache initialization.*/
test_set_step(1);
{
chPoolLoadArray(&mp1, objects, MEMORY_POOL_SIZE);
chCacheObjectInit(&cache1,
NUM_HASH_ENTRIES,
hash_headers,
NUM_OBJECTS,
sizeof (cached_object_t),
objects,
obj_read,
obj_write);
}
test_end_step(1);
/* [4.1.2] Emptying the pool using chPoolAlloc().*/
/* [4.1.2] Getting and releasing objects without initialization.*/
test_set_step(2);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
}
uint32_t i;
/* [4.1.3] Now must be empty.*/
for (i = 0; i < (NUM_OBJECTS * 2); i++) {
oc_object_t * objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) != 0U, "should not be in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("", "unexpected tokens");
}
test_end_step(2);
/* [4.1.3] Getting and releasing objects with synchronous
initialization.*/
test_set_step(3);
{
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
}
uint32_t i;
bool error;
/* [4.1.4] Adding the objects to the pool using chPoolFree().*/
for (i = 0; i < (NUM_OBJECTS * 2); i++) {
oc_object_t *objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) != 0U, "in sync");
error = chCacheReadObject(&cache1, objp, false);
test_assert(error == false, "returned error");
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) == 0U, "not in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("abcdefgh", "unexpected tokens");
}
test_end_step(3);
/* [4.1.4] Getting and releasing objects with asynchronous
initialization.*/
test_set_step(4);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chPoolFree(&mp1, &objects[i]);
}
uint32_t i;
bool error;
/* [4.1.5] Emptying the pool using chPoolAlloc() again.*/
for (i = 0; i < (NUM_OBJECTS * 2); i++) {
oc_object_t *objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) != 0U, "in sync");
error = chCacheReadObject(&cache1, objp, true);
test_assert(error == false, "returned error");
objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) == 0U, "not in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("abcdefgh", "unexpected tokens");
}
test_end_step(4);
/* [4.1.5] Checking cached objects.*/
test_set_step(5);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
}
uint32_t i;
/* [4.1.6] Now must be empty again.*/
for (i = NUM_OBJECTS; i < (NUM_OBJECTS * 2); i++) {
oc_object_t *objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) == 0U, "not in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("", "unexpected tokens");
}
test_end_step(5);
/* [4.1.6] Checking non-cached objects.*/
test_set_step(6);
{
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
}
uint32_t i;
/* [4.1.7] Covering the case where a provider is unable to return
more memory.*/
test_set_step(7);
{
chPoolObjectInit(&mp1, sizeof (uint32_t), null_provider);
test_assert(chPoolAlloc(&mp1) == NULL, "provider returned memory");
for (i = 0; i < NUM_OBJECTS; i++) {
oc_object_t *objp = chCacheGetObject(&cache1, 0U, i);
test_assert((objp->obj_flags & OC_FLAG_INHASH) != 0U, "not in hash");
test_assert((objp->obj_flags & OC_FLAG_NOTSYNC) != 0U, "in sync");
chCacheReleaseObject(&cache1, objp);
}
test_assert_sequence("", "unexpected tokens");
}
test_end_step(6);
}
static const testcase_t oslib_test_004_001 = {
"Loading and emptying a memory pool",
oslib_test_004_001_setup,
"Cache initialization",
NULL,
NULL,
oslib_test_004_001_execute
};
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page oslib_test_004_002 [4.2] Loading and emptying a guarded memory pool without waiting
*
* <h2>Description</h2>
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
*
* <h2>Test Steps</h2>
* - [4.2.1] Adding the objects to the pool using
* chGuardedPoolLoadArray().
* - [4.2.2] Emptying the pool using chGuardedPoolAllocTimeout().
* - [4.2.3] Now must be empty.
* - [4.2.4] Adding the objects to the pool using chGuardedPoolFree().
* - [4.2.5] Emptying the pool using chGuardedPoolAllocTimeout() again.
* - [4.2.6] Now must be empty again.
* .
*/
static void oslib_test_004_002_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
}
static void oslib_test_004_002_execute(void) {
unsigned i;
/* [4.2.1] Adding the objects to the pool using
chGuardedPoolLoadArray().*/
test_set_step(1);
{
chGuardedPoolLoadArray(&gmp1, objects, MEMORY_POOL_SIZE);
}
/* [4.2.2] Emptying the pool using chGuardedPoolAllocTimeout().*/
test_set_step(2);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
}
/* [4.2.3] Now must be empty.*/
test_set_step(3);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
}
/* [4.2.4] Adding the objects to the pool using
chGuardedPoolFree().*/
test_set_step(4);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chGuardedPoolFree(&gmp1, &objects[i]);
}
/* [4.2.5] Emptying the pool using chGuardedPoolAllocTimeout()
again.*/
test_set_step(5);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
}
/* [4.2.6] Now must be empty again.*/
test_set_step(6);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
}
}
static const testcase_t oslib_test_004_002 = {
"Loading and emptying a guarded memory pool without waiting",
oslib_test_004_002_setup,
NULL,
oslib_test_004_002_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page oslib_test_004_003 [4.3] Guarded Memory Pools timeout
*
* <h2>Description</h2>
* The timeout features for the Guarded Memory Pools is tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
*
* <h2>Test Steps</h2>
* - [4.3.1] Trying to allocate with 100mS timeout, must fail because
* the pool is empty.
* .
*/
static void oslib_test_004_003_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
}
static void oslib_test_004_003_execute(void) {
/* [4.3.1] Trying to allocate with 100mS timeout, must fail because
the pool is empty.*/
test_set_step(1);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_MS2I(100)) == NULL, "list not empty");
}
}
static const testcase_t oslib_test_004_003 = {
"Guarded Memory Pools timeout",
oslib_test_004_003_setup,
NULL,
oslib_test_004_003_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
/****************************************************************************
* Exported data.
****************************************************************************/
@ -283,21 +252,15 @@ static const testcase_t oslib_test_004_003 = {
*/
const testcase_t * const oslib_test_sequence_004_array[] = {
&oslib_test_004_001,
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&oslib_test_004_002,
#endif
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&oslib_test_004_003,
#endif
NULL
};
/**
* @brief Memory Pools.
* @brief Objects Caches.
*/
const testsequence_t oslib_test_sequence_004 = {
"Memory Pools",
"Objects Caches",
oslib_test_sequence_004_array
};
#endif /* CH_CFG_USE_MEMPOOLS */
#endif /* CH_CFG_USE_OBJ_CACHES */

View File

@ -21,240 +21,272 @@
* @file oslib_test_sequence_005.c
* @brief Test Sequence 005 code.
*
* @page oslib_test_sequence_005 [5] Memory Heaps
* @page oslib_test_sequence_005 [5] Memory Pools
*
* File: @ref oslib_test_sequence_005.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS library functionalities related to
* memory heaps.
* memory pools.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_HEAP
* - CH_CFG_USE_MEMPOOLS
* .
*
* <h2>Test Cases</h2>
* - @subpage oslib_test_005_001
* - @subpage oslib_test_005_002
* - @subpage oslib_test_005_003
* .
*/
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
#if (CH_CFG_USE_MEMPOOLS) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define ALLOC_SIZE 16
#define HEAP_SIZE (ALLOC_SIZE * 8)
#define MEMORY_POOL_SIZE 4
static memory_heap_t test_heap;
static uint8_t test_heap_buffer[HEAP_SIZE];
static uint32_t objects[MEMORY_POOL_SIZE];
static MEMORYPOOL_DECL(mp1, sizeof (uint32_t), PORT_NATURAL_ALIGN, NULL);
#if CH_CFG_USE_SEMAPHORES
static GUARDEDMEMORYPOOL_DECL(gmp1, sizeof (uint32_t), PORT_NATURAL_ALIGN);
#endif
static void *null_provider(size_t size, unsigned align) {
(void)size;
(void)align;
return NULL;
}
/****************************************************************************
* Test cases.
****************************************************************************/
/**
* @page oslib_test_005_001 [5.1] Allocation and fragmentation
* @page oslib_test_005_001 [5.1] Loading and emptying a memory pool
*
* <h2>Description</h2>
* Series of allocations/deallocations are performed in carefully
* designed sequences in order to stimulate all the possible code paths
* inside the allocator. The test expects to find the heap back to the
* initial status after each sequence.
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
*
* <h2>Test Steps</h2>
* - [5.1.1] Testing initial conditions, the heap must not be
* fragmented and one free block present.
* - [5.1.2] Trying to allocate an block bigger than available space,
* an error is expected.
* - [5.1.3] Single block allocation using chHeapAlloc() then the block
* is freed using chHeapFree(), must not fail.
* - [5.1.4] Using chHeapStatus() to assess the heap state. There must
* be at least one free block of sufficient size.
* - [5.1.5] Allocating then freeing in the same order.
* - [5.1.6] Allocating then freeing in reverse order.
* - [5.1.7] Small fragments handling. Checking the behavior when
* allocating blocks with size not multiple of alignment unit.
* - [5.1.8] Skipping a fragment, the first fragment in the list is too
* small so the allocator must pick the second one.
* - [5.1.9] Allocating the whole available space.
* - [5.1.10] Testing final conditions. The heap geometry must be the
* same than the one registered at beginning.
* - [5.1.1] Adding the objects to the pool using chPoolLoadArray().
* - [5.1.2] Emptying the pool using chPoolAlloc().
* - [5.1.3] Now must be empty.
* - [5.1.4] Adding the objects to the pool using chPoolFree().
* - [5.1.5] Emptying the pool using chPoolAlloc() again.
* - [5.1.6] Now must be empty again.
* - [5.1.7] Covering the case where a provider is unable to return
* more memory.
* .
*/
static void oslib_test_005_001_setup(void) {
chHeapObjectInit(&test_heap, test_heap_buffer, sizeof(test_heap_buffer));
chPoolObjectInit(&mp1, sizeof (uint32_t), NULL);
}
static void oslib_test_005_001_execute(void) {
void *p1, *p2, *p3;
size_t n, sz;
unsigned i;
/* [5.1.1] Testing initial conditions, the heap must not be
fragmented and one free block present.*/
/* [5.1.1] Adding the objects to the pool using chPoolLoadArray().*/
test_set_step(1);
{
test_assert(chHeapStatus(&test_heap, &sz, NULL) == 1, "heap fragmented");
chPoolLoadArray(&mp1, objects, MEMORY_POOL_SIZE);
}
test_end_step(1);
/* [5.1.2] Trying to allocate an block bigger than available space,
an error is expected.*/
/* [5.1.2] Emptying the pool using chPoolAlloc().*/
test_set_step(2);
{
p1 = chHeapAlloc(&test_heap, sizeof test_heap_buffer * 2);
test_assert(p1 == NULL, "allocation not failed");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
}
test_end_step(2);
/* [5.1.3] Single block allocation using chHeapAlloc() then the block
is freed using chHeapFree(), must not fail.*/
/* [5.1.3] Now must be empty.*/
test_set_step(3);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
}
test_end_step(3);
/* [5.1.4] Using chHeapStatus() to assess the heap state. There must
be at least one free block of sufficient size.*/
/* [5.1.4] Adding the objects to the pool using chPoolFree().*/
test_set_step(4);
{
size_t total_size, largest_size;
n = chHeapStatus(&test_heap, &total_size, &largest_size);
test_assert(n == 1, "missing free block");
test_assert(total_size >= ALLOC_SIZE, "unexpected heap state");
test_assert(total_size == largest_size, "unexpected heap state");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chPoolFree(&mp1, &objects[i]);
}
test_end_step(4);
/* [5.1.5] Allocating then freeing in the same order.*/
/* [5.1.5] Emptying the pool using chPoolAlloc() again.*/
test_set_step(5);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1); /* Does not merge.*/
chHeapFree(p2); /* Merges backward.*/
chHeapFree(p3); /* Merges both sides.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chPoolAlloc(&mp1) != NULL, "list empty");
}
test_end_step(5);
/* [5.1.6] Allocating then freeing in reverse order.*/
/* [5.1.6] Now must be empty again.*/
test_set_step(6);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p3); /* Merges forward.*/
chHeapFree(p2); /* Merges forward.*/
chHeapFree(p1); /* Merges forward.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
test_assert(chPoolAlloc(&mp1) == NULL, "list not empty");
}
test_end_step(6);
/* [5.1.7] Small fragments handling. Checking the behavior when
allocating blocks with size not multiple of alignment unit.*/
/* [5.1.7] Covering the case where a provider is unable to return
more memory.*/
test_set_step(7);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE + 1);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
/* Note, the first situation happens when the alignment size is smaller
than the header size, the second in the other cases.*/
test_assert((chHeapStatus(&test_heap, &n, NULL) == 1) ||
(chHeapStatus(&test_heap, &n, NULL) == 2), "heap fragmented");
chHeapFree(p2);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [5.1.8] Skipping a fragment, the first fragment in the list is too
small so the allocator must pick the second one.*/
test_set_step(8);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert( chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE * 2); /* Skips first fragment.*/
chHeapFree(p1);
chHeapFree(p2);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
/* [5.1.9] Allocating the whole available space.*/
test_set_step(9);
{
(void)chHeapStatus(&test_heap, &n, NULL);
p1 = chHeapAlloc(&test_heap, n);
test_assert(p1 != NULL, "allocation failed");
test_assert(chHeapStatus(&test_heap, NULL, NULL) == 0, "not empty");
chHeapFree(p1);
}
/* [5.1.10] Testing final conditions. The heap geometry must be the
same than the one registered at beginning.*/
test_set_step(10);
{
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
test_assert(n == sz, "size changed");
chPoolObjectInit(&mp1, sizeof (uint32_t), null_provider);
test_assert(chPoolAlloc(&mp1) == NULL, "provider returned memory");
}
test_end_step(7);
}
static const testcase_t oslib_test_005_001 = {
"Allocation and fragmentation",
"Loading and emptying a memory pool",
oslib_test_005_001_setup,
NULL,
oslib_test_005_001_execute
};
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page oslib_test_005_002 [5.2] Default Heap
* @page oslib_test_005_002 [5.2] Loading and emptying a guarded memory pool without waiting
*
* <h2>Description</h2>
* The default heap is pre-allocated in the system. We test base
* functionality.
* The memory pool functionality is tested by loading and emptying it,
* all conditions are tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
*
* <h2>Test Steps</h2>
* - [5.2.1] Single block allocation using chHeapAlloc() then the block
* is freed using chHeapFree(), must not fail.
* - [5.2.2] Testing allocation failure.
* - [5.2.1] Adding the objects to the pool using
* chGuardedPoolLoadArray().
* - [5.2.2] Emptying the pool using chGuardedPoolAllocTimeout().
* - [5.2.3] Now must be empty.
* - [5.2.4] Adding the objects to the pool using chGuardedPoolFree().
* - [5.2.5] Emptying the pool using chGuardedPoolAllocTimeout() again.
* - [5.2.6] Now must be empty again.
* .
*/
static void oslib_test_005_002_execute(void) {
void *p1;
size_t total_size, largest_size;
static void oslib_test_005_002_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
}
/* [5.2.1] Single block allocation using chHeapAlloc() then the block
is freed using chHeapFree(), must not fail.*/
static void oslib_test_005_002_execute(void) {
unsigned i;
/* [5.2.1] Adding the objects to the pool using
chGuardedPoolLoadArray().*/
test_set_step(1);
{
(void)chHeapStatus(NULL, &total_size, &largest_size);
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
chGuardedPoolLoadArray(&gmp1, objects, MEMORY_POOL_SIZE);
}
test_end_step(1);
/* [5.2.2] Testing allocation failure.*/
/* [5.2.2] Emptying the pool using chGuardedPoolAllocTimeout().*/
test_set_step(2);
{
p1 = chHeapAlloc(NULL, (size_t)-256);
test_assert(p1 == NULL, "allocation not failed");
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
}
test_end_step(2);
/* [5.2.3] Now must be empty.*/
test_set_step(3);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
}
test_end_step(3);
/* [5.2.4] Adding the objects to the pool using
chGuardedPoolFree().*/
test_set_step(4);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
chGuardedPoolFree(&gmp1, &objects[i]);
}
test_end_step(4);
/* [5.2.5] Emptying the pool using chGuardedPoolAllocTimeout()
again.*/
test_set_step(5);
{
for (i = 0; i < MEMORY_POOL_SIZE; i++)
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) != NULL, "list empty");
}
test_end_step(5);
/* [5.2.6] Now must be empty again.*/
test_set_step(6);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_IMMEDIATE) == NULL, "list not empty");
}
test_end_step(6);
}
static const testcase_t oslib_test_005_002 = {
"Default Heap",
NULL,
"Loading and emptying a guarded memory pool without waiting",
oslib_test_005_002_setup,
NULL,
oslib_test_005_002_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
/**
* @page oslib_test_005_003 [5.3] Guarded Memory Pools timeout
*
* <h2>Description</h2>
* The timeout features for the Guarded Memory Pools is tested.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_USE_SEMAPHORES
* .
*
* <h2>Test Steps</h2>
* - [5.3.1] Trying to allocate with 100mS timeout, must fail because
* the pool is empty.
* .
*/
static void oslib_test_005_003_setup(void) {
chGuardedPoolObjectInit(&gmp1, sizeof (uint32_t));
}
static void oslib_test_005_003_execute(void) {
/* [5.3.1] Trying to allocate with 100mS timeout, must fail because
the pool is empty.*/
test_set_step(1);
{
test_assert(chGuardedPoolAllocTimeout(&gmp1, TIME_MS2I(100)) == NULL, "list not empty");
}
test_end_step(1);
}
static const testcase_t oslib_test_005_003 = {
"Guarded Memory Pools timeout",
oslib_test_005_003_setup,
NULL,
oslib_test_005_003_execute
};
#endif /* CH_CFG_USE_SEMAPHORES */
/****************************************************************************
* Exported data.
@ -265,16 +297,21 @@ static const testcase_t oslib_test_005_002 = {
*/
const testcase_t * const oslib_test_sequence_005_array[] = {
&oslib_test_005_001,
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&oslib_test_005_002,
#endif
#if (CH_CFG_USE_SEMAPHORES) || defined(__DOXYGEN__)
&oslib_test_005_003,
#endif
NULL
};
/**
* @brief Memory Heaps.
* @brief Memory Pools.
*/
const testsequence_t oslib_test_sequence_005 = {
"Memory Heaps",
"Memory Pools",
oslib_test_sequence_005_array
};
#endif /* CH_CFG_USE_HEAP */
#endif /* CH_CFG_USE_MEMPOOLS */

View File

@ -21,725 +21,252 @@
* @file oslib_test_sequence_006.c
* @brief Test Sequence 006 code.
*
* @page oslib_test_sequence_006 [6] Objects Factory
* @page oslib_test_sequence_006 [6] Memory Heaps
*
* File: @ref oslib_test_sequence_006.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS library functionalities related to
* the object factory.
* memory heaps.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - (CH_CFG_USE_FACTORY == TRUE) && (CH_CFG_USE_MEMPOOLS == TRUE) && (CH_CFG_USE_HEAP == TRUE)
* - CH_CFG_USE_HEAP
* .
*
* <h2>Test Cases</h2>
* - @subpage oslib_test_006_001
* - @subpage oslib_test_006_002
* - @subpage oslib_test_006_003
* - @subpage oslib_test_006_004
* - @subpage oslib_test_006_005
* - @subpage oslib_test_006_006
* .
*/
#if ((CH_CFG_USE_FACTORY == TRUE) && (CH_CFG_USE_MEMPOOLS == TRUE) && (CH_CFG_USE_HEAP == TRUE)) || defined(__DOXYGEN__)
#if (CH_CFG_USE_HEAP) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
#define ALLOC_SIZE 16
#define HEAP_SIZE (ALLOC_SIZE * 8)
static memory_heap_t test_heap;
static uint8_t test_heap_buffer[HEAP_SIZE];
/****************************************************************************
* Test cases.
****************************************************************************/
#if (CH_CFG_FACTORY_OBJECTS_REGISTRY == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_006_001 [6.1] Objects Registry
* @page oslib_test_006_001 [6.1] Allocation and fragmentation
*
* <h2>Description</h2>
* This test case verifies the static objects registry.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_OBJECTS_REGISTRY == TRUE
* .
* Series of allocations/deallocations are performed in carefully
* designed sequences in order to stimulate all the possible code paths
* inside the allocator. The test expects to find the heap back to the
* initial status after each sequence.
*
* <h2>Test Steps</h2>
* - [6.1.1] Retrieving a registered object by name, must not exist.
* - [6.1.2] Registering an object, it must not exists, must succeed.
* - [6.1.3] Registering an object with the same name, must fail.
* - [6.1.4] Retrieving the registered object by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [6.1.5] Releasing the first reference to the object, must not
* trigger an assertion.
* - [6.1.6] Retrieving the registered object by name again, must not
* exist.
* - [6.1.1] Testing initial conditions, the heap must not be
* fragmented and one free block present.
* - [6.1.2] Trying to allocate an block bigger than available space,
* an error is expected.
* - [6.1.3] Single block allocation using chHeapAlloc() then the block
* is freed using chHeapFree(), must not fail.
* - [6.1.4] Using chHeapStatus() to assess the heap state. There must
* be at least one free block of sufficient size.
* - [6.1.5] Allocating then freeing in the same order.
* - [6.1.6] Allocating then freeing in reverse order.
* - [6.1.7] Small fragments handling. Checking the behavior when
* allocating blocks with size not multiple of alignment unit.
* - [6.1.8] Skipping a fragment, the first fragment in the list is too
* small so the allocator must pick the second one.
* - [6.1.9] Allocating the whole available space.
* - [6.1.10] Testing final conditions. The heap geometry must be the
* same than the one registered at beginning.
* .
*/
static void oslib_test_006_001_teardown(void) {
registered_object_t *rop;
rop = chFactoryFindObject("myobj");
if (rop != NULL) {
while (rop->element.refs > 0U) {
chFactoryReleaseObject(rop);
}
}
static void oslib_test_006_001_setup(void) {
chHeapObjectInit(&test_heap, test_heap_buffer, sizeof(test_heap_buffer));
}
static void oslib_test_006_001_execute(void) {
registered_object_t *rop;
void *p1, *p2, *p3;
size_t n, sz;
/* [6.1.1] Retrieving a registered object by name, must not exist.*/
/* [6.1.1] Testing initial conditions, the heap must not be
fragmented and one free block present.*/
test_set_step(1);
{
rop = chFactoryFindObject("myobj");
test_assert(rop == NULL, "found");
test_assert(chHeapStatus(&test_heap, &sz, NULL) == 1, "heap fragmented");
}
test_end_step(1);
/* [6.1.2] Registering an object, it must not exists, must succeed.*/
/* [6.1.2] Trying to allocate an block bigger than available space,
an error is expected.*/
test_set_step(2);
{
static uint32_t myobj = 0x55aa;
rop = chFactoryRegisterObject("myobj", (void *)&myobj);
test_assert(rop != NULL, "cannot register");
p1 = chHeapAlloc(&test_heap, sizeof test_heap_buffer * 2);
test_assert(p1 == NULL, "allocation not failed");
}
test_end_step(2);
/* [6.1.3] Registering an object with the same name, must fail.*/
/* [6.1.3] Single block allocation using chHeapAlloc() then the block
is freed using chHeapFree(), must not fail.*/
test_set_step(3);
{
registered_object_t *rop1;
static uint32_t myobj = 0x55aa;
rop1 = chFactoryRegisterObject("myobj", (void *)&myobj);
test_assert(rop1 == NULL, "can register");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
}
test_end_step(3);
/* [6.1.4] Retrieving the registered object by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
/* [6.1.4] Using chHeapStatus() to assess the heap state. There must
be at least one free block of sufficient size.*/
test_set_step(4);
{
registered_object_t *rop1, *rop2;
size_t total_size, largest_size;
rop1 = chFactoryFindObject("myobj");
test_assert(rop1 != NULL, "not found");
test_assert(*(uint32_t *)(rop1->objp) == 0x55aa, "object mismatch");
test_assert(rop == rop1, "object reference mismatch");
test_assert(rop1->element.refs == 2, "object reference mismatch");
rop2 = (registered_object_t *)chFactoryDuplicateReference(&rop1->element);
test_assert(rop1 == rop2, "object reference mismatch");
test_assert(*(uint32_t *)(rop2->objp) == 0x55aa, "object mismatch");
test_assert(rop2->element.refs == 3, "object reference mismatch");
chFactoryReleaseObject(rop2);
test_assert(rop1->element.refs == 2, "references mismatch");
chFactoryReleaseObject(rop1);
test_assert(rop->element.refs == 1, "references mismatch");
n = chHeapStatus(&test_heap, &total_size, &largest_size);
test_assert(n == 1, "missing free block");
test_assert(total_size >= ALLOC_SIZE, "unexpected heap state");
test_assert(total_size == largest_size, "unexpected heap state");
}
test_end_step(4);
/* [6.1.5] Releasing the first reference to the object, must not
trigger an assertion.*/
/* [6.1.5] Allocating then freeing in the same order.*/
test_set_step(5);
{
chFactoryReleaseObject(rop);
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1); /* Does not merge.*/
chHeapFree(p2); /* Merges backward.*/
chHeapFree(p3); /* Merges both sides.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
test_end_step(5);
/* [6.1.6] Retrieving the registered object by name again, must not
exist.*/
/* [6.1.6] Allocating then freeing in reverse order.*/
test_set_step(6);
{
rop = chFactoryFindObject("myobj");
test_assert(rop == NULL, "found");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p3 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p3); /* Merges forward.*/
chHeapFree(p2); /* Merges forward.*/
chHeapFree(p1); /* Merges forward.*/
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
test_end_step(6);
/* [6.1.7] Small fragments handling. Checking the behavior when
allocating blocks with size not multiple of alignment unit.*/
test_set_step(7);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE + 1);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
/* Note, the first situation happens when the alignment size is smaller
than the header size, the second in the other cases.*/
test_assert((chHeapStatus(&test_heap, &n, NULL) == 1) ||
(chHeapStatus(&test_heap, &n, NULL) == 2), "heap fragmented");
chHeapFree(p2);
chHeapFree(p1);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
test_end_step(7);
/* [6.1.8] Skipping a fragment, the first fragment in the list is too
small so the allocator must pick the second one.*/
test_set_step(8);
{
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
p2 = chHeapAlloc(&test_heap, ALLOC_SIZE);
chHeapFree(p1);
test_assert( chHeapStatus(&test_heap, &n, NULL) == 2, "invalid state");
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE * 2); /* Skips first fragment.*/
chHeapFree(p1);
chHeapFree(p2);
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
}
test_end_step(8);
/* [6.1.9] Allocating the whole available space.*/
test_set_step(9);
{
(void)chHeapStatus(&test_heap, &n, NULL);
p1 = chHeapAlloc(&test_heap, n);
test_assert(p1 != NULL, "allocation failed");
test_assert(chHeapStatus(&test_heap, NULL, NULL) == 0, "not empty");
chHeapFree(p1);
}
test_end_step(9);
/* [6.1.10] Testing final conditions. The heap geometry must be the
same than the one registered at beginning.*/
test_set_step(10);
{
test_assert(chHeapStatus(&test_heap, &n, NULL) == 1, "heap fragmented");
test_assert(n == sz, "size changed");
}
test_end_step(10);
}
static const testcase_t oslib_test_006_001 = {
"Objects Registry",
"Allocation and fragmentation",
oslib_test_006_001_setup,
NULL,
oslib_test_006_001_teardown,
oslib_test_006_001_execute
};
#endif /* CH_CFG_FACTORY_OBJECTS_REGISTRY == TRUE */
#if (CH_CFG_FACTORY_GENERIC_BUFFERS == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_006_002 [6.2] Dynamic Buffers Factory
* @page oslib_test_006_002 [6.2] Default Heap
*
* <h2>Description</h2>
* This test case verifies the dynamic buffers factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_GENERIC_BUFFERS == TRUE
* .
* The default heap is pre-allocated in the system. We test base
* functionality.
*
* <h2>Test Steps</h2>
* - [6.2.1] Retrieving a dynamic buffer by name, must not exist.
* - [6.2.2] Creating a dynamic buffer it must not exists, must
* succeed.
* - [6.2.3] Creating a dynamic buffer with the same name, must fail.
* - [6.2.4] Retrieving the dynamic buffer by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [6.2.5] Releasing the first reference to the dynamic buffer, must
* not trigger an assertion.
* - [6.2.6] Retrieving the dynamic buffer by name again, must not
* exist.
* - [6.2.1] Single block allocation using chHeapAlloc() then the block
* is freed using chHeapFree(), must not fail.
* - [6.2.2] Testing allocation failure.
* .
*/
static void oslib_test_006_002_teardown(void) {
dyn_buffer_t *dbp;
dbp = chFactoryFindBuffer("mybuf");
if (dbp != NULL) {
while (dbp->element.refs > 0U) {
chFactoryReleaseBuffer(dbp);
}
}
}
static void oslib_test_006_002_execute(void) {
dyn_buffer_t *dbp;
void *p1;
size_t total_size, largest_size;
/* [6.2.1] Retrieving a dynamic buffer by name, must not exist.*/
/* [6.2.1] Single block allocation using chHeapAlloc() then the block
is freed using chHeapFree(), must not fail.*/
test_set_step(1);
{
dbp = chFactoryFindBuffer("mybuf");
test_assert(dbp == NULL, "found");
(void)chHeapStatus(NULL, &total_size, &largest_size);
p1 = chHeapAlloc(&test_heap, ALLOC_SIZE);
test_assert(p1 != NULL, "allocation failed");
chHeapFree(p1);
}
test_end_step(1);
/* [6.2.2] Creating a dynamic buffer it must not exists, must
succeed.*/
/* [6.2.2] Testing allocation failure.*/
test_set_step(2);
{
dbp = chFactoryCreateBuffer("mybuf", 128U);
test_assert(dbp != NULL, "cannot create");
}
/* [6.2.3] Creating a dynamic buffer with the same name, must fail.*/
test_set_step(3);
{
dyn_buffer_t *dbp1;
dbp1 = chFactoryCreateBuffer("mybuf", 128U);
test_assert(dbp1 == NULL, "can create");
}
/* [6.2.4] Retrieving the dynamic buffer by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_buffer_t *dbp1, *dbp2;
dbp1 = chFactoryFindBuffer("mybuf");
test_assert(dbp1 != NULL, "not found");
test_assert(dbp == dbp1, "object reference mismatch");
test_assert(dbp1->element.refs == 2, "object reference mismatch");
dbp2 = (dyn_buffer_t *)chFactoryDuplicateReference(&dbp1->element);
test_assert(dbp1 == dbp2, "object reference mismatch");
test_assert(dbp2->element.refs == 3, "object reference mismatch");
chFactoryReleaseBuffer(dbp2);
test_assert(dbp1->element.refs == 2, "references mismatch");
chFactoryReleaseBuffer(dbp1);
test_assert(dbp->element.refs == 1, "references mismatch");
}
/* [6.2.5] Releasing the first reference to the dynamic buffer, must
not trigger an assertion.*/
test_set_step(5);
{
chFactoryReleaseBuffer(dbp);
}
/* [6.2.6] Retrieving the dynamic buffer by name again, must not
exist.*/
test_set_step(6);
{
dbp = chFactoryFindBuffer("mybuf");
test_assert(dbp == NULL, "found");
p1 = chHeapAlloc(NULL, (size_t)-256);
test_assert(p1 == NULL, "allocation not failed");
}
test_end_step(2);
}
static const testcase_t oslib_test_006_002 = {
"Dynamic Buffers Factory",
"Default Heap",
NULL,
NULL,
oslib_test_006_002_teardown,
oslib_test_006_002_execute
};
#endif /* CH_CFG_FACTORY_GENERIC_BUFFERS == TRUE */
#if (CH_CFG_FACTORY_SEMAPHORES == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_006_003 [6.3] Dynamic Semaphores Factory
*
* <h2>Description</h2>
* This test case verifies the dynamic semaphores factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_SEMAPHORES == TRUE
* .
*
* <h2>Test Steps</h2>
* - [6.3.1] Retrieving a dynamic semaphore by name, must not exist.
* - [6.3.2] Creating a dynamic semaphore it must not exists, must
* succeed.
* - [6.3.3] Creating a dynamic semaphore with the same name, must
* fail.
* - [6.3.4] Retrieving the dynamic semaphore by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [6.3.5] Releasing the first reference to the dynamic semaphore
* must not trigger an assertion.
* - [6.3.6] Retrieving the dynamic semaphore by name again, must not
* exist.
* .
*/
static void oslib_test_006_003_teardown(void) {
dyn_semaphore_t *dsp;
dsp = chFactoryFindSemaphore("mysem");
if (dsp != NULL) {
while (dsp->element.refs > 0U) {
chFactoryReleaseSemaphore(dsp);
}
}
}
static void oslib_test_006_003_execute(void) {
dyn_semaphore_t *dsp;
/* [6.3.1] Retrieving a dynamic semaphore by name, must not exist.*/
test_set_step(1);
{
dsp = chFactoryFindSemaphore("mysem");
test_assert(dsp == NULL, "found");
}
/* [6.3.2] Creating a dynamic semaphore it must not exists, must
succeed.*/
test_set_step(2);
{
dsp = chFactoryCreateSemaphore("mysem", 0);
test_assert(dsp != NULL, "cannot create");
}
/* [6.3.3] Creating a dynamic semaphore with the same name, must
fail.*/
test_set_step(3);
{
dyn_semaphore_t *dsp1;
dsp1 = chFactoryCreateSemaphore("mysem", 0);
test_assert(dsp1 == NULL, "can create");
}
/* [6.3.4] Retrieving the dynamic semaphore by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_semaphore_t *dsp1, *dsp2;
dsp1 = chFactoryFindSemaphore("mysem");
test_assert(dsp1 != NULL, "not found");
test_assert(dsp == dsp1, "object reference mismatch");
test_assert(dsp1->element.refs == 2, "object reference mismatch");
dsp2 = (dyn_semaphore_t *)chFactoryDuplicateReference(&dsp1->element);
test_assert(dsp1 == dsp2, "object reference mismatch");
test_assert(dsp2->element.refs == 3, "object reference mismatch");
chFactoryReleaseSemaphore(dsp2);
test_assert(dsp1->element.refs == 2, "references mismatch");
chFactoryReleaseSemaphore(dsp1);
test_assert(dsp->element.refs == 1, "references mismatch");
}
/* [6.3.5] Releasing the first reference to the dynamic semaphore
must not trigger an assertion.*/
test_set_step(5);
{
chFactoryReleaseSemaphore(dsp);
}
/* [6.3.6] Retrieving the dynamic semaphore by name again, must not
exist.*/
test_set_step(6);
{
dsp = chFactoryFindSemaphore("mysem");
test_assert(dsp == NULL, "found");
}
}
static const testcase_t oslib_test_006_003 = {
"Dynamic Semaphores Factory",
NULL,
oslib_test_006_003_teardown,
oslib_test_006_003_execute
};
#endif /* CH_CFG_FACTORY_SEMAPHORES == TRUE */
#if (CH_CFG_FACTORY_MAILBOXES == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_006_004 [6.4] Dynamic Mailboxes Factory
*
* <h2>Description</h2>
* This test case verifies the dynamic mailboxes factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_MAILBOXES == TRUE
* .
*
* <h2>Test Steps</h2>
* - [6.4.1] Retrieving a dynamic mailbox by name, must not exist.
* - [6.4.2] Creating a dynamic mailbox it must not exists, must
* succeed.
* - [6.4.3] Creating a dynamic mailbox with the same name, must fail.
* - [6.4.4] Retrieving the dynamic mailbox by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [6.4.5] Releasing the first reference to the dynamic mailbox must
* not trigger an assertion.
* - [6.4.6] Retrieving the dynamic mailbox by name again, must not
* exist.
* .
*/
static void oslib_test_006_004_teardown(void) {
dyn_mailbox_t *dmp;
dmp = chFactoryFindMailbox("mymbx");
if (dmp != NULL) {
while (dmp->element.refs > 0U) {
chFactoryReleaseMailbox(dmp);
}
}
}
static void oslib_test_006_004_execute(void) {
dyn_mailbox_t *dmp;
/* [6.4.1] Retrieving a dynamic mailbox by name, must not exist.*/
test_set_step(1);
{
dmp = chFactoryFindMailbox("mymbx");
test_assert(dmp == NULL, "found");
}
/* [6.4.2] Creating a dynamic mailbox it must not exists, must
succeed.*/
test_set_step(2);
{
dmp = chFactoryCreateMailbox("mymbx", 16U);
test_assert(dmp != NULL, "cannot create");
}
/* [6.4.3] Creating a dynamic mailbox with the same name, must
fail.*/
test_set_step(3);
{
dyn_mailbox_t *dmp1;
dmp1 = chFactoryCreateMailbox("mymbx", 16U);
test_assert(dmp1 == NULL, "can create");
}
/* [6.4.4] Retrieving the dynamic mailbox by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_mailbox_t *dmp1, *dmp2;
dmp1 = chFactoryFindMailbox("mymbx");
test_assert(dmp1 != NULL, "not found");
test_assert(dmp == dmp1, "object reference mismatch");
test_assert(dmp1->element.refs == 2, "object reference mismatch");
dmp2 = (dyn_mailbox_t *)chFactoryDuplicateReference(&dmp1->element);
test_assert(dmp1 == dmp2, "object reference mismatch");
test_assert(dmp2->element.refs == 3, "object reference mismatch");
chFactoryReleaseMailbox(dmp2);
test_assert(dmp1->element.refs == 2, "references mismatch");
chFactoryReleaseMailbox(dmp1);
test_assert(dmp->element.refs == 1, "references mismatch");
}
/* [6.4.5] Releasing the first reference to the dynamic mailbox must
not trigger an assertion.*/
test_set_step(5);
{
chFactoryReleaseMailbox(dmp);
}
/* [6.4.6] Retrieving the dynamic mailbox by name again, must not
exist.*/
test_set_step(6);
{
dmp = chFactoryFindMailbox("mymbx");
test_assert(dmp == NULL, "found");
}
}
static const testcase_t oslib_test_006_004 = {
"Dynamic Mailboxes Factory",
NULL,
oslib_test_006_004_teardown,
oslib_test_006_004_execute
};
#endif /* CH_CFG_FACTORY_MAILBOXES == TRUE */
#if (CH_CFG_FACTORY_OBJ_FIFOS == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_006_005 [6.5] Dynamic Objects FIFOs Factory
*
* <h2>Description</h2>
* This test case verifies the dynamic objects FIFOs factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_OBJ_FIFOS == TRUE
* .
*
* <h2>Test Steps</h2>
* - [6.5.1] Retrieving a dynamic objects FIFO by name, must not exist.
* - [6.5.2] Creating a dynamic objects FIFO it must not exists, must
* succeed.
* - [6.5.3] Creating a dynamic objects FIFO with the same name, must
* fail.
* - [6.5.4] Retrieving the dynamic objects FIFO by name, must exist,
* then increasing the reference counter, finally releasing both
* references.
* - [6.5.5] Releasing the first reference to the dynamic objects FIFO
* must not trigger an assertion.
* - [6.5.6] Retrieving the dynamic objects FIFO by name again, must
* not exist.
* .
*/
static void oslib_test_006_005_teardown(void) {
dyn_objects_fifo_t *dofp;
dofp = chFactoryFindObjectsFIFO("myfifo");
if (dofp != NULL) {
while (dofp->element.refs > 0U) {
chFactoryReleaseObjectsFIFO(dofp);
}
}
}
static void oslib_test_006_005_execute(void) {
dyn_objects_fifo_t *dofp;
/* [6.5.1] Retrieving a dynamic objects FIFO by name, must not
exist.*/
test_set_step(1);
{
dofp = chFactoryFindObjectsFIFO("myfifo");
test_assert(dofp == NULL, "found");
}
/* [6.5.2] Creating a dynamic objects FIFO it must not exists, must
succeed.*/
test_set_step(2);
{
dofp = chFactoryCreateObjectsFIFO("myfifo", 16U, 16U, PORT_NATURAL_ALIGN);
test_assert(dofp != NULL, "cannot create");
}
/* [6.5.3] Creating a dynamic objects FIFO with the same name, must
fail.*/
test_set_step(3);
{
dyn_objects_fifo_t *dofp1;
dofp1 = chFactoryCreateObjectsFIFO("myfifo", 16U, 16U, PORT_NATURAL_ALIGN);
test_assert(dofp1 == NULL, "can create");
}
/* [6.5.4] Retrieving the dynamic objects FIFO by name, must exist,
then increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_objects_fifo_t *dofp1, *dofp2;
dofp1 = chFactoryFindObjectsFIFO("myfifo");
test_assert(dofp1 != NULL, "not found");
test_assert(dofp == dofp1, "object reference mismatch");
test_assert(dofp1->element.refs == 2, "object reference mismatch");
dofp2 = (dyn_objects_fifo_t *)chFactoryDuplicateReference(&dofp1->element);
test_assert(dofp1 == dofp2, "object reference mismatch");
test_assert(dofp2->element.refs == 3, "object reference mismatch");
chFactoryReleaseObjectsFIFO(dofp2);
test_assert(dofp1->element.refs == 2, "references mismatch");
chFactoryReleaseObjectsFIFO(dofp1);
test_assert(dofp->element.refs == 1, "references mismatch");
}
/* [6.5.5] Releasing the first reference to the dynamic objects FIFO
must not trigger an assertion.*/
test_set_step(5);
{
chFactoryReleaseObjectsFIFO(dofp);
}
/* [6.5.6] Retrieving the dynamic objects FIFO by name again, must
not exist.*/
test_set_step(6);
{
dofp = chFactoryFindObjectsFIFO("myfifo");
test_assert(dofp == NULL, "found");
}
}
static const testcase_t oslib_test_006_005 = {
"Dynamic Objects FIFOs Factory",
NULL,
oslib_test_006_005_teardown,
oslib_test_006_005_execute
};
#endif /* CH_CFG_FACTORY_OBJ_FIFOS == TRUE */
#if (CH_CFG_FACTORY_PIPES == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_006_006 [6.6] Dynamic Pipes Factory
*
* <h2>Description</h2>
* This test case verifies the dynamic pipes factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_PIPES == TRUE
* .
*
* <h2>Test Steps</h2>
* - [6.6.1] Retrieving a dynamic pipe by name, must not exist.
* - [6.6.2] Creating a dynamic pipe it must not exists, must succeed.
* - [6.6.3] Creating a dynamic pipe with the same name, must fail.
* - [6.6.4] Retrieving the dynamic pipe by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [6.6.5] Releasing the first reference to the dynamic pipe must not
* trigger an assertion.
* - [6.6.6] Retrieving the dynamic pipe by name again, must not exist.
* .
*/
static void oslib_test_006_006_teardown(void) {
dyn_pipe_t *dpp;
dpp = chFactoryFindPipe("mypipe");
if (dpp != NULL) {
while (dpp->element.refs > 0U) {
chFactoryReleasePipe(dpp);
}
}
}
static void oslib_test_006_006_execute(void) {
dyn_pipe_t *dpp;
/* [6.6.1] Retrieving a dynamic pipe by name, must not exist.*/
test_set_step(1);
{
dpp = chFactoryFindPipe("mypipe");
test_assert(dpp == NULL, "found");
}
/* [6.6.2] Creating a dynamic pipe it must not exists, must
succeed.*/
test_set_step(2);
{
dpp = chFactoryCreatePipe("mypipe", 16U);
test_assert(dpp != NULL, "cannot create");
}
/* [6.6.3] Creating a dynamic pipe with the same name, must fail.*/
test_set_step(3);
{
dyn_pipe_t *dpp1;
dpp1 = chFactoryCreatePipe("mypipe", 16U);
test_assert(dpp1 == NULL, "can create");
}
/* [6.6.4] Retrieving the dynamic pipe by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_pipe_t *dpp1, *dpp2;
dpp1 = chFactoryFindPipe("mypipe");
test_assert(dpp1 != NULL, "not found");
test_assert(dpp == dpp1, "object reference mismatch");
test_assert(dpp1->element.refs == 2, "object reference mismatch");
dpp2 = (dyn_pipe_t *)chFactoryDuplicateReference(&dpp1->element);
test_assert(dpp1 == dpp2, "object reference mismatch");
test_assert(dpp2->element.refs == 3, "object reference mismatch");
chFactoryReleasePipe(dpp2);
test_assert(dpp1->element.refs == 2, "references mismatch");
chFactoryReleasePipe(dpp1);
test_assert(dpp->element.refs == 1, "references mismatch");
}
/* [6.6.5] Releasing the first reference to the dynamic pipe must not
trigger an assertion.*/
test_set_step(5);
{
chFactoryReleasePipe(dpp);
}
/* [6.6.6] Retrieving the dynamic pipe by name again, must not
exist.*/
test_set_step(6);
{
dpp = chFactoryFindPipe("mypipe");
test_assert(dpp == NULL, "found");
}
}
static const testcase_t oslib_test_006_006 = {
"Dynamic Pipes Factory",
NULL,
oslib_test_006_006_teardown,
oslib_test_006_006_execute
};
#endif /* CH_CFG_FACTORY_PIPES == TRUE */
/****************************************************************************
* Exported data.
@ -749,33 +276,17 @@ static const testcase_t oslib_test_006_006 = {
* @brief Array of test cases.
*/
const testcase_t * const oslib_test_sequence_006_array[] = {
#if (CH_CFG_FACTORY_OBJECTS_REGISTRY == TRUE) || defined(__DOXYGEN__)
&oslib_test_006_001,
#endif
#if (CH_CFG_FACTORY_GENERIC_BUFFERS == TRUE) || defined(__DOXYGEN__)
&oslib_test_006_002,
#endif
#if (CH_CFG_FACTORY_SEMAPHORES == TRUE) || defined(__DOXYGEN__)
&oslib_test_006_003,
#endif
#if (CH_CFG_FACTORY_MAILBOXES == TRUE) || defined(__DOXYGEN__)
&oslib_test_006_004,
#endif
#if (CH_CFG_FACTORY_OBJ_FIFOS == TRUE) || defined(__DOXYGEN__)
&oslib_test_006_005,
#endif
#if (CH_CFG_FACTORY_PIPES == TRUE) || defined(__DOXYGEN__)
&oslib_test_006_006,
#endif
NULL
};
/**
* @brief Objects Factory.
* @brief Memory Heaps.
*/
const testsequence_t oslib_test_sequence_006 = {
"Objects Factory",
"Memory Heaps",
oslib_test_sequence_006_array
};
#endif /* (CH_CFG_USE_FACTORY == TRUE) && (CH_CFG_USE_MEMPOOLS == TRUE) && (CH_CFG_USE_HEAP == TRUE) */
#endif /* CH_CFG_USE_HEAP */

View File

@ -0,0 +1,817 @@
/*
ChibiOS - Copyright (C) 2006..2017 Giovanni Di Sirio
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "hal.h"
#include "oslib_test_root.h"
/**
* @file oslib_test_sequence_007.c
* @brief Test Sequence 007 code.
*
* @page oslib_test_sequence_007 [7] Objects Factory
*
* File: @ref oslib_test_sequence_007.c
*
* <h2>Description</h2>
* This sequence tests the ChibiOS library functionalities related to
* the object factory.
*
* <h2>Conditions</h2>
* This sequence is only executed if the following preprocessor condition
* evaluates to true:
* - (CH_CFG_USE_FACTORY == TRUE) && (CH_CFG_USE_MEMPOOLS == TRUE) && (CH_CFG_USE_HEAP == TRUE)
* .
*
* <h2>Test Cases</h2>
* - @subpage oslib_test_007_001
* - @subpage oslib_test_007_002
* - @subpage oslib_test_007_003
* - @subpage oslib_test_007_004
* - @subpage oslib_test_007_005
* - @subpage oslib_test_007_006
* .
*/
#if ((CH_CFG_USE_FACTORY == TRUE) && (CH_CFG_USE_MEMPOOLS == TRUE) && (CH_CFG_USE_HEAP == TRUE)) || defined(__DOXYGEN__)
/****************************************************************************
* Shared code.
****************************************************************************/
/****************************************************************************
* Test cases.
****************************************************************************/
#if (CH_CFG_FACTORY_OBJECTS_REGISTRY == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_007_001 [7.1] Objects Registry
*
* <h2>Description</h2>
* This test case verifies the static objects registry.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_OBJECTS_REGISTRY == TRUE
* .
*
* <h2>Test Steps</h2>
* - [7.1.1] Retrieving a registered object by name, must not exist.
* - [7.1.2] Registering an object, it must not exists, must succeed.
* - [7.1.3] Registering an object with the same name, must fail.
* - [7.1.4] Retrieving the registered object by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [7.1.5] Releasing the first reference to the object, must not
* trigger an assertion.
* - [7.1.6] Retrieving the registered object by name again, must not
* exist.
* .
*/
static void oslib_test_007_001_teardown(void) {
registered_object_t *rop;
rop = chFactoryFindObject("myobj");
if (rop != NULL) {
while (rop->element.refs > 0U) {
chFactoryReleaseObject(rop);
}
}
}
static void oslib_test_007_001_execute(void) {
registered_object_t *rop;
/* [7.1.1] Retrieving a registered object by name, must not exist.*/
test_set_step(1);
{
rop = chFactoryFindObject("myobj");
test_assert(rop == NULL, "found");
}
test_end_step(1);
/* [7.1.2] Registering an object, it must not exists, must succeed.*/
test_set_step(2);
{
static uint32_t myobj = 0x55aa;
rop = chFactoryRegisterObject("myobj", (void *)&myobj);
test_assert(rop != NULL, "cannot register");
}
test_end_step(2);
/* [7.1.3] Registering an object with the same name, must fail.*/
test_set_step(3);
{
registered_object_t *rop1;
static uint32_t myobj = 0x55aa;
rop1 = chFactoryRegisterObject("myobj", (void *)&myobj);
test_assert(rop1 == NULL, "can register");
}
test_end_step(3);
/* [7.1.4] Retrieving the registered object by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
registered_object_t *rop1, *rop2;
rop1 = chFactoryFindObject("myobj");
test_assert(rop1 != NULL, "not found");
test_assert(*(uint32_t *)(rop1->objp) == 0x55aa, "object mismatch");
test_assert(rop == rop1, "object reference mismatch");
test_assert(rop1->element.refs == 2, "object reference mismatch");
rop2 = (registered_object_t *)chFactoryDuplicateReference(&rop1->element);
test_assert(rop1 == rop2, "object reference mismatch");
test_assert(*(uint32_t *)(rop2->objp) == 0x55aa, "object mismatch");
test_assert(rop2->element.refs == 3, "object reference mismatch");
chFactoryReleaseObject(rop2);
test_assert(rop1->element.refs == 2, "references mismatch");
chFactoryReleaseObject(rop1);
test_assert(rop->element.refs == 1, "references mismatch");
}
test_end_step(4);
/* [7.1.5] Releasing the first reference to the object, must not
trigger an assertion.*/
test_set_step(5);
{
chFactoryReleaseObject(rop);
}
test_end_step(5);
/* [7.1.6] Retrieving the registered object by name again, must not
exist.*/
test_set_step(6);
{
rop = chFactoryFindObject("myobj");
test_assert(rop == NULL, "found");
}
test_end_step(6);
}
static const testcase_t oslib_test_007_001 = {
"Objects Registry",
NULL,
oslib_test_007_001_teardown,
oslib_test_007_001_execute
};
#endif /* CH_CFG_FACTORY_OBJECTS_REGISTRY == TRUE */
#if (CH_CFG_FACTORY_GENERIC_BUFFERS == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_007_002 [7.2] Dynamic Buffers Factory
*
* <h2>Description</h2>
* This test case verifies the dynamic buffers factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_GENERIC_BUFFERS == TRUE
* .
*
* <h2>Test Steps</h2>
* - [7.2.1] Retrieving a dynamic buffer by name, must not exist.
* - [7.2.2] Creating a dynamic buffer it must not exists, must
* succeed.
* - [7.2.3] Creating a dynamic buffer with the same name, must fail.
* - [7.2.4] Retrieving the dynamic buffer by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [7.2.5] Releasing the first reference to the dynamic buffer, must
* not trigger an assertion.
* - [7.2.6] Retrieving the dynamic buffer by name again, must not
* exist.
* .
*/
static void oslib_test_007_002_teardown(void) {
dyn_buffer_t *dbp;
dbp = chFactoryFindBuffer("mybuf");
if (dbp != NULL) {
while (dbp->element.refs > 0U) {
chFactoryReleaseBuffer(dbp);
}
}
}
static void oslib_test_007_002_execute(void) {
dyn_buffer_t *dbp;
/* [7.2.1] Retrieving a dynamic buffer by name, must not exist.*/
test_set_step(1);
{
dbp = chFactoryFindBuffer("mybuf");
test_assert(dbp == NULL, "found");
}
test_end_step(1);
/* [7.2.2] Creating a dynamic buffer it must not exists, must
succeed.*/
test_set_step(2);
{
dbp = chFactoryCreateBuffer("mybuf", 128U);
test_assert(dbp != NULL, "cannot create");
}
test_end_step(2);
/* [7.2.3] Creating a dynamic buffer with the same name, must fail.*/
test_set_step(3);
{
dyn_buffer_t *dbp1;
dbp1 = chFactoryCreateBuffer("mybuf", 128U);
test_assert(dbp1 == NULL, "can create");
}
test_end_step(3);
/* [7.2.4] Retrieving the dynamic buffer by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_buffer_t *dbp1, *dbp2;
dbp1 = chFactoryFindBuffer("mybuf");
test_assert(dbp1 != NULL, "not found");
test_assert(dbp == dbp1, "object reference mismatch");
test_assert(dbp1->element.refs == 2, "object reference mismatch");
dbp2 = (dyn_buffer_t *)chFactoryDuplicateReference(&dbp1->element);
test_assert(dbp1 == dbp2, "object reference mismatch");
test_assert(dbp2->element.refs == 3, "object reference mismatch");
chFactoryReleaseBuffer(dbp2);
test_assert(dbp1->element.refs == 2, "references mismatch");
chFactoryReleaseBuffer(dbp1);
test_assert(dbp->element.refs == 1, "references mismatch");
}
test_end_step(4);
/* [7.2.5] Releasing the first reference to the dynamic buffer, must
not trigger an assertion.*/
test_set_step(5);
{
chFactoryReleaseBuffer(dbp);
}
test_end_step(5);
/* [7.2.6] Retrieving the dynamic buffer by name again, must not
exist.*/
test_set_step(6);
{
dbp = chFactoryFindBuffer("mybuf");
test_assert(dbp == NULL, "found");
}
test_end_step(6);
}
static const testcase_t oslib_test_007_002 = {
"Dynamic Buffers Factory",
NULL,
oslib_test_007_002_teardown,
oslib_test_007_002_execute
};
#endif /* CH_CFG_FACTORY_GENERIC_BUFFERS == TRUE */
#if (CH_CFG_FACTORY_SEMAPHORES == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_007_003 [7.3] Dynamic Semaphores Factory
*
* <h2>Description</h2>
* This test case verifies the dynamic semaphores factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_SEMAPHORES == TRUE
* .
*
* <h2>Test Steps</h2>
* - [7.3.1] Retrieving a dynamic semaphore by name, must not exist.
* - [7.3.2] Creating a dynamic semaphore it must not exists, must
* succeed.
* - [7.3.3] Creating a dynamic semaphore with the same name, must
* fail.
* - [7.3.4] Retrieving the dynamic semaphore by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [7.3.5] Releasing the first reference to the dynamic semaphore
* must not trigger an assertion.
* - [7.3.6] Retrieving the dynamic semaphore by name again, must not
* exist.
* .
*/
static void oslib_test_007_003_teardown(void) {
dyn_semaphore_t *dsp;
dsp = chFactoryFindSemaphore("mysem");
if (dsp != NULL) {
while (dsp->element.refs > 0U) {
chFactoryReleaseSemaphore(dsp);
}
}
}
static void oslib_test_007_003_execute(void) {
dyn_semaphore_t *dsp;
/* [7.3.1] Retrieving a dynamic semaphore by name, must not exist.*/
test_set_step(1);
{
dsp = chFactoryFindSemaphore("mysem");
test_assert(dsp == NULL, "found");
}
test_end_step(1);
/* [7.3.2] Creating a dynamic semaphore it must not exists, must
succeed.*/
test_set_step(2);
{
dsp = chFactoryCreateSemaphore("mysem", 0);
test_assert(dsp != NULL, "cannot create");
}
test_end_step(2);
/* [7.3.3] Creating a dynamic semaphore with the same name, must
fail.*/
test_set_step(3);
{
dyn_semaphore_t *dsp1;
dsp1 = chFactoryCreateSemaphore("mysem", 0);
test_assert(dsp1 == NULL, "can create");
}
test_end_step(3);
/* [7.3.4] Retrieving the dynamic semaphore by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_semaphore_t *dsp1, *dsp2;
dsp1 = chFactoryFindSemaphore("mysem");
test_assert(dsp1 != NULL, "not found");
test_assert(dsp == dsp1, "object reference mismatch");
test_assert(dsp1->element.refs == 2, "object reference mismatch");
dsp2 = (dyn_semaphore_t *)chFactoryDuplicateReference(&dsp1->element);
test_assert(dsp1 == dsp2, "object reference mismatch");
test_assert(dsp2->element.refs == 3, "object reference mismatch");
chFactoryReleaseSemaphore(dsp2);
test_assert(dsp1->element.refs == 2, "references mismatch");
chFactoryReleaseSemaphore(dsp1);
test_assert(dsp->element.refs == 1, "references mismatch");
}
test_end_step(4);
/* [7.3.5] Releasing the first reference to the dynamic semaphore
must not trigger an assertion.*/
test_set_step(5);
{
chFactoryReleaseSemaphore(dsp);
}
test_end_step(5);
/* [7.3.6] Retrieving the dynamic semaphore by name again, must not
exist.*/
test_set_step(6);
{
dsp = chFactoryFindSemaphore("mysem");
test_assert(dsp == NULL, "found");
}
test_end_step(6);
}
static const testcase_t oslib_test_007_003 = {
"Dynamic Semaphores Factory",
NULL,
oslib_test_007_003_teardown,
oslib_test_007_003_execute
};
#endif /* CH_CFG_FACTORY_SEMAPHORES == TRUE */
#if (CH_CFG_FACTORY_MAILBOXES == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_007_004 [7.4] Dynamic Mailboxes Factory
*
* <h2>Description</h2>
* This test case verifies the dynamic mailboxes factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_MAILBOXES == TRUE
* .
*
* <h2>Test Steps</h2>
* - [7.4.1] Retrieving a dynamic mailbox by name, must not exist.
* - [7.4.2] Creating a dynamic mailbox it must not exists, must
* succeed.
* - [7.4.3] Creating a dynamic mailbox with the same name, must fail.
* - [7.4.4] Retrieving the dynamic mailbox by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [7.4.5] Releasing the first reference to the dynamic mailbox must
* not trigger an assertion.
* - [7.4.6] Retrieving the dynamic mailbox by name again, must not
* exist.
* .
*/
static void oslib_test_007_004_teardown(void) {
dyn_mailbox_t *dmp;
dmp = chFactoryFindMailbox("mymbx");
if (dmp != NULL) {
while (dmp->element.refs > 0U) {
chFactoryReleaseMailbox(dmp);
}
}
}
static void oslib_test_007_004_execute(void) {
dyn_mailbox_t *dmp;
/* [7.4.1] Retrieving a dynamic mailbox by name, must not exist.*/
test_set_step(1);
{
dmp = chFactoryFindMailbox("mymbx");
test_assert(dmp == NULL, "found");
}
test_end_step(1);
/* [7.4.2] Creating a dynamic mailbox it must not exists, must
succeed.*/
test_set_step(2);
{
dmp = chFactoryCreateMailbox("mymbx", 16U);
test_assert(dmp != NULL, "cannot create");
}
test_end_step(2);
/* [7.4.3] Creating a dynamic mailbox with the same name, must
fail.*/
test_set_step(3);
{
dyn_mailbox_t *dmp1;
dmp1 = chFactoryCreateMailbox("mymbx", 16U);
test_assert(dmp1 == NULL, "can create");
}
test_end_step(3);
/* [7.4.4] Retrieving the dynamic mailbox by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_mailbox_t *dmp1, *dmp2;
dmp1 = chFactoryFindMailbox("mymbx");
test_assert(dmp1 != NULL, "not found");
test_assert(dmp == dmp1, "object reference mismatch");
test_assert(dmp1->element.refs == 2, "object reference mismatch");
dmp2 = (dyn_mailbox_t *)chFactoryDuplicateReference(&dmp1->element);
test_assert(dmp1 == dmp2, "object reference mismatch");
test_assert(dmp2->element.refs == 3, "object reference mismatch");
chFactoryReleaseMailbox(dmp2);
test_assert(dmp1->element.refs == 2, "references mismatch");
chFactoryReleaseMailbox(dmp1);
test_assert(dmp->element.refs == 1, "references mismatch");
}
test_end_step(4);
/* [7.4.5] Releasing the first reference to the dynamic mailbox must
not trigger an assertion.*/
test_set_step(5);
{
chFactoryReleaseMailbox(dmp);
}
test_end_step(5);
/* [7.4.6] Retrieving the dynamic mailbox by name again, must not
exist.*/
test_set_step(6);
{
dmp = chFactoryFindMailbox("mymbx");
test_assert(dmp == NULL, "found");
}
test_end_step(6);
}
static const testcase_t oslib_test_007_004 = {
"Dynamic Mailboxes Factory",
NULL,
oslib_test_007_004_teardown,
oslib_test_007_004_execute
};
#endif /* CH_CFG_FACTORY_MAILBOXES == TRUE */
#if (CH_CFG_FACTORY_OBJ_FIFOS == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_007_005 [7.5] Dynamic Objects FIFOs Factory
*
* <h2>Description</h2>
* This test case verifies the dynamic objects FIFOs factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_OBJ_FIFOS == TRUE
* .
*
* <h2>Test Steps</h2>
* - [7.5.1] Retrieving a dynamic objects FIFO by name, must not exist.
* - [7.5.2] Creating a dynamic objects FIFO it must not exists, must
* succeed.
* - [7.5.3] Creating a dynamic objects FIFO with the same name, must
* fail.
* - [7.5.4] Retrieving the dynamic objects FIFO by name, must exist,
* then increasing the reference counter, finally releasing both
* references.
* - [7.5.5] Releasing the first reference to the dynamic objects FIFO
* must not trigger an assertion.
* - [7.5.6] Retrieving the dynamic objects FIFO by name again, must
* not exist.
* .
*/
static void oslib_test_007_005_teardown(void) {
dyn_objects_fifo_t *dofp;
dofp = chFactoryFindObjectsFIFO("myfifo");
if (dofp != NULL) {
while (dofp->element.refs > 0U) {
chFactoryReleaseObjectsFIFO(dofp);
}
}
}
static void oslib_test_007_005_execute(void) {
dyn_objects_fifo_t *dofp;
/* [7.5.1] Retrieving a dynamic objects FIFO by name, must not
exist.*/
test_set_step(1);
{
dofp = chFactoryFindObjectsFIFO("myfifo");
test_assert(dofp == NULL, "found");
}
test_end_step(1);
/* [7.5.2] Creating a dynamic objects FIFO it must not exists, must
succeed.*/
test_set_step(2);
{
dofp = chFactoryCreateObjectsFIFO("myfifo", 16U, 16U, PORT_NATURAL_ALIGN);
test_assert(dofp != NULL, "cannot create");
}
test_end_step(2);
/* [7.5.3] Creating a dynamic objects FIFO with the same name, must
fail.*/
test_set_step(3);
{
dyn_objects_fifo_t *dofp1;
dofp1 = chFactoryCreateObjectsFIFO("myfifo", 16U, 16U, PORT_NATURAL_ALIGN);
test_assert(dofp1 == NULL, "can create");
}
test_end_step(3);
/* [7.5.4] Retrieving the dynamic objects FIFO by name, must exist,
then increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_objects_fifo_t *dofp1, *dofp2;
dofp1 = chFactoryFindObjectsFIFO("myfifo");
test_assert(dofp1 != NULL, "not found");
test_assert(dofp == dofp1, "object reference mismatch");
test_assert(dofp1->element.refs == 2, "object reference mismatch");
dofp2 = (dyn_objects_fifo_t *)chFactoryDuplicateReference(&dofp1->element);
test_assert(dofp1 == dofp2, "object reference mismatch");
test_assert(dofp2->element.refs == 3, "object reference mismatch");
chFactoryReleaseObjectsFIFO(dofp2);
test_assert(dofp1->element.refs == 2, "references mismatch");
chFactoryReleaseObjectsFIFO(dofp1);
test_assert(dofp->element.refs == 1, "references mismatch");
}
test_end_step(4);
/* [7.5.5] Releasing the first reference to the dynamic objects FIFO
must not trigger an assertion.*/
test_set_step(5);
{
chFactoryReleaseObjectsFIFO(dofp);
}
test_end_step(5);
/* [7.5.6] Retrieving the dynamic objects FIFO by name again, must
not exist.*/
test_set_step(6);
{
dofp = chFactoryFindObjectsFIFO("myfifo");
test_assert(dofp == NULL, "found");
}
test_end_step(6);
}
static const testcase_t oslib_test_007_005 = {
"Dynamic Objects FIFOs Factory",
NULL,
oslib_test_007_005_teardown,
oslib_test_007_005_execute
};
#endif /* CH_CFG_FACTORY_OBJ_FIFOS == TRUE */
#if (CH_CFG_FACTORY_PIPES == TRUE) || defined(__DOXYGEN__)
/**
* @page oslib_test_007_006 [7.6] Dynamic Pipes Factory
*
* <h2>Description</h2>
* This test case verifies the dynamic pipes factory.
*
* <h2>Conditions</h2>
* This test is only executed if the following preprocessor condition
* evaluates to true:
* - CH_CFG_FACTORY_PIPES == TRUE
* .
*
* <h2>Test Steps</h2>
* - [7.6.1] Retrieving a dynamic pipe by name, must not exist.
* - [7.6.2] Creating a dynamic pipe it must not exists, must succeed.
* - [7.6.3] Creating a dynamic pipe with the same name, must fail.
* - [7.6.4] Retrieving the dynamic pipe by name, must exist, then
* increasing the reference counter, finally releasing both
* references.
* - [7.6.5] Releasing the first reference to the dynamic pipe must not
* trigger an assertion.
* - [7.6.6] Retrieving the dynamic pipe by name again, must not exist.
* .
*/
static void oslib_test_007_006_teardown(void) {
dyn_pipe_t *dpp;
dpp = chFactoryFindPipe("mypipe");
if (dpp != NULL) {
while (dpp->element.refs > 0U) {
chFactoryReleasePipe(dpp);
}
}
}
static void oslib_test_007_006_execute(void) {
dyn_pipe_t *dpp;
/* [7.6.1] Retrieving a dynamic pipe by name, must not exist.*/
test_set_step(1);
{
dpp = chFactoryFindPipe("mypipe");
test_assert(dpp == NULL, "found");
}
test_end_step(1);
/* [7.6.2] Creating a dynamic pipe it must not exists, must
succeed.*/
test_set_step(2);
{
dpp = chFactoryCreatePipe("mypipe", 16U);
test_assert(dpp != NULL, "cannot create");
}
test_end_step(2);
/* [7.6.3] Creating a dynamic pipe with the same name, must fail.*/
test_set_step(3);
{
dyn_pipe_t *dpp1;
dpp1 = chFactoryCreatePipe("mypipe", 16U);
test_assert(dpp1 == NULL, "can create");
}
test_end_step(3);
/* [7.6.4] Retrieving the dynamic pipe by name, must exist, then
increasing the reference counter, finally releasing both
references.*/
test_set_step(4);
{
dyn_pipe_t *dpp1, *dpp2;
dpp1 = chFactoryFindPipe("mypipe");
test_assert(dpp1 != NULL, "not found");
test_assert(dpp == dpp1, "object reference mismatch");
test_assert(dpp1->element.refs == 2, "object reference mismatch");
dpp2 = (dyn_pipe_t *)chFactoryDuplicateReference(&dpp1->element);
test_assert(dpp1 == dpp2, "object reference mismatch");
test_assert(dpp2->element.refs == 3, "object reference mismatch");
chFactoryReleasePipe(dpp2);
test_assert(dpp1->element.refs == 2, "references mismatch");
chFactoryReleasePipe(dpp1);
test_assert(dpp->element.refs == 1, "references mismatch");
}
test_end_step(4);
/* [7.6.5] Releasing the first reference to the dynamic pipe must not
trigger an assertion.*/
test_set_step(5);
{
chFactoryReleasePipe(dpp);
}
test_end_step(5);
/* [7.6.6] Retrieving the dynamic pipe by name again, must not
exist.*/
test_set_step(6);
{
dpp = chFactoryFindPipe("mypipe");
test_assert(dpp == NULL, "found");
}
test_end_step(6);
}
static const testcase_t oslib_test_007_006 = {
"Dynamic Pipes Factory",
NULL,
oslib_test_007_006_teardown,
oslib_test_007_006_execute
};
#endif /* CH_CFG_FACTORY_PIPES == TRUE */
/****************************************************************************
* Exported data.
****************************************************************************/
/**
* @brief Array of test cases.
*/
const testcase_t * const oslib_test_sequence_007_array[] = {
#if (CH_CFG_FACTORY_OBJECTS_REGISTRY == TRUE) || defined(__DOXYGEN__)
&oslib_test_007_001,
#endif
#if (CH_CFG_FACTORY_GENERIC_BUFFERS == TRUE) || defined(__DOXYGEN__)
&oslib_test_007_002,
#endif
#if (CH_CFG_FACTORY_SEMAPHORES == TRUE) || defined(__DOXYGEN__)
&oslib_test_007_003,
#endif
#if (CH_CFG_FACTORY_MAILBOXES == TRUE) || defined(__DOXYGEN__)
&oslib_test_007_004,
#endif
#if (CH_CFG_FACTORY_OBJ_FIFOS == TRUE) || defined(__DOXYGEN__)
&oslib_test_007_005,
#endif
#if (CH_CFG_FACTORY_PIPES == TRUE) || defined(__DOXYGEN__)
&oslib_test_007_006,
#endif
NULL
};
/**
* @brief Objects Factory.
*/
const testsequence_t oslib_test_sequence_007 = {
"Objects Factory",
oslib_test_sequence_007_array
};
#endif /* (CH_CFG_USE_FACTORY == TRUE) && (CH_CFG_USE_MEMPOOLS == TRUE) && (CH_CFG_USE_HEAP == TRUE) */

View File

@ -0,0 +1,27 @@
/*
ChibiOS - Copyright (C) 2006..2017 Giovanni Di Sirio
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/**
* @file oslib_test_sequence_007.h
* @brief Test Sequence 007 header.
*/
#ifndef OSLIB_TEST_SEQUENCE_007_H
#define OSLIB_TEST_SEQUENCE_007_H
extern const testsequence_t oslib_test_sequence_007;
#endif /* OSLIB_TEST_SEQUENCE_007_H */