ChibiOS/os/hal/platforms/STM32F37x/adc_lld.c

712 lines
23 KiB
C

/*
ChibiOS/RT - Copyright (C) 2006,2007,2008,2009,2010,
2011,2012,2013 Giovanni Di Sirio.
This file is part of ChibiOS/RT.
ChibiOS/RT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/RT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file STM32F4xx/adc_lld.c
* @brief STM32F4xx/STM32F2xx ADC subsystem low level driver source.
*
* @addtogroup ADC
* @{
*/
#include "ch.h"
#include "hal.h"
#if HAL_USE_ADC || defined(__DOXYGEN__)
int debugzero = 0;
/*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
#define ADC1_DMA_CHANNEL \
STM32_DMA_GETCHANNEL(STM32_ADC_ADC1_DMA_STREAM, STM32_ADC1_DMA_CHN)
#define ADC2_DMA_CHANNEL \
STM32_DMA_GETCHANNEL(STM32_ADC_ADC2_DMA_STREAM, STM32_ADC2_DMA_CHN)
#define ADC3_DMA_CHANNEL \
STM32_DMA_GETCHANNEL(STM32_ADC_ADC3_DMA_STREAM, STM32_ADC3_DMA_CHN)
#define SDADC1_DMA_CHANNEL \
STM32_DMA_GETCHANNEL(STM32_ADC_SDADC1_DMA_STREAM, STM32_SDADC1_DMA_CHN)
#define SDADC2_DMA_CHANNEL \
STM32_DMA_GETCHANNEL(STM32_ADC_SDADC2_DMA_STREAM, STM32_SDADC2_DMA_CHN)
#define SDADC3_DMA_CHANNEL \
STM32_DMA_GETCHANNEL(STM32_ADC_SDADC3_DMA_STREAM, STM32_SDADC3_DMA_CHN)
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
/** @brief ADC1 driver identifier.*/
#if STM32_ADC_USE_ADC1 || defined(__DOXYGEN__)
ADCDriver ADCD1;
#endif
/** @brief ADC2 driver identifier.*/
#if STM32_ADC_USE_ADC2 || defined(__DOXYGEN__)
ADCDriver ADCD2;
#endif
/** @brief ADC3 driver identifier.*/
#if STM32_ADC_USE_ADC3 || defined(__DOXYGEN__)
ADCDriver ADCD3;
#endif
/** @brief SDADC1 driver identifier.*/
#if STM32_ADC_USE_SDADC1 || defined(__DOXYGEN__)
ADCDriver SDADCD1;
#endif
/** @brief SDADC2 driver identifier.*/
#if STM32_ADC_USE_SDADC2 || defined(__DOXYGEN__)
ADCDriver SDADCD2;
#endif
/** @brief SDADC3 driver identifier.*/
#if STM32_ADC_USE_SDADC3 || defined(__DOXYGEN__)
ADCDriver SDADCD3;
#endif
/*===========================================================================*/
/* Driver local variables. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
static bool_t isADCDriverForSigmaDeltaADC(ADCDriver *adcp);
static bool_t isADCDriverForSuccApproxADC(ADCDriver *adcp);
/**
* @brief ADC DMA ISR service routine.
*
* @param[in] adcp pointer to the @p ADCDriver object
* @param[in] flags pre-shifted content of the ISR register
*/
static void adc_lld_serve_rx_interrupt(ADCDriver *adcp, uint32_t flags) {
/* DMA errors handling.*/
if ((flags & (STM32_DMA_ISR_TEIF | STM32_DMA_ISR_DMEIF)) != 0) {
/* DMA, this could help only if the DMA tries to access an unmapped
address space or violates alignment rules.*/
_adc_isr_error_code(adcp, ADC_ERR_DMAFAILURE);
}
else {
/* It is possible that the conversion group has already be reset by the
ADC error handler, in this case this interrupt is spurious.*/
if (adcp->grpp != NULL) {
if ((flags & STM32_DMA_ISR_HTIF) != 0) {
/* Half transfer processing.*/
_adc_isr_half_code(adcp);
}
if ((flags & STM32_DMA_ISR_TCIF) != 0) {
/* Transfer complete processing.*/
_adc_isr_full_code(adcp);
}
}
}
}
/*===========================================================================*/
/* Driver interrupt handlers. */
/*===========================================================================*/
#if STM32_ADC_USE_ADC1 || STM32_ADC_USE_ADC2 || STM32_ADC_USE_ADC3 || \
defined(__DOXYGEN__)
/**
* @brief ADC interrupt handler.
*
* @isr
*/
CH_IRQ_HANDLER(ADC1_2_3_IRQHandler) {
CH_IRQ_PROLOGUE();
#if STM32_ADC_USE_ADC1
/* TODO: Add here analog watchdog handling.*/
#endif /* STM32_ADC_USE_ADC1 */
CH_IRQ_EPILOGUE();
}
#endif
/*===========================================================================*/
/* Driver exported functions. */
/*===========================================================================*/
/**
* @brief Low level ADC driver initialization.
*
* @notapi
*/
void adc_lld_init(void) {
#if STM32_ADC_USE_ADC1
/* Driver initialization.*/
adcObjectInit(&ADCD1);
ADCD1.adc = ADC1;
ADCD1.dmastp = STM32_DMA_STREAM(STM32_ADC_ADC1_DMA_STREAM);
ADCD1.dmamode = STM32_DMA_CR_CHSEL(ADC1_DMA_CHANNEL) |
STM32_DMA_CR_PL(STM32_ADC_ADC1_DMA_PRIORITY) |
STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE;
#endif
/* The shared vector is initialized on driver initialization and never
disabled.*/
nvicEnableVector(ADC1_IRQn, CORTEX_PRIORITY_MASK(STM32_ADC_IRQ_PRIORITY));
#if STM32_ADC_USE_SDADC1
/* Driver initialization.*/
adcObjectInit(&SDADCD1);
SDADCD1.sdadc = SDADC1;
SDADCD1.dmastp = STM32_DMA_STREAM(STM32_ADC_SDADC1_DMA_STREAM);
SDADCD1.dmamode = STM32_DMA_CR_CHSEL(SDADC1_DMA_CHANNEL) |
STM32_DMA_CR_PL(STM32_ADC_SDADC1_DMA_PRIORITY) |
STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE;
#endif
#if STM32_ADC_USE_SDADC2
/* Driver initialization.*/
adcObjectInit(&SDADCD2);
SDADCD2.sdadc = SDADC2;
SDADCD2.dmastp = STM32_DMA_STREAM(STM32_ADC_SDADC2_DMA_STREAM);
SDADCD2.dmamode = STM32_DMA_CR_CHSEL(SDADC2_DMA_CHANNEL) |
STM32_DMA_CR_PL(STM32_ADC_SDADC2_DMA_PRIORITY) |
STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE;
#endif
#if STM32_ADC_USE_SDADC3
/* Driver initialization.*/
adcObjectInit(&SDADCD3);
SDADCD3.sdadc = SDADC3;
SDADCD3.dmastp = STM32_DMA_STREAM(STM32_ADC_SDADC3_DMA_STREAM);
SDADCD3.dmamode = STM32_DMA_CR_CHSEL(SDADC3_DMA_CHANNEL) |
STM32_DMA_CR_PL(STM32_ADC_SDADC3_DMA_PRIORITY) |
STM32_DMA_CR_DIR_P2M |
STM32_DMA_CR_MSIZE_HWORD | STM32_DMA_CR_PSIZE_HWORD |
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE |
STM32_DMA_CR_DMEIE | STM32_DMA_CR_TEIE;
#endif
nvicEnableVector(SDADC1_IRQn, CORTEX_PRIORITY_MASK(STM32_ADC_SDADC1_IRQ_PRIORITY));
nvicEnableVector(SDADC2_IRQn, CORTEX_PRIORITY_MASK(STM32_ADC_SDADC2_IRQ_PRIORITY));
nvicEnableVector(SDADC3_IRQn, CORTEX_PRIORITY_MASK(STM32_ADC_SDADC3_IRQ_PRIORITY));
}
/**
* @brief Initial config for SDADC peripheral.
*
* @param[in] adcdp pointer to the @p ADCDriver object
* @param[in] dmaPriority priority for the dma channel 0..3
* @param[in] rxIsrFunc isr handler for dma,
* @param[in] dmaSrcLoc pointer to the @p SDADC data
* @param[in] periphEnableBit SDADC bit in rcc APB2 Enable register
*
* @notapi
*/
void sdadc_lld_start_cr_init_helper(ADCDriver* adcdp,
uint32_t dmaPriority,
stm32_dmaisr_t rxIsrFunc,
volatile void* dmaSrcLoc,
uint32_t periphEnableBit) {
bool_t b;
b = dmaStreamAllocate(adcdp->dmastp,
dmaPriority,
rxIsrFunc,
adcdp);
chDbgAssert(!b, "adc_lld_start(), #1", "stream already allocated");
dmaStreamSetPeripheral(adcdp->dmastp, dmaSrcLoc);
rccEnableAPB2(periphEnableBit, FALSE);
rccResetAPB2(periphEnableBit);
/* SDADC initial setup, starting the analog part here in order to reduce
the latency when starting a conversion.*/
/*
====== SDADC CR1 settings breakdown =====
Initialization mode request : disabled
DMA Enabled to read data for reg ch. grp : disabled
DMA Enabled to read data for inj ch. grp : disabled
Launch reg conv sync w SDADC1 : Do not
Launch injected conv sync w SDADC1 : Do not
Enter power down mode when idle : False
Enter standby mode when idle : False
Slow clock mode : fast mode
Reference voltage selection : external Vref
reg data overrun interrupt : disabled
reg data end of conversion interrupt : disabled
injected data overrun interrupt : disabled
injected data end of conversion interrupt : disabled
end of calibration interrupt : disabled
*/
adcdp->sdadc->CR1 = 0;
/*
====== SDADC CR1 settings breakdown =====
SDADC enable : X
Number of calibration sequences to be performed : 0
Start calibration : NO
Continuous mode selection for injected conv : once
Delay start of injected conversions : asap
Trig sig sel for launching inj conv : TIM13_CH1,TIM17_CH1, TIM16_CH1
Trig en and trig edge sel for injected conv : disabled
Start a conv of the inj group of ch : 0
Regular channel sel (0-8) : 0
Continuous mode sel for regular conv : once
Software start of a conversion on the regular ch: 0
Fast conv mode sel : disabled
*/
adcdp->sdadc->CR2 = 0;
adcdp->sdadc->CR2 = SDADC_CR2_ADON;
}
/**
* @brief Configures and activates the ADC peripheral.
*
* @param[in] adcdp pointer to the @p ADCDriver object
*
* @notapi
*/
void adc_lld_start(ADCDriver *adcdp) {
/* If in stopped state then enables the ADC and DMA clocks.*/
if (adcdp->state == ADC_STOP) {
#if STM32_ADC_USE_ADC1
if (&ADCD1 == adcdp) {
bool_t b;
b = dmaStreamAllocate(adcdp->dmastp,
STM32_ADC_ADC1_DMA_IRQ_PRIORITY,
(stm32_dmaisr_t)adc_lld_serve_rx_interrupt,
(void *)adcdp);
chDbgAssert(!b, "adc_lld_start(), #1", "stream already allocated");
dmaStreamSetPeripheral(adcdp->dmastp, &ADC1->DR);
rccEnableADC1(FALSE);
/* ADC initial setup, starting the analog part here in order to reduce
the latency when starting a conversion.*/
adcdp->adc->CR1 = 0;
adcdp->adc->CR2 = 0;
adcdp->adc->CR2 = ADC_CR2_ADON;
}
#endif /* STM32_ADC_USE_ADC1 */
#if STM32_ADC_USE_SDADC1
if (&SDADCD1 == adcdp) {
sdadc_lld_start_cr_init_helper(adcdp,
STM32_ADC_SDADC1_DMA_IRQ_PRIORITY,
(stm32_dmaisr_t) adc_lld_serve_rx_interrupt,
&SDADC1->RDATAR,
RCC_APB2ENR_SDADC1EN);
rccEnablePWRInterface(FALSE);
PWR->CR |= PWR_CR_SDADC1EN;
}
#endif /* STM32_ADC_USE_SDADC1 */
#if STM32_ADC_USE_SDADC2
if (&SDADCD2 == adcdp) {
sdadc_lld_start_cr_init_helper(adcdp,
STM32_ADC_SDADC2_DMA_IRQ_PRIORITY,
(stm32_dmaisr_t) adc_lld_serve_rx_interrupt,
&SDADC2->RDATAR,
RCC_APB2ENR_SDADC2EN);
rccEnablePWRInterface(FALSE);
PWR->CR |= PWR_CR_SDADC2EN;
}
#endif /* STM32_ADC_USE_SDADC2 */
#if STM32_ADC_USE_SDADC3
if (&SDADCD3 == adcdp) {
sdadc_lld_start_cr_init_helper(adcdp,
STM32_ADC_SDADC3_DMA_IRQ_PRIORITY,
(stm32_dmaisr_t) adc_lld_serve_rx_interrupt,
&SDADC3->RDATAR,
RCC_APB2ENR_SDADC3EN);
rccEnablePWRInterface(FALSE);
PWR->CR |= PWR_CR_SDADC3EN;
}
#endif /* STM32_ADC_USE_SDADC3 */
}
}
/**
* @brief Deactivates the ADC peripheral.
*
* @param[in] adcdp pointer to the @p ADCDriver object
*
* @notapi
*/
void adc_lld_stop(ADCDriver *adcdp) {
/* If in ready state then disables the ADC clock.*/
if (adcdp->state == ADC_READY) {
dmaStreamRelease(adcdp->dmastp);
adcdp->adc->CR1 = 0;
adcdp->adc->CR2 = 0;
#if STM32_ADC_USE_ADC1
if (&ADCD1 == adcdp)
rccDisableADC1(FALSE);
#endif
#if STM32_ADC_USE_ADC2
if (&ADCD2 == adcdp)
rccDisableADC2(FALSE);
#endif
#if STM32_ADC_USE_ADC3
if (&ADCD3 == adcdp)
rccDisableADC3(FALSE);
#endif
}
#if STM32_ADC_USE_SDADC1
if (&SDADCD1 == adcdp)
rccDisableSDADC1(FALSE);
#endif
#if STM32_ADC_USE_SDADC2
if (&SDADCD2 == adcdp)
rccDisableSDADC2(FALSE);
#endif
#if STM32_ADC_USE_SDADC3
if (&SDADCD3 == adcdp)
rccDisableSDADC3(FALSE);
#endif
}
/**
* @brief Starts an ADC conversion.
*
* @param[in] adcdp pointer to the @p ADCDriver object
*
* @notapi
*/
void adc_lld_start_conversion(ADCDriver *adcdp) {
uint32_t mode;
const ADCConversionGroup* grpp = adcdp->grpp;
/* DMA setup.*/
mode = adcdp->dmamode;
if (grpp->circular) {
mode |= STM32_DMA_CR_CIRC;
}
if (adcdp->depth > 1) {
/* If the buffer depth is greater than one then the half transfer interrupt
interrupt is enabled in order to allows streaming processing.*/
mode |= STM32_DMA_CR_HTIE;
}
dmaStreamSetMemory0(adcdp->dmastp, adcdp->samples);
dmaStreamSetTransactionSize(adcdp->dmastp,
(uint32_t)grpp->num_channels *
(uint32_t)adcdp->depth);
dmaStreamSetMode(adcdp->dmastp, mode);
dmaStreamEnable(adcdp->dmastp);
if (isADCDriverForSuccApproxADC(adcdp)) {
/* ADC setup.*/
adcdp->adc->SR = 0;
adcdp->adc->SMPR1 = grpp->ll.adc.smpr1;
adcdp->adc->SMPR2 = grpp->ll.adc.smpr2;
adcdp->adc->SQR1 = grpp->ll.adc.sqr1;
adcdp->adc->SQR2 = grpp->ll.adc.sqr2;
adcdp->adc->SQR3 = grpp->ll.adc.sqr3;
/* ADC configuration and start, the start is performed using the method
specified in the CR2 configuration, usually ADC_CR2_SWSTART.*/
adcdp->adc->CR1 = grpp->ll.adc.cr1 | ADC_CR1_SCAN;
if ((grpp->ll.adc.cr2 & ADC_CR2_SWSTART) != 0)
adcdp->adc->CR2 = grpp->ll.adc.cr2 | ADC_CR2_CONT
| ADC_CR2_DMA | ADC_CR2_ADON;
else
adcdp->adc->CR2 = grpp->ll.adc.cr2 | ADC_CR2_DMA | ADC_CR2_ADON;
}
else if (isADCDriverForSigmaDeltaADC(adcdp)) {
/* For Sigma-Delta ADC */
sdadcSTM32SetInitializationMode(adcdp, true);
/* SDADC setup.*/
adcdp->sdadc->CONF0R = grpp->ll.sdadc.conf0r;
adcdp->sdadc->CONF1R = grpp->ll.sdadc.conf1r;
adcdp->sdadc->CONF2R = grpp->ll.sdadc.conf2r;
adcdp->sdadc->CONFCHR1 = grpp->ll.sdadc.confchr1;
adcdp->sdadc->CONFCHR2 = grpp->ll.sdadc.confchr2;
sdadcSTM32SetInitializationMode(adcdp, false);
/* SDADC configuration and start, the start is performed using the method
specified in the CR2 configuration, usually ADC_CR2_SWSTART.*/
adcdp->sdadc->CR1 = grpp->ll.sdadc.cr1 | SDADC_CR1_RDMAEN;
adcdp->sdadc->CR2 = grpp->ll.sdadc.cr2 | SDADC_CR2_ADON;
}
}
bool_t stopconv = FALSE;
/**
* @brief Stops an ongoing conversion.
*
* @param[in] adcdp pointer to the @p ADCDriver object
*
* @notapi
*/
void adc_lld_stop_conversion(ADCDriver *adcdp) {
dmaStreamDisable(adcdp->dmastp);
if (isADCDriverForSuccApproxADC(adcdp)) {
adcdp->adc->CR1 = 0;
adcdp->adc->CR2 = 0;
adcdp->adc->CR2 = ADC_CR2_ADON;
}
else if (isADCDriverForSigmaDeltaADC(adcdp)) {
adcdp->sdadc->CR1 = 0;
adcdp->sdadc->CR2 = 0;
adcdp->sdadc->CR2 = ADC_CR2_ADON;
}
}
#if 0
/**
* @brief Enables the TSVREFE bit.
* @details The TSVREFE bit is required in order to sample the internal
* temperature sensor and internal reference voltage.
* @note This is an STM32-only functionality.
*/
void adcSTM32EnableTSVREFE(void) {
ADC->CCR |= ADC_CCR_TSVREFE;
}
/**
* @brief Disables the TSVREFE bit.
* @details The TSVREFE bit is required in order to sample the internal
* temperature sensor and internal reference voltage.
* @note This is an STM32-only functionality.
*/
void adcSTM32DisableTSVREFE(void) {
ADC->CCR &= ~ADC_CCR_TSVREFE;
}
/**
* @brief Enables the VBATE bit.
* @details The VBATE bit is required in order to sample the VBAT channel.
* @note This is an STM32-only functionality.
* @note This function is meant to be called after @p adcStart().
*/
void adcSTM32EnableVBATE(void) {
ADC->CCR |= ADC_CCR_VBATE;
}
/**
* @brief Disables the VBATE bit.
* @details The VBATE bit is required in order to sample the VBAT channel.
* @note This is an STM32-only functionality.
* @note This function is meant to be called after @p adcStart().
*/
void adcSTM32DisableVBATE(void) {
ADC->CCR &= ~ADC_CCR_VBATE;
}
#endif
/**
* @brief Sets the VREF for the 3 Sigma-Delta ADC Converters
* @details VREF can be changed only when all SDADCs are disabled. Disables all SDADCs, sets the value and then sleeps 5 ms waiting for the change to occur.
* @note This is an STM32-only functionality.
* @param[in] adcdp pointer to the @p ADCDriver object
* @param[in] enable true means init mode, false means exit init mode
*
*/
void sdadcSTM32VREFSelect(SDADC_VREF_SEL svs)
{
uint32_t tmpcr1, sdadc1_adon, sdadc2_adon, sdadc3_adon;
sdadc1_adon = SDADC1->CR2 & SDADC_CR2_ADON;
sdadc2_adon = SDADC2->CR2 & SDADC_CR2_ADON;
sdadc3_adon = SDADC3->CR2 & SDADC_CR2_ADON;
SDADC1->CR2 &= ~SDADC_CR2_ADON;
SDADC2->CR2 &= ~SDADC_CR2_ADON;
SDADC3->CR2 &= ~SDADC_CR2_ADON;
/* Get SDADC1_CR1 register value */
tmpcr1 = SDADC1->CR1;
/* Clear the SDADC1_CR1_REFV bits */
tmpcr1 &= (uint32_t) (~SDADC_CR1_REFV);
/* Select the external reference voltage */
tmpcr1 |= svs;
/* Write in SDADC_CR1 */
SDADC1->CR1 = tmpcr1;
/* Insert delay equal to ~10 ms (4 ms required) */
chThdSleepMilliseconds(5);
SDADC1->CR2 |= sdadc1_adon;
SDADC2->CR2 |= sdadc2_adon;
SDADC3->CR2 |= sdadc3_adon;
}
/**
* @brief Sets the Sigma-Delta ADC Converter into initialization mode
* @details The sdadc is either put into init mode or exits init mode.
* @note This is an STM32-only functionality.
* @note This function is meant to be called after @p adcStart().
* @param[in] adcdp pointer to the @p ADCDriver object
* @param[in] enable true means init mode, false means exit init mode
*
*/
void sdadcSTM32SetInitializationMode(ADCDriver* adcdp, bool_t enterInitMode)
{
uint32_t SDADCTimeout = 300000;
if ((adcdp == &SDADCD1) ||
(adcdp == &SDADCD2) ||
(adcdp == &SDADCD3)) {
if (enterInitMode) {
adcdp->sdadc->CR1 |= SDADC_CR1_INIT;
/* wait for INITRDY flag to be set */
while (((adcdp->sdadc->ISR & SDADC_ISR_INITRDY) == 0) &&
(--SDADCTimeout != 0));
if (SDADCTimeout == 0)
{
/* INITRDY flag can not set */
port_halt();
}
}
else {
adcdp->sdadc->CR1 &= ~SDADC_CR1_INIT;
}
}
}
/**
* @brief Configures the calibration sequence.
* @note TODO - UPDATE
* @param ADCDriver* one of &SDADCD1, &SDADCD2, &SDADCD3
* @param SDADC_CalibrationSequence: Number of calibration sequence to be performed.
* This parameter can be one of the following values:
* @arg SDADC_CalibrationSequence_1: One calibration sequence will be performed
* to calculate OFFSET0[11:0] (offset that corresponds to conf0)
* @arg SDADC_CalibrationSequence_2: Two calibration sequences will be performed
* to calculate OFFSET0[11:0] and OFFSET1[11:0]
* (offsets that correspond to conf0 and conf1)
* @arg SDADC_CalibrationSequence_3: Three calibration sequences will be performed
* to calculate OFFSET0[11:0], OFFSET1[11:0],
* and OFFSET2[11:0] (offsets that correspond to conf0, conf1 and conf2)
* @retval None
*/
void sdadcSTM32Calibrate(ADCDriver* adcdp,
SDADC_NUM_CALIB_SEQ numCalibSequences,
ADCConversionGroup* grpp)
{
uint32_t SDADCTimeout = 0;
uint32_t tmpcr2 = 0;
if (!(adcdp == &SDADCD1 ||
adcdp == &SDADCD2 ||
adcdp == &SDADCD3))
return;
sdadcSTM32SetInitializationMode(adcdp, true);
/* SDADC setup.*/
adcdp->sdadc->CR2 = grpp->ll.sdadc.cr2;
adcdp->sdadc->CONF0R = grpp->ll.sdadc.conf0r;
adcdp->sdadc->CONF1R = grpp->ll.sdadc.conf1r;
adcdp->sdadc->CONF2R = grpp->ll.sdadc.conf2r;
adcdp->sdadc->CONFCHR1 = grpp->ll.sdadc.confchr1;
adcdp->sdadc->CONFCHR2 = grpp->ll.sdadc.confchr2;
sdadcSTM32SetInitializationMode(adcdp, false);
/* configure calibration to be performed on conf0 */
/* Get SDADC_CR2 register value */
tmpcr2 = adcdp->sdadc->CR2;
/* Clear the SDADC_CR2_CALIBCNT bits */
tmpcr2 &= (uint32_t) (~SDADC_CR2_CALIBCNT);
/* Set the calibration sequence */
tmpcr2 |= numCalibSequences;
/*
Write in SDADC_CR2 and
start calibration
*/
adcdp->sdadc->CR2 = tmpcr2 | SDADC_CR2_STARTCALIB;
/* Set calibration timeout: 5.12 ms at 6 MHz in a single calibration sequence */
SDADCTimeout = SDADC_CAL_TIMEOUT;
/* wait for SDADC Calibration process to end */
while (((adcdp->sdadc->ISR & SDADC_ISR_EOCALF) == 0) && (--SDADCTimeout != 0));
if(SDADCTimeout == 0)
{
/* Calib timeout */
port_halt();
return;
}
/* cleanup by clearing EOCALF flag */
adcdp->sdadc->CLRISR |= SDADC_ISR_CLREOCALF;
}
static bool_t isADCDriverForSigmaDeltaADC(ADCDriver *adcdp) {
return (adcdp->sdadc != NULL);
}
static bool_t isADCDriverForSuccApproxADC(ADCDriver *adcdp) {
return (adcdp->adc != NULL);
}
#endif /* HAL_USE_ADC */
/** @} */