atbetaflight/src/main/drivers/accgyro/accgyro_mpu.c

410 lines
12 KiB
C
Raw Normal View History

/*
2018-04-21 16:22:46 -07:00
* This file is part of Cleanflight and Betaflight.
*
2018-04-21 16:22:46 -07:00
* Cleanflight and Betaflight are free software: you can redistribute
* this software and/or modify this software under the terms of the
* GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option)
* any later version.
*
2018-04-21 16:22:46 -07:00
* Cleanflight and Betaflight are distributed in the hope that they
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
2018-04-21 16:22:46 -07:00
* along with this software.
*
* If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "platform.h"
#include "build/atomic.h"
#include "build/build_config.h"
#include "build/debug.h"
#include "common/maths.h"
#include "common/utils.h"
2017-07-15 10:32:34 -07:00
#include "drivers/bus.h"
#include "drivers/bus_i2c.h"
#include "drivers/bus_spi.h"
#include "drivers/exti.h"
#include "drivers/io.h"
#include "drivers/nvic.h"
#include "drivers/sensor.h"
#include "drivers/system.h"
#include "drivers/time.h"
2017-08-30 00:50:40 -07:00
#include "drivers/accgyro/accgyro.h"
#include "drivers/accgyro/accgyro_mpu3050.h"
#include "drivers/accgyro/accgyro_mpu6050.h"
#include "drivers/accgyro/accgyro_mpu6500.h"
#include "drivers/accgyro/accgyro_spi_bmi160.h"
2017-09-01 07:57:54 -07:00
#include "drivers/accgyro/accgyro_spi_icm20649.h"
2017-08-30 00:50:40 -07:00
#include "drivers/accgyro/accgyro_spi_icm20689.h"
#include "drivers/accgyro/accgyro_spi_mpu6000.h"
#include "drivers/accgyro/accgyro_spi_mpu6500.h"
#include "drivers/accgyro/accgyro_spi_mpu9250.h"
#include "drivers/accgyro/accgyro_mpu.h"
mpuResetFnPtr mpuResetFn;
2016-12-17 16:16:23 -08:00
#ifndef MPU_I2C_INSTANCE
#define MPU_I2C_INSTANCE I2C_DEVICE
#endif
#ifndef MPU_ADDRESS
#define MPU_ADDRESS 0x68
#endif
#define MPU_INQUIRY_MASK 0x7E
#ifdef USE_I2C
2016-12-17 16:16:23 -08:00
static void mpu6050FindRevision(gyroDev_t *gyro)
{
// There is a map of revision contained in the android source tree which is quite comprehensive and may help to understand this code
// See https://android.googlesource.com/kernel/msm.git/+/eaf36994a3992b8f918c18e4f7411e8b2320a35f/drivers/misc/mpu6050/mldl_cfg.c
// determine product ID and revision
uint8_t readBuffer[6];
bool ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_XA_OFFS_H, readBuffer, 6);
uint8_t revision = ((readBuffer[5] & 0x01) << 2) | ((readBuffer[3] & 0x01) << 1) | (readBuffer[1] & 0x01);
if (ack && revision) {
// Congrats, these parts are better
if (revision == 1) {
2016-12-17 16:16:23 -08:00
gyro->mpuDetectionResult.resolution = MPU_HALF_RESOLUTION;
} else if (revision == 2) {
2016-12-17 16:16:23 -08:00
gyro->mpuDetectionResult.resolution = MPU_FULL_RESOLUTION;
} else if ((revision == 3) || (revision == 7)) {
2016-12-17 16:16:23 -08:00
gyro->mpuDetectionResult.resolution = MPU_FULL_RESOLUTION;
} else {
failureMode(FAILURE_ACC_INCOMPATIBLE);
}
} else {
uint8_t productId;
ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_PRODUCT_ID, &productId, 1);
revision = productId & 0x0F;
if (!ack || revision == 0) {
failureMode(FAILURE_ACC_INCOMPATIBLE);
} else if (revision == 4) {
2016-12-17 16:16:23 -08:00
gyro->mpuDetectionResult.resolution = MPU_HALF_RESOLUTION;
} else {
2016-12-17 16:16:23 -08:00
gyro->mpuDetectionResult.resolution = MPU_FULL_RESOLUTION;
}
}
}
#endif
/*
* Gyro interrupt service routine
*/
#if defined(MPU_INT_EXTI)
static void mpuIntExtiHandler(extiCallbackRec_t *cb)
{
#ifdef DEBUG_MPU_DATA_READY_INTERRUPT
static uint32_t lastCalledAtUs = 0;
const uint32_t nowUs = micros();
debug[0] = (uint16_t)(nowUs - lastCalledAtUs);
lastCalledAtUs = nowUs;
#endif
2016-12-11 04:17:30 -08:00
gyroDev_t *gyro = container_of(cb, gyroDev_t, exti);
gyro->dataReady = true;
#ifdef DEBUG_MPU_DATA_READY_INTERRUPT
const uint32_t now2Us = micros();
debug[1] = (uint16_t)(now2Us - nowUs);
#endif
}
static void mpuIntExtiInit(gyroDev_t *gyro)
{
if (gyro->mpuIntExtiTag == IO_TAG_NONE) {
2016-06-27 11:26:02 -07:00
return;
}
const IO_t mpuIntIO = IOGetByTag(gyro->mpuIntExtiTag);
2016-07-09 06:39:39 -07:00
#ifdef ENSURE_MPU_DATA_READY_IS_LOW
2016-06-27 11:26:02 -07:00
uint8_t status = IORead(mpuIntIO);
if (status) {
return;
}
#endif
#if defined (STM32F7)
2016-11-09 23:56:13 -08:00
IOInit(mpuIntIO, OWNER_MPU_EXTI, 0);
2016-12-11 04:17:30 -08:00
EXTIHandlerInit(&gyro->exti, mpuIntExtiHandler);
EXTIConfig(mpuIntIO, &gyro->exti, NVIC_PRIO_MPU_INT_EXTI, IO_CONFIG(GPIO_MODE_INPUT,0,GPIO_NOPULL)); // TODO - maybe pullup / pulldown ?
#else
2016-11-09 23:56:13 -08:00
IOInit(mpuIntIO, OWNER_MPU_EXTI, 0);
2016-06-27 11:26:02 -07:00
IOConfigGPIO(mpuIntIO, IOCFG_IN_FLOATING); // TODO - maybe pullup / pulldown ?
2016-12-11 04:17:30 -08:00
EXTIHandlerInit(&gyro->exti, mpuIntExtiHandler);
EXTIConfig(mpuIntIO, &gyro->exti, NVIC_PRIO_MPU_INT_EXTI, EXTI_Trigger_Rising);
#endif
EXTIEnable(mpuIntIO, true);
}
#endif // MPU_INT_EXTI
2016-12-14 06:32:38 -08:00
bool mpuAccRead(accDev_t *acc)
{
uint8_t data[6];
const bool ack = busReadRegisterBuffer(&acc->bus, MPU_RA_ACCEL_XOUT_H, data, 6);
if (!ack) {
return false;
}
2016-12-14 06:32:38 -08:00
acc->ADCRaw[X] = (int16_t)((data[0] << 8) | data[1]);
acc->ADCRaw[Y] = (int16_t)((data[2] << 8) | data[3]);
acc->ADCRaw[Z] = (int16_t)((data[4] << 8) | data[5]);
return true;
}
bool mpuGyroRead(gyroDev_t *gyro)
{
uint8_t data[6];
const bool ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_GYRO_XOUT_H, data, 6);
if (!ack) {
return false;
}
gyro->gyroADCRaw[X] = (int16_t)((data[0] << 8) | data[1]);
gyro->gyroADCRaw[Y] = (int16_t)((data[2] << 8) | data[3]);
gyro->gyroADCRaw[Z] = (int16_t)((data[4] << 8) | data[5]);
return true;
}
bool mpuGyroReadSPI(gyroDev_t *gyro)
{
static const uint8_t dataToSend[7] = {MPU_RA_GYRO_XOUT_H | 0x80, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
uint8_t data[7];
const bool ack = spiBusTransfer(&gyro->bus, dataToSend, data, 7);
if (!ack) {
return false;
}
gyro->gyroADCRaw[X] = (int16_t)((data[1] << 8) | data[2]);
gyro->gyroADCRaw[Y] = (int16_t)((data[3] << 8) | data[4]);
gyro->gyroADCRaw[Z] = (int16_t)((data[5] << 8) | data[6]);
return true;
}
#ifdef USE_SPI
static bool detectSPISensorsAndUpdateDetectionResult(gyroDev_t *gyro)
{
2017-03-07 01:01:16 -08:00
UNUSED(gyro); // since there are FCs which have gyro on I2C but other devices on SPI
2017-07-12 06:40:08 -07:00
uint8_t sensor = MPU_NONE;
UNUSED(sensor);
// note, when USE_DUAL_GYRO is enabled the gyro->bus must already be initialised.
#ifdef USE_GYRO_SPI_MPU6000
#ifndef USE_DUAL_GYRO
spiBusSetInstance(&gyro->bus, MPU6000_SPI_INSTANCE);
2017-07-12 06:40:08 -07:00
#endif
2017-03-07 01:01:16 -08:00
#ifdef MPU6000_CS_PIN
gyro->bus.busdev_u.spi.csnPin = gyro->bus.busdev_u.spi.csnPin == IO_NONE ? IOGetByTag(IO_TAG(MPU6000_CS_PIN)) : gyro->bus.busdev_u.spi.csnPin;
2017-03-07 01:01:16 -08:00
#endif
sensor = mpu6000SpiDetect(&gyro->bus);
if (sensor != MPU_NONE) {
gyro->mpuDetectionResult.sensor = sensor;
return true;
}
#endif
#ifdef USE_GYRO_SPI_MPU6500
#ifndef USE_DUAL_GYRO
spiBusSetInstance(&gyro->bus, MPU6500_SPI_INSTANCE);
2017-07-12 06:40:08 -07:00
#endif
#ifdef MPU6500_CS_PIN
2017-07-15 10:32:34 -07:00
gyro->bus.busdev_u.spi.csnPin = gyro->bus.busdev_u.spi.csnPin == IO_NONE ? IOGetByTag(IO_TAG(MPU6500_CS_PIN)) : gyro->bus.busdev_u.spi.csnPin;
2017-07-12 06:40:08 -07:00
#endif
sensor = mpu6500SpiDetect(&gyro->bus);
2017-03-07 01:01:16 -08:00
// some targets using MPU_9250_SPI, ICM_20608_SPI or ICM_20602_SPI state sensor is MPU_65xx_SPI
if (sensor != MPU_NONE) {
gyro->mpuDetectionResult.sensor = sensor;
return true;
}
#endif
#ifdef USE_GYRO_SPI_MPU9250
#ifndef USE_DUAL_GYRO
spiBusSetInstance(&gyro->bus, MPU9250_SPI_INSTANCE);
2017-07-12 06:40:08 -07:00
#endif
#ifdef MPU9250_CS_PIN
2017-07-15 21:31:37 -07:00
gyro->bus.busdev_u.spi.csnPin = gyro->bus.busdev_u.spi.csnPin == IO_NONE ? IOGetByTag(IO_TAG(MPU9250_CS_PIN)) : gyro->bus.busdev_u.spi.csnPin;
2017-07-12 06:40:08 -07:00
#endif
sensor = mpu9250SpiDetect(&gyro->bus);
if (sensor != MPU_NONE) {
gyro->mpuDetectionResult.sensor = sensor;
2017-03-07 01:01:16 -08:00
gyro->mpuConfiguration.resetFn = mpu9250SpiResetGyro;
return true;
}
#endif
2017-09-01 07:57:54 -07:00
#ifdef USE_GYRO_SPI_ICM20649
#ifdef ICM20649_SPI_INSTANCE
spiBusSetInstance(&gyro->bus, ICM20649_SPI_INSTANCE);
#endif
#ifdef ICM20649_CS_PIN
gyro->bus.busdev_u.spi.csnPin = gyro->bus.busdev_u.spi.csnPin == IO_NONE ? IOGetByTag(IO_TAG(ICM20649_CS_PIN)) : gyro->bus.busdev_u.spi.csnPin;
#endif
sensor = icm20649SpiDetect(&gyro->bus);
if (sensor != MPU_NONE) {
gyro->mpuDetectionResult.sensor = sensor;
return true;
}
#endif
#ifdef USE_GYRO_SPI_ICM20689
#ifndef USE_DUAL_GYRO
spiBusSetInstance(&gyro->bus, ICM20689_SPI_INSTANCE);
2017-07-12 06:40:08 -07:00
#endif
#ifdef ICM20689_CS_PIN
2017-07-15 21:31:37 -07:00
gyro->bus.busdev_u.spi.csnPin = gyro->bus.busdev_u.spi.csnPin == IO_NONE ? IOGetByTag(IO_TAG(ICM20689_CS_PIN)) : gyro->bus.busdev_u.spi.csnPin;
2017-07-12 06:40:08 -07:00
#endif
sensor = icm20689SpiDetect(&gyro->bus);
// icm20689SpiDetect detects ICM20602 and ICM20689
if (sensor != MPU_NONE) {
gyro->mpuDetectionResult.sensor = sensor;
2017-03-07 01:01:16 -08:00
return true;
}
#endif
#ifdef USE_ACCGYRO_BMI160
#ifndef USE_DUAL_GYRO
spiBusSetInstance(&gyro->bus, BMI160_SPI_INSTANCE);
2017-07-12 06:40:08 -07:00
#endif
#ifdef BMI160_CS_PIN
2017-07-15 21:31:37 -07:00
gyro->bus.busdev_u.spi.csnPin = gyro->bus.busdev_u.spi.csnPin == IO_NONE ? IOGetByTag(IO_TAG(BMI160_CS_PIN)) : gyro->bus.busdev_u.spi.csnPin;
2017-07-12 06:40:08 -07:00
#endif
sensor = bmi160Detect(&gyro->bus);
if (sensor != MPU_NONE) {
gyro->mpuDetectionResult.sensor = sensor;
return true;
}
#endif
return false;
}
#endif
2017-03-07 01:01:16 -08:00
void mpuDetect(gyroDev_t *gyro)
{
// MPU datasheet specifies 30ms.
delay(35);
2017-03-07 01:01:16 -08:00
#ifdef USE_I2C
if (gyro->bus.bustype == BUSTYPE_NONE) {
// if no bustype is selected try I2C first.
gyro->bus.bustype = BUSTYPE_I2C;
}
if (gyro->bus.bustype == BUSTYPE_I2C) {
gyro->bus.busdev_u.i2c.device = MPU_I2C_INSTANCE;
gyro->bus.busdev_u.i2c.address = MPU_ADDRESS;
uint8_t sig = 0;
bool ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_WHO_AM_I, &sig, 1);
if (ack) {
// If an MPU3050 is connected sig will contain 0.
uint8_t inquiryResult;
ack = busReadRegisterBuffer(&gyro->bus, MPU_RA_WHO_AM_I_LEGACY, &inquiryResult, 1);
inquiryResult &= MPU_INQUIRY_MASK;
if (ack && inquiryResult == MPUx0x0_WHO_AM_I_CONST) {
gyro->mpuDetectionResult.sensor = MPU_3050;
return;
}
sig &= MPU_INQUIRY_MASK;
if (sig == MPUx0x0_WHO_AM_I_CONST) {
gyro->mpuDetectionResult.sensor = MPU_60x0;
mpu6050FindRevision(gyro);
} else if (sig == MPU6500_WHO_AM_I_CONST) {
gyro->mpuDetectionResult.sensor = MPU_65xx_I2C;
}
return;
}
}
#endif
#ifdef USE_SPI
gyro->bus.bustype = BUSTYPE_SPI;
detectSPISensorsAndUpdateDetectionResult(gyro);
#endif
}
void mpuGyroInit(gyroDev_t *gyro)
{
#ifdef MPU_INT_EXTI
mpuIntExtiInit(gyro);
#else
UNUSED(gyro);
#endif
}
Rework gyro sample rate and DLPF configuration and expose additional filter cutoffs (#5483) The old gyro_lpf setting was based on the DLPF_CFG values for the MPU6050 gyro and the enumeration was inaccurate and misleading. For example, the default "OFF" setting did not disable the DLPF, but actually set it to around 250hz. The actual cutoff frequency for each setting varies by gyro hardware so the literal frequencies in the enumeration were also incorrect. Removed gyro_lpf and replaced it with gyro_hardware_lpf (8KHz) and gyro_32khz_hardware_lpf (32KHz). The parameters were renamed to indicate that they are hardware filtering options to differentiate from the many software lowpass filtering options. gyro_hardware_lpf - This parameter sets the filtering and sample rate options for 8KHz gyros (or 32KHz capable gyros running in 8KHz mode). - NORMAL - default setting that is equivalent to the previous "OFF" setting. Configures 8KHz sampling with ~250Hz filter cutoff. - EXPERIMENTAL - 8KHz sampling with a higher frequency filter cutoff (around 3000hz). Considerably more noisy and requires additional software filtering. Note that for the MPU6000 Invensense doesn't officially document the filter cutoff frequency for this selection and simply lists it as "reserved". In testing it's clear that a higher frequency filter cutoff is being selected due to the increased noise, but the actual cutoff frequency is unknown. - 1KHZ_SAMPLING - 1KHz sample rate with and approximate 188Hz filter cutoff. Note that the following additional 1KHz sample rate options with lower filter cutoffs have been eliminated - "98HZ", "42HZ", "20HZ", "10HZ", "5HZ". It seems unlikely that these are still needed are probably no longer viable and flight performance would be very poor. gyro_32khz_hardware_lpf - This parameter sets the filtering options while running in 32KHz mode on capable gyros. It also exposes a new high frequency filter cutoff mode. - NORMAL - The default and matches the current settings used for 32KHz mode. Provides a filter cutoff around 3000Hz. - EXPERIMENTAL - Selects a filter cutoff around 8000Hz. This is a very noisy setting and will require substantial software filtering. The default values for both 8KHz and 32KHz sample rates were chosen to match the previous defaults and users should not experience any performance differences. Normalized the gyro initialization. Previously there was little consistency on how the initialization was performed and the settings interpreted. For example, MPU9250 used a completely different logic tree when configuring the registers. Disconnected the literal parameter value from the gyro initialization. The gyro_lpf parameter contained a number from 0-7 that was literally applied to the configuration register during the gyro initialization. This caused some older gyro initializations to be incorrect as they used a different register layout (MPU3050 and L3G4200D). By transitioning to a logical selection the actual value applied to the hardware register is abstracted. This will better future-proof the design as new gyros may have a different register structure that may be incompatible with the old method. Added a gyroregisters command to the CLI that is used to read the current register settings from the gyro and dump them to the CLI. This is used to verify the configuration in comparison to the datasheets for the various gyros. Testing empirically by looking at the relative noise from the gyros can give a rough estimate whether the different options are selecting correctly, but it's not very precise. The code for the gyroregisters CLI command is wrapped inside #ifdef USE_GYRO_REGISTER_DUMP blocks to allow easy disabling. It's currently enabled for all targets but we may decide to disable before release or only limit to targets with more available space (>=F4).
2018-03-21 18:02:30 -07:00
uint8_t mpuGyroDLPF(gyroDev_t *gyro)
{
uint8_t ret;
if (gyro->gyroRateKHz > GYRO_RATE_8_kHz) {
ret = 0; // If gyro is in 32KHz mode then the DLPF bits aren't used - set to 0
} else {
switch (gyro->hardware_lpf) {
case GYRO_HARDWARE_LPF_NORMAL:
ret = 0;
break;
case GYRO_HARDWARE_LPF_EXPERIMENTAL:
ret = 7;
break;
case GYRO_HARDWARE_LPF_1KHZ_SAMPLE:
ret = 1;
break;
default:
ret = 0;
break;
}
}
return ret;
}
uint8_t mpuGyroFCHOICE(gyroDev_t *gyro)
{
if (gyro->gyroRateKHz > GYRO_RATE_8_kHz) {
if (gyro->hardware_32khz_lpf == GYRO_32KHZ_HARDWARE_LPF_EXPERIMENTAL) {
return FCB_8800_32;
} else {
return FCB_3600_32;
}
} else {
return FCB_DISABLED; // Not in 32KHz mode, set FCHOICE to select 8KHz sampling
}
}
#ifdef USE_GYRO_REGISTER_DUMP
uint8_t mpuGyroReadRegister(const busDevice_t *bus, uint8_t reg)
{
uint8_t data;
const bool ack = busReadRegisterBuffer(bus, reg, &data, 1);
if (ack) {
return data;
} else {
return 0;
}
}
#endif