atbetaflight/lib/main/STM32F7xx_HAL_Driver/Src/stm32f7xx_hal_spi.c

2964 lines
87 KiB
C
Raw Normal View History

2016-09-09 23:50:05 -07:00
/**
******************************************************************************
* @file stm32f7xx_hal_spi.c
* @author MCD Application Team
* @version V1.1.0
* @date 22-April-2016
* @brief SPI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Serial Peripheral Interface (SPI) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Control functions
* + Peripheral State functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The SPI HAL driver can be used as follows:
(#) Declare a SPI_HandleTypeDef handle structure, for example:
SPI_HandleTypeDef hspi;
(#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API:
(##) Enable the SPIx interface clock
(##) SPI pins configuration
(+++) Enable the clock for the SPI GPIOs
(+++) Configure these SPI pins as alternate function push-pull
(##) NVIC configuration if you need to use interrupt process
(+++) Configure the SPIx interrupt priority
(+++) Enable the NVIC SPI IRQ handle
(##) DMA Configuration if you need to use DMA process
(+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive channel
(+++) Enable the DMAx clock
(+++) Configure the DMA handle parameters
(+++) Configure the DMA Tx or Rx channel
(+++) Associate the initialized hdma_tx handle to the hspi DMA Tx or Rx handle
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx channel
(#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS
management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure.
(#) Initialize the SPI registers by calling the HAL_SPI_Init() API:
(++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
by calling the customized HAL_SPI_MspInit() API.
[..]
Circular mode restriction:
(#) The DMA circular mode cannot be used when the SPI is configured in these modes:
(##) Master 2Lines RxOnly
(##) Master 1Line Rx
(#) The CRC feature is not managed when the DMA circular mode is enabled
(#) When the SPI DMA Pause/Stop features are used, we must use the following APIs
the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f7xx_hal.h"
/** @addtogroup STM32F7xx_HAL_Driver
* @{
*/
/** @defgroup SPI SPI
* @brief SPI HAL module driver
* @{
*/
#ifdef HAL_SPI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup SPI_Private_Constants SPI Private Constants
* @{
*/
#define SPI_DEFAULT_TIMEOUT 50
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup SPI_Private_Functions SPI Private Functions
* @{
*/
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAError(DMA_HandleTypeDef *hdma);
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout);
static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, uint32_t Timeout);
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
#if (USE_SPI_CRC != 0U)
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
#endif
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi);
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi);
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi);
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout);
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup SPI_Exported_Functions SPI Exported Functions
* @{
*/
/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This subsection provides a set of functions allowing to initialize and
de-initialize the SPIx peripheral:
(+) User must implement HAL_SPI_MspInit() function in which he configures
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
(+) Call the function HAL_SPI_Init() to configure the selected device with
the selected configuration:
(++) Mode
(++) Direction
(++) Data Size
(++) Clock Polarity and Phase
(++) NSS Management
(++) BaudRate Prescaler
(++) FirstBit
(++) TIMode
(++) CRC Calculation
(++) CRC Polynomial if CRC enabled
(++) CRC Length, used only with Data8 and Data16
(++) FIFO reception threshold
(+) Call the function HAL_SPI_DeInit() to restore the default configuration
of the selected SPIx peripheral.
@endverbatim
* @{
*/
/**
* @brief Initialize the SPI according to the specified parameters
* in the SPI_InitTypeDef and initialize the associated handle.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
{
uint32_t frxth;
/* Check the SPI handle allocation */
if(hspi == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
assert_param(IS_SPI_MODE(hspi->Init.Mode));
assert_param(IS_SPI_DIRECTION(hspi->Init.Direction));
assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
assert_param(IS_SPI_NSS(hspi->Init.NSS));
assert_param(IS_SPI_NSSP(hspi->Init.NSSPMode));
assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
assert_param(IS_SPI_TIMODE(hspi->Init.TIMode));
#if (USE_SPI_CRC != 0U)
assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));
assert_param(IS_SPI_CRC_LENGTH(hspi->Init.CRCLength));
}
/* Align the CRC Length on the data size */
if( hspi->Init.CRCLength == SPI_CRC_LENGTH_DATASIZE)
{
/* CRC Length aligned on the data size : value set by default */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
hspi->Init.CRCLength = SPI_CRC_LENGTH_16BIT;
}
else
{
hspi->Init.CRCLength = SPI_CRC_LENGTH_8BIT;
}
}
#endif
if(hspi->State == HAL_SPI_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hspi->Lock = HAL_UNLOCKED;
/* Init the low level hardware : GPIO, CLOCK, NVIC... */
HAL_SPI_MspInit(hspi);
}
hspi->State = HAL_SPI_STATE_BUSY;
/* Disable the selected SPI peripheral */
__HAL_SPI_DISABLE(hspi);
/* Align by default the rs fifo threshold on the data size */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
frxth = SPI_RXFIFO_THRESHOLD_HF;
}
else
{
frxth = SPI_RXFIFO_THRESHOLD_QF;
}
/* CRC calculation is valid only for 16Bit and 8 Bit */
if(( hspi->Init.DataSize != SPI_DATASIZE_16BIT ) && ( hspi->Init.DataSize != SPI_DATASIZE_8BIT ))
{
/* CRC must be disabled */
hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
}
/*---------------------------- SPIx CR1 & CR2 Configuration ------------------------*/
/* Configure : SPI Mode, Communication Mode, Clock polarity and phase, NSS management,
Communication speed, First bit, CRC calculation state, CRC Length */
hspi->Instance->CR1 = (hspi->Init.Mode | hspi->Init.Direction |
hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) |
hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit | hspi->Init.CRCCalculation);
if( hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
{
hspi->Instance->CR1|= SPI_CR1_CRCL;
}
/* Configure : NSS management */
/* Configure : Rx Fifo Threshold */
hspi->Instance->CR2 = (((hspi->Init.NSS >> 16) & SPI_CR2_SSOE) | hspi->Init.TIMode | hspi->Init.NSSPMode |
hspi->Init.DataSize ) | frxth;
#if (USE_SPI_CRC != 0U)
/*---------------------------- SPIx CRCPOLY Configuration --------------------*/
/* Configure : CRC Polynomial */
WRITE_REG(hspi->Instance->CRCPR, hspi->Init.CRCPolynomial);
#endif
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->State= HAL_SPI_STATE_READY;
return HAL_OK;
}
/**
* @brief DeInitialize the SPI peripheral.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi)
{
/* Check the SPI handle allocation */
if(hspi == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
hspi->State = HAL_SPI_STATE_BUSY;
/* Disable the SPI Peripheral Clock */
__HAL_SPI_DISABLE(hspi);
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
HAL_SPI_MspDeInit(hspi);
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->State = HAL_SPI_STATE_RESET;
__HAL_UNLOCK(hspi);
return HAL_OK;
}
/**
* @brief SPI MSP Init
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_MspInit should be implemented in the user file
*/
}
/**
* @brief SPI MSP DeInit
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_MspDeInit should be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup SPI_Exported_Functions_Group2 IO operation functions
* @brief Data transfers functions
*
@verbatim
==============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the SPI
data transfers.
[..] The SPI supports master and slave mode :
(#) There are two modes of transfer:
(++) Blocking mode: The communication is performed in polling mode.
The HAL status of all data processing is returned by the same function
after finishing transfer.
(++) No-Blocking mode: The communication is performed using Interrupts
or DMA, These APIs return the HAL status.
The end of the data processing will be indicated through the
dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when
using DMA mode.
The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks
will be executed respectively at the end of the transmit or Receive process
The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected
(#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA)
exist for 1Line (simplex) and 2Lines (full duplex) modes.
@endverbatim
* @{
*/
/**
* @brief Transmit an amount of data in blocking mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData: pointer to data buffer
* @param Size: amount of data to be sent
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
HAL_StatusTypeDef errorcode = HAL_OK;
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
/* Process Locked */
__HAL_LOCK(hspi);
if(hspi->State != HAL_SPI_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
}
if((pData == NULL ) || (Size == 0))
{
errorcode = HAL_ERROR;
goto error;
}
/* Set the transaction information */
hspi->State = HAL_SPI_STATE_BUSY_TX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = pData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
hspi->pRxBuffPtr = (uint8_t *)NULL;
hspi->RxXferSize = 0;
hspi->RxXferCount = 0;
/* Configure communication direction : 1Line */
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
SPI_1LINE_TX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif
/* Check if the SPI is already enabled */
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Transmit data in 16 Bit mode */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
/* Transmit data in 16 Bit mode */
while (hspi->TxXferCount > 0)
{
/* Wait until TXE flag is set to send data */
if((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE)
{
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
}
else
{
/* Timeout management */
if((Timeout == 0) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)))
{
errorcode = HAL_TIMEOUT;
goto error;
}
}
}
}
/* Transmit data in 8 Bit mode */
else
{
while (hspi->TxXferCount > 0)
{
/* Wait until TXE flag is set to send data */
if((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE)
{
if(hspi->TxXferCount > 1)
{
/* write on the data register in packing mode */
hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount -= 2;
}
else
{
*((__IO uint8_t*)&hspi->Instance->DR) = (*hspi->pTxBuffPtr++);
hspi->TxXferCount--;
}
}
else
{
/* Timeout management */
if((Timeout == 0) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)))
{
errorcode = HAL_TIMEOUT;
goto error;
}
}
}
}
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->Instance->CR1|= SPI_CR1_CRCNEXT;
}
#endif
/* Check the end of the transaction */
if(SPI_EndRxTxTransaction(hspi,Timeout) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
}
/* Clear overrun flag in 2 Lines communication mode because received is not read */
if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
errorcode = HAL_ERROR;
}
error:
hspi->State = HAL_SPI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return errorcode;
}
/**
* @brief Receive an amount of data in blocking mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData: pointer to data buffer
* @param Size: amount of data to be received
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
#if (USE_SPI_CRC != 0U)
__IO uint16_t tmpreg;
#endif
uint32_t tickstart = HAL_GetTick();
HAL_StatusTypeDef errorcode = HAL_OK;
if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
{
/* the receive process is not supported in 2Lines direction master mode */
/* in this case we call the TransmitReceive process */
/* Process Locked */
return HAL_SPI_TransmitReceive(hspi,pData,pData,Size,Timeout);
}
/* Process Locked */
__HAL_LOCK(hspi);
if(hspi->State != HAL_SPI_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
}
if((pData == NULL ) || (Size == 0))
{
errorcode = HAL_ERROR;
goto error;
}
hspi->State = HAL_SPI_STATE_BUSY_RX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pRxBuffPtr = pData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
hspi->pTxBuffPtr = (uint8_t *)NULL;
hspi->TxXferSize = 0;
hspi->TxXferCount = 0;
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
/* this is done to handle the CRCNEXT before the latest data */
hspi->RxXferCount--;
}
#endif
/* Set the Rx Fido threshold */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
/* set fiforxthreshold according the reception data length: 16bit */
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
else
{
/* set fiforxthreshold according the reception data length: 8bit */
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
/* Configure communication direction 1Line and enabled SPI if needed */
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
SPI_1LINE_RX(hspi);
}
/* Check if the SPI is already enabled */
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Receive data in 8 Bit mode */
if(hspi->Init.DataSize <= SPI_DATASIZE_8BIT)
{
/* Transfer loop */
while(hspi->RxXferCount > 0)
{
/* Check the RXNE flag */
if((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE)
{
/* read the received data */
(*hspi->pRxBuffPtr++)= *(__IO uint8_t *)&hspi->Instance->DR;
hspi->RxXferCount--;
}
else
{
/* Timeout management */
if((Timeout == 0) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)))
{
errorcode = HAL_TIMEOUT;
goto error;
}
}
}
}
else
{
/* Transfer loop */
while(hspi->RxXferCount > 0)
{
/* Check the RXNE flag */
if((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE)
{
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount--;
}
else
{
/* Timeout management */
if((Timeout == 0) || ((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout)))
{
errorcode = HAL_TIMEOUT;
goto error;
}
}
}
}
#if (USE_SPI_CRC != 0U)
/* Handle the CRC Transmission */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* freeze the CRC before the latest data */
hspi->Instance->CR1|= SPI_CR1_CRCNEXT;
/* Read the latest data */
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
{
/* the latest data has not been received */
errorcode = HAL_TIMEOUT;
goto error;
}
/* Receive last data in 16 Bit mode */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
}
/* Receive last data in 8 Bit mode */
else
{
*hspi->pRxBuffPtr = *(__IO uint8_t *)&hspi->Instance->DR;
}
/* Wait until TXE flag */
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
{
/* Flag Error*/
hspi->ErrorCode = HAL_SPI_ERROR_CRC;
errorcode = HAL_TIMEOUT;
goto error;
}
if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
{
tmpreg = hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
}
else
{
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
if((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
{
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
{
/* Error on the CRC reception */
hspi->ErrorCode = HAL_SPI_ERROR_CRC;
errorcode = HAL_TIMEOUT;
goto error;
}
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
}
}
}
#endif
/* Check the end of the transaction */
if(SPI_EndRxTransaction(hspi,Timeout) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
}
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
}
#endif
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
errorcode = HAL_ERROR;
}
error :
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return errorcode;
}
/**
* @brief Transmit and Receive an amount of data in blocking mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pTxData: pointer to transmission data buffer
* @param pRxData: pointer to reception data buffer
* @param Size: amount of data to be sent and received
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
{
#if (USE_SPI_CRC != 0U)
__IO uint16_t tmpreg;
#endif
uint32_t tickstart = HAL_GetTick();
/* Variable used to alternate Rx and Tx during transfer */
uint32_t txallowed = 1U;
HAL_StatusTypeDef errorcode = HAL_OK;
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
/* Process Locked */
__HAL_LOCK(hspi);
if(hspi->State != HAL_SPI_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
}
if((pTxData == NULL) || (pRxData == NULL) || (Size == 0))
{
errorcode = HAL_ERROR;
goto error;
}
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pRxBuffPtr = pRxData;
hspi->RxXferCount = Size;
hspi->RxXferSize = Size;
hspi->pTxBuffPtr = pTxData;
hspi->TxXferCount = Size;
hspi->TxXferSize = Size;
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif
/* Set the Rx Fifo threshold */
if((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (hspi->RxXferCount > 1))
{
/* set fiforxthreshold according the reception data length: 16bit */
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
else
{
/* set fiforxthreshold according the reception data length: 8bit */
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
/* Check if the SPI is already enabled */
if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Transmit and Receive data in 16 Bit mode */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
while ((hspi->TxXferCount > 0 ) || (hspi->RxXferCount > 0))
{
/* Check TXE flag */
if(txallowed && ((hspi->TxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE)))
{
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
/* Next Data is a reception (Rx). Tx not allowed */
txallowed = 0U;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
/* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */
if(((hspi->Instance->CR1 & SPI_CR1_MSTR) == 0) && ((hspi->Instance->CR2 & SPI_CR2_NSSP) == SPI_CR2_NSSP))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM);
}
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif
}
/* Check RXNE flag */
if((hspi->RxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE))
{
*((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR;
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount--;
/* Next Data is a reception (Rx). Tx not allowed */
txallowed = 1U;
}
if((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout))
{
errorcode = HAL_TIMEOUT;
goto error;
}
}
}
/* Transmit and Receive data in 8 Bit mode */
else
{
while((hspi->TxXferCount > 0) || (hspi->RxXferCount > 0))
{
/* check TXE flag */
if(txallowed && ((hspi->TxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_TXE) == SPI_FLAG_TXE)))
{
if(hspi->TxXferCount > 1)
{
hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount -= 2;
}
else
{
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
hspi->TxXferCount--;
/* Next Data is a reception (Rx). Tx not allowed */
txallowed = 0U;
}
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
/* Set NSS Soft to received correctly the CRC on slave mode with NSS pulse activated */
if(((hspi->Instance->CR1 & SPI_CR1_MSTR) == 0) && ((hspi->Instance->CR2 & SPI_CR2_NSSP) == SPI_CR2_NSSP))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_SSM);
}
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif
}
/* Wait until RXNE flag is reset */
if((hspi->RxXferCount > 0) && ((hspi->Instance->SR & SPI_FLAG_RXNE) == SPI_FLAG_RXNE))
{
if(hspi->RxXferCount > 1)
{
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount -= 2;
if(hspi->RxXferCount <= 1)
{
/* set fiforxthreshold before to switch on 8 bit data size */
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
}
else
{
(*hspi->pRxBuffPtr++) = *(__IO uint8_t *)&hspi->Instance->DR;
hspi->RxXferCount--;
/* Next Data is a Transmission (Tx). Tx is allowed */
txallowed = 1U;
}
}
if((Timeout != HAL_MAX_DELAY) && ((HAL_GetTick()-tickstart) >= Timeout))
{
errorcode = HAL_TIMEOUT;
goto error;
}
}
}
#if (USE_SPI_CRC != 0U)
/* Read CRC from DR to close CRC calculation process */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Wait until TXE flag */
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
{
/* Error on the CRC reception */
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
errorcode = HAL_TIMEOUT;
goto error;
}
if(hspi->Init.DataSize == SPI_DATASIZE_16BIT)
{
tmpreg = hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
}
else
{
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
if(hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
{
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, Timeout) != HAL_OK)
{
/* Error on the CRC reception */
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
errorcode = HAL_TIMEOUT;
goto error;
}
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
}
}
}
/* Check if CRC error occurred */
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
/* Clear CRC Flag */
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
errorcode = HAL_ERROR;
}
#endif
/* Check the end of the transaction */
if(SPI_EndRxTxTransaction(hspi,Timeout) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
}
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
errorcode = HAL_ERROR;
}
error :
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return errorcode;
}
/**
* @brief Transmit an amount of data in non-blocking mode with Interrupt.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData: pointer to data buffer
* @param Size: amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef errorcode = HAL_OK;
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
/* Process Locked */
__HAL_LOCK(hspi);
if((pData == NULL) || (Size == 0))
{
errorcode = HAL_ERROR;
goto error;
}
if(hspi->State != HAL_SPI_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
}
/* prepare the transfer */
hspi->State = HAL_SPI_STATE_BUSY_TX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = pData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
hspi->pRxBuffPtr = (uint8_t *)NULL;
hspi->RxXferSize = 0;
hspi->RxXferCount = 0;
hspi->RxISR = NULL;
/* Set the function for IT treatment */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
{
hspi->TxISR = SPI_TxISR_16BIT;
}
else
{
hspi->TxISR = SPI_TxISR_8BIT;
}
/* Configure communication direction : 1Line */
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
SPI_1LINE_TX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif
/* Enable TXE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi,(SPI_IT_TXE));
/* Check if the SPI is already enabled */
if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
error :
__HAL_UNLOCK(hspi);
return errorcode;
}
/**
* @brief Receive an amount of data in non-blocking mode with Interrupt.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData: pointer to data buffer
* @param Size: amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef errorcode = HAL_OK;
/* Process Locked */
__HAL_LOCK(hspi);
if(hspi->State != HAL_SPI_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
}
if((pData == NULL) || (Size == 0))
{
errorcode = HAL_ERROR;
goto error;
}
/* Configure communication */
hspi->State = HAL_SPI_STATE_BUSY_RX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pRxBuffPtr = pData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
hspi->pTxBuffPtr = (uint8_t *)NULL;
hspi->TxXferSize = 0;
hspi->TxXferCount = 0;
if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
{
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* the receive process is not supported in 2Lines direction master mode */
/* in this we call the TransmitReceive process */
return HAL_SPI_TransmitReceive_IT(hspi,pData,pData,Size);
}
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->CRCSize = 1;
if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
{
hspi->CRCSize = 2;
}
}
else
{
hspi->CRCSize = 0;
}
hspi->TxISR = NULL;
/* check the data size to adapt Rx threshold and the set the function for IT treatment */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
{
/* set fiforxthresold according the reception data length: 16 bit */
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
hspi->RxISR = SPI_RxISR_16BIT;
}
else
{
/* set fiforxthresold according the reception data length: 8 bit */
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
hspi->RxISR = SPI_RxISR_8BIT;
}
/* Configure communication direction : 1Line */
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
SPI_1LINE_RX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif
/* Enable TXE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
/* Check if the SPI is already enabled */
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
error :
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return errorcode;
}
/**
* @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pTxData: pointer to transmission data buffer
* @param pRxData: pointer to reception data buffer
* @param Size: amount of data to be sent and received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
{
HAL_StatusTypeDef errorcode = HAL_OK;
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
/* Process locked */
__HAL_LOCK(hspi);
if(!((hspi->State == HAL_SPI_STATE_READY) || \
((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->State == HAL_SPI_STATE_BUSY_RX))))
{
errorcode = HAL_BUSY;
goto error;
}
if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0))
{
errorcode = HAL_ERROR;
goto error;
}
hspi->CRCSize = 0;
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->CRCSize = 1;
if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT))
{
hspi->CRCSize = 2;
}
}
if(hspi->State != HAL_SPI_STATE_BUSY_RX)
{
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
}
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = pTxData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
hspi->pRxBuffPtr = pRxData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
/* Set the function for IT treatment */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT )
{
hspi->RxISR = SPI_2linesRxISR_16BIT;
hspi->TxISR = SPI_2linesTxISR_16BIT;
}
else
{
hspi->RxISR = SPI_2linesRxISR_8BIT;
hspi->TxISR = SPI_2linesTxISR_8BIT;
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif
/* check if packing mode is enabled and if there is more than 2 data to receive */
if((hspi->Init.DataSize > SPI_DATASIZE_8BIT) || (hspi->RxXferCount >= 2))
{
/* set fiforxthresold according the reception data length: 16 bit */
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
else
{
/* set fiforxthresold according the reception data length: 8 bit */
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
/* Enable TXE, RXNE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
/* Check if the SPI is already enabled */
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
error :
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return errorcode;
}
/**
* @brief Transmit an amount of data in non-blocking mode with DMA.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData: pointer to data buffer
* @param Size: amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef errorcode = HAL_OK;
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
/* Process Locked */
__HAL_LOCK(hspi);
if(hspi->State != HAL_SPI_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
}
if((pData == NULL) || (Size == 0))
{
errorcode = HAL_ERROR;
goto error;
}
hspi->State = HAL_SPI_STATE_BUSY_TX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = pData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
hspi->pRxBuffPtr = (uint8_t *)NULL;
hspi->RxXferSize = 0;
hspi->RxXferCount = 0;
/* Configure communication direction : 1Line */
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
SPI_1LINE_TX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif
/* Set the SPI TxDMA Half transfer complete callback */
hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt;
/* Set the SPI TxDMA transfer complete callback */
hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt;
/* Set the DMA error callback */
hspi->hdmatx->XferErrorCallback = SPI_DMAError;
/* Set the DMA abort callback */
hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError;
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
/* packing mode is enabled only if the DMA setting is HALWORD */
if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD))
{
/* Check the even/odd of the data size + crc if enabled */
if((hspi->TxXferCount & 0x1) == 0)
{
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
hspi->TxXferCount = (hspi->TxXferCount >> 1);
}
else
{
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
hspi->TxXferCount = (hspi->TxXferCount >> 1) + 1;
}
}
/* Enable SPI Error interrupts, EIE: MODF, OVR, FE, FRE, CEC(depends on family) */
SET_BIT(hspi->Instance->CR2, (SPI_CR2_ERRIE));
SET_BIT(hspi->Instance->SR, (SPI_SR_FRE | SPI_SR_OVR | SPI_SR_MODF | SPI_SR_CRCERR));
/* Enable the Tx DMA channel */
HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
/* Check if the SPI is already enabled */
if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Enable Tx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
error :
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return errorcode;
}
/**
* @brief Receive an amount of data in non-blocking mode with DMA.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData: pointer to data buffer
* @note When the CRC feature is enabled the pData Length must be Size + 1.
* @param Size: amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
HAL_StatusTypeDef errorcode = HAL_OK;
/* Process Locked */
__HAL_LOCK(hspi);
if(hspi->State != HAL_SPI_STATE_READY)
{
errorcode = HAL_BUSY;
goto error;
}
if((pData == NULL) || (Size == 0))
{
errorcode = HAL_ERROR;
goto error;
}
hspi->State = HAL_SPI_STATE_BUSY_RX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pRxBuffPtr = pData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
hspi->pTxBuffPtr = (uint8_t *)NULL;
hspi->TxXferSize = 0;
hspi->TxXferCount = 0;
if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
{
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* the receive process is not supported in 2Lines direction master mode */
/* in this case we call the TransmitReceive process */
return HAL_SPI_TransmitReceive_DMA(hspi,pData,pData,Size);
}
/* Configure communication direction : 1Line */
if(hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
SPI_1LINE_RX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif
/* packing mode management is enabled by the DMA settings */
if((hspi->Init.DataSize <= SPI_DATASIZE_8BIT) && (hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD))
{
/* Restriction the DMA data received is not allowed in this mode */
errorcode = HAL_ERROR;
goto error;
}
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
if( hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
/* set fiforxthreshold according the reception data length: 16bit */
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
else
{
/* set fiforxthreshold according the reception data length: 8bit */
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
/* Set the SPI RxDMA Half transfer complete callback */
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
/* Set the SPI Rx DMA transfer complete callback */
hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
/* Set the DMA error callback */
hspi->hdmarx->XferErrorCallback = SPI_DMAError;
/* Set the DMA abort callback */
hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError;
/* Enable SPI Error interrupts, EIE: MODF, OVR, FE, FRE, CEC(depends on family) */
SET_BIT(hspi->Instance->CR2, (SPI_CR2_ERRIE));
SET_BIT(hspi->Instance->SR, (SPI_SR_FRE | SPI_SR_OVR | SPI_SR_MODF | SPI_SR_CRCERR));
/* Enable Rx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
/* Enable the Rx DMA channel */
HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);
/* Check if the SPI is already enabled */
if((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
error:
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return errorcode;
}
/**
* @brief Transmit and Receive an amount of data in non-blocking mode with DMA.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pTxData: pointer to transmission data buffer
* @param pRxData: pointer to reception data buffer
* @note When the CRC feature is enabled the pRxData Length must be Size + 1
* @param Size: amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size)
{
HAL_StatusTypeDef errorcode = HAL_OK;
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
/* Process locked */
__HAL_LOCK(hspi);
if(!((hspi->State == HAL_SPI_STATE_READY) ||
((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->State == HAL_SPI_STATE_BUSY_RX))))
{
errorcode = HAL_BUSY;
goto error;
}
if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0))
{
errorcode = HAL_ERROR;
goto error;
}
/* check if the transmit Receive function is not called by a receive master */
if(hspi->State != HAL_SPI_STATE_BUSY_RX)
{
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
}
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = (uint8_t *)pTxData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
hspi->pRxBuffPtr = (uint8_t *)pRxData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation + increase the rxsize */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif
/* Reset the threshold bit */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX | SPI_CR2_LDMARX);
/* the packing mode management is enabled by the DMA settings according the spi data size */
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
/* set fiforxthreshold according the reception data length: 16bit */
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
else
{
/* set fiforxthresold according the reception data length: 8bit */
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
if(hspi->hdmatx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
{
if((hspi->TxXferSize & 0x1) == 0x0)
{
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
hspi->TxXferCount = hspi->TxXferCount >> 1;
}
else
{
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX);
hspi->TxXferCount = (hspi->TxXferCount >> 1) + 1;
}
}
if(hspi->hdmarx->Init.MemDataAlignment == DMA_MDATAALIGN_HALFWORD)
{
/* set fiforxthresold according the reception data length: 16bit */
CLEAR_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
if((hspi->RxXferCount & 0x1) == 0x0 )
{
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
hspi->RxXferCount = hspi->RxXferCount >> 1;
}
else
{
SET_BIT(hspi->Instance->CR2, SPI_CR2_LDMARX);
hspi->RxXferCount = (hspi->RxXferCount >> 1) + 1;
}
}
}
/* Set the SPI Rx DMA transfer complete callback if the transfer request is a
reception request (RXNE) */
if(hspi->State == HAL_SPI_STATE_BUSY_RX)
{
/* Set the SPI Rx DMA Half transfer complete callback */
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
}
else
{
/* Set the SPI Rx DMA Half transfer complete callback */
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt;
hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt;
}
/* Set the DMA error callback */
hspi->hdmarx->XferErrorCallback = SPI_DMAError;
/* Set the DMA abort callback */
hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError;
/* Enable SPI Error interrupts, EIE: MODF, OVR, FE, FRE, CEC(depends on family) */
SET_BIT(hspi->Instance->CR2, (SPI_CR2_ERRIE));
SET_BIT(hspi->Instance->SR, (SPI_SR_FRE | SPI_SR_OVR | SPI_SR_MODF | SPI_SR_CRCERR));
/* Enable Rx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
/* Enable the Rx DMA channel */
HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t) hspi->pRxBuffPtr, hspi->RxXferCount);
/* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing
is performed in DMA reception complete callback */
hspi->hdmatx->XferHalfCpltCallback = NULL;
hspi->hdmatx->XferCpltCallback = NULL;
/* Set the DMA error callback */
hspi->hdmatx->XferErrorCallback = SPI_DMAError;
/* Set the DMA abort callback */
hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError;
/* Enable the Tx DMA channel */
HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
/* Check if the SPI is already enabled */
if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Enable Tx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
error :
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return errorcode;
}
/**
* @brief Pause the DMA Transfer.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi)
{
/* Process Locked */
__HAL_LOCK(hspi);
/* Disable the SPI DMA Tx & Rx requests */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_OK;
}
/**
* @brief Resumes the DMA Transfer.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi)
{
/* Process Locked */
__HAL_LOCK(hspi);
/* Enable the SPI DMA Tx & Rx requests */
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_OK;
}
/**
* @brief Stops the DMA Transfer.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi)
{
/* The Lock is not implemented on this API to allow the user application
to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback():
when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback()
*/
/* Abort the SPI DMA tx Stream */
if(hspi->hdmatx != NULL)
{
HAL_DMA_Abort(hspi->hdmatx);
}
/* Abort the SPI DMA rx Stream */
if(hspi->hdmarx != NULL)
{
HAL_DMA_Abort(hspi->hdmarx);
}
/* Disable the SPI DMA Tx & Rx requests */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
hspi->State = HAL_SPI_STATE_READY;
return HAL_OK;
}
/**
* @brief This function handles SPI interrupt request.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI module.
* @retval None
*/
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi)
{
uint32_t itsource = hspi->Instance->CR2;
uint32_t itflag = hspi->Instance->SR;
/* SPI in mode Receiver ----------------------------------------------------*/
if(((itflag & SPI_FLAG_OVR) == RESET) &&
((itflag & SPI_FLAG_RXNE) != RESET) && ((itsource & SPI_IT_RXNE) != RESET))
{
hspi->RxISR(hspi);
return;
}
/* SPI in mode Transmitter ---------------------------------------------------*/
if(((itflag & SPI_FLAG_TXE) != RESET) && ((itsource & SPI_IT_TXE) != RESET))
{
hspi->TxISR(hspi);
return;
}
/* SPI in Error Treatment ---------------------------------------------------*/
if((itflag & (SPI_FLAG_MODF | SPI_FLAG_OVR | SPI_FLAG_FRE)) != RESET)
{
/* SPI Overrun error interrupt occurred -------------------------------------*/
if((itflag & SPI_FLAG_OVR) != RESET)
{
if(hspi->State != HAL_SPI_STATE_BUSY_TX)
{
hspi->ErrorCode |= HAL_SPI_ERROR_OVR;
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
else
{
return;
}
}
/* SPI Mode Fault error interrupt occurred -------------------------------------*/
if((itflag & SPI_FLAG_MODF) != RESET)
{
hspi->ErrorCode |= HAL_SPI_ERROR_MODF;
__HAL_SPI_CLEAR_MODFFLAG(hspi);
}
/* SPI Frame error interrupt occurred ----------------------------------------*/
if((itflag & SPI_FLAG_FRE) != RESET)
{
hspi->ErrorCode |= HAL_SPI_ERROR_FRE;
__HAL_SPI_CLEAR_FREFLAG(hspi);
}
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
/* All SPI errors are treated as Blocking errors : transfer is aborted.
Set the SPI state to ready so as to be able to restart the process,
Disable Rx/Tx Interrupts, and disable DMA Rx/Tx requests, if ongoing */
/* Disable TXE, RXNE, MODF, OVR, FRE, and CRCERR (Master mode fault, Overrun error, TI frame format error, CRC protocol error) interrupts */
CLEAR_BIT(hspi->Instance->CR1, (SPI_CR2_RXNEIE | SPI_CR2_TXEIE | SPI_CR2_ERRIE));
CLEAR_BIT(hspi->Instance->SR, (SPI_SR_FRE | SPI_SR_OVR | SPI_SR_MODF | SPI_SR_CRCERR));
/* Restore SPI State to Ready */
hspi->State = HAL_SPI_STATE_READY;
/* Disable the SPI DMA requests if enabled */
if ((HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))||(HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN)))
{
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN));
/* Abort the SPI DMA Rx channel */
if(hspi->hdmarx != NULL)
{
/* Set the SPI DMA Abort callback :
will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError;
/* Abort DMA RX */
if(HAL_DMA_Abort_IT(hspi->hdmarx) != HAL_OK)
{
/* Call Directly hspi->hdmarx->XferAbortCallback function in case of error */
hspi->hdmarx->XferAbortCallback(hspi->hdmarx);
}
}
/* Abort the SPI DMA Tx channel */
if(hspi->hdmatx != NULL)
{
/* Set the SPI DMA Abort callback :
will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError;
/* Abort DMA TX */
if(HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK)
{
/* Call Directly hspi->hdmatx->XferAbortCallback function in case of error */
hspi->hdmatx->XferAbortCallback(hspi->hdmatx);
}
}
}
else
{
/* Call user error callback */
HAL_SPI_ErrorCallback(hspi);
}
}
}
}
/**
* @brief Tx Transfer completed callback.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_TxCpltCallback should be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callback.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_RxCpltCallback should be implemented in the user file
*/
}
/**
* @brief Tx and Rx Transfer completed callback.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_TxRxCpltCallback should be implemented in the user file
*/
}
/**
* @brief Tx Half Transfer completed callback.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_TxHalfCpltCallback should be implemented in the user file
*/
}
/**
* @brief Rx Half Transfer completed callback.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file
*/
}
/**
* @brief Tx and Rx Half Transfer callback.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file
*/
}
/**
* @brief SPI error callback.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_ErrorCallback should be implemented in the user file
*/
/* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes
and user can use HAL_SPI_GetError() API to check the latest error occurred
*/
}
/**
* @}
*/
/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions
* @brief SPI control functions
*
@verbatim
===============================================================================
##### Peripheral State and Errors functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the SPI.
(+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral
(+) HAL_SPI_GetError() check in run-time Errors occurring during communication
@endverbatim
* @{
*/
/**
* @brief Return the SPI handle state.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval SPI state
*/
HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi)
{
/* Return SPI handle state */
return hspi->State;
}
/**
* @brief Return the SPI error code.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval SPI error code in bitmap format
*/
uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi)
{
return hspi->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup SPI_Private_Functions
* @brief Private functions
* @{
*/
/**
* @brief DMA SPI transmit process complete callback.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* DMA Normal Mode */
if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
{
/* Disable Tx DMA Request */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
/* Check the end of the transaction */
if(SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
}
/* Clear overrun flag in 2 Lines communication mode because received data is not read */
if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
hspi->TxXferCount = 0;
hspi->State = HAL_SPI_STATE_READY;
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
HAL_SPI_ErrorCallback(hspi);
return;
}
}
HAL_SPI_TxCpltCallback(hspi);
}
/**
* @brief DMA SPI receive process complete callback.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* DMA Normal mode */
if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0)
{
#if (USE_SPI_CRC != 0U)
__IO uint16_t tmpreg;
/* CRC handling */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Wait until TXE flag */
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT) != HAL_OK)
{
/* Error on the CRC reception */
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
}
if(hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
tmpreg = hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
}
else
{
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
if(hspi->Init.CRCLength == SPI_CRC_LENGTH_16BIT)
{
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SPI_FLAG_RXNE, SPI_DEFAULT_TIMEOUT) != HAL_OK)
{
/* Error on the CRC reception */
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
}
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
}
}
}
#endif
/* Disable Rx/Tx DMA Request (done by default to handle the case master rx direction 2 lines) */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
/* Check the end of the transaction */
if(SPI_EndRxTransaction(hspi,SPI_DEFAULT_TIMEOUT)!=HAL_OK)
{
hspi->ErrorCode|= HAL_SPI_ERROR_FLAG;
}
hspi->RxXferCount = 0;
hspi->State = HAL_SPI_STATE_READY;
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
}
#endif
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
HAL_SPI_ErrorCallback(hspi);
return;
}
}
HAL_SPI_RxCpltCallback(hspi);
}
/**
* @brief DMA SPI transmit receive process complete callback.
* @param hdma : pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
#if (USE_SPI_CRC != 0U)
__IO uint16_t tmpreg;
/* CRC handling */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
if((hspi->Init.DataSize == SPI_DATASIZE_8BIT) && (hspi->Init.CRCLength == SPI_CRC_LENGTH_8BIT))
{
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_QUARTER_FULL, SPI_DEFAULT_TIMEOUT) != HAL_OK)
{
/* Error on the CRC reception */
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
}
tmpreg = *(__IO uint8_t *)&hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
}
else
{
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_HALF_FULL, SPI_DEFAULT_TIMEOUT) != HAL_OK)
{
/* Error on the CRC reception */
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
}
tmpreg = hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
}
}
#endif
/* Check the end of the transaction */
if(SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
}
/* Disable Rx/Tx DMA Request */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
hspi->TxXferCount = 0;
hspi->RxXferCount = 0;
hspi->State = HAL_SPI_STATE_READY;
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
}
#endif
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
HAL_SPI_ErrorCallback(hspi);
return;
}
HAL_SPI_TxRxCpltCallback(hspi);
}
/**
* @brief DMA SPI half transmit process complete callback.
* @param hdma : pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
HAL_SPI_TxHalfCpltCallback(hspi);
}
/**
* @brief DMA SPI half receive process complete callback.
* @param hdma: pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
HAL_SPI_RxHalfCpltCallback(hspi);
}
/**
* @brief DMA SPI half transmit receive process complete callback.
* @param hdma : pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
HAL_SPI_TxRxHalfCpltCallback(hspi);
}
/**
* @brief DMA SPI communication error callback.
* @param hdma : pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAError(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
/* Stop the disable DMA transfer on SPI side */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
hspi->ErrorCode|= HAL_SPI_ERROR_DMA;
hspi->State = HAL_SPI_STATE_READY;
HAL_SPI_ErrorCallback(hspi);
}
/**
* @brief DMA SPI communication abort callback
* (To be called at end of DMA Abort procedure).
* @param hdma: DMA handle.
* @retval None
*/
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
hspi->RxXferCount = 0U;
hspi->TxXferCount = 0U;
HAL_SPI_ErrorCallback(hspi);
}
/**
* @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
{
/* Receive data in packing mode */
if(hspi->RxXferCount > 1)
{
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount -= 2;
if(hspi->RxXferCount == 1)
{
/* set fiforxthreshold according the reception data length: 8bit */
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
}
}
/* Receive data in 8 Bit mode */
else
{
*hspi->pRxBuffPtr++ = *((__IO uint8_t *)&hspi->Instance->DR);
hspi->RxXferCount--;
}
/* check end of the reception */
if(hspi->RxXferCount == 0)
{
#if (USE_SPI_CRC != 0U)
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
hspi->RxISR = SPI_2linesRxISR_8BITCRC;
return;
}
#endif
/* Disable RXNE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
if(hspi->TxXferCount == 0)
{
SPI_CloseRxTx_ISR(hspi);
}
}
}
#if (USE_SPI_CRC != 0U)
/**
* @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
{
__IO uint8_t tmpreg = *((__IO uint8_t *)&hspi->Instance->DR);
UNUSED(tmpreg); /* To avoid GCC warning */
hspi->CRCSize--;
/* check end of the reception */
if(hspi->CRCSize == 0)
{
/* Disable RXNE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
if(hspi->TxXferCount == 0)
{
SPI_CloseRxTx_ISR(hspi);
}
}
}
#endif
/**
* @brief Tx 8-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
{
/* Transmit data in packing Bit mode */
if(hspi->TxXferCount >= 2)
{
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount -= 2;
}
/* Transmit data in 8 Bit mode */
else
{
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
hspi->TxXferCount--;
}
/* check the end of the transmission */
if(hspi->TxXferCount == 0)
{
#if (USE_SPI_CRC != 0U)
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
}
#endif
/* Disable TXE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
if(hspi->RxXferCount == 0)
{
SPI_CloseRxTx_ISR(hspi);
}
}
}
/**
* @brief Rx 16-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
{
/* Receive data in 16 Bit mode */
*((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR;
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount--;
if(hspi->RxXferCount == 0)
{
#if (USE_SPI_CRC != 0U)
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->RxISR = SPI_2linesRxISR_16BITCRC;
return;
}
#endif
/* Disable RXNE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
if(hspi->TxXferCount == 0)
{
SPI_CloseRxTx_ISR(hspi);
}
}
}
#if (USE_SPI_CRC != 0U)
/**
* @brief Manage the CRC 16-bit receive for Transmit and Receive in Interrupt mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
{
/* Receive data in 16 Bit mode */
__IO uint16_t tmpreg = hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
/* Disable RXNE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
SPI_CloseRxTx_ISR(hspi);
}
#endif
/**
* @brief Tx 16-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
{
/* Transmit data in 16 Bit mode */
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
/* Enable CRC Transmission */
if(hspi->TxXferCount == 0)
{
#if (USE_SPI_CRC != 0U)
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
}
#endif
/* Disable TXE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
if(hspi->RxXferCount == 0)
{
SPI_CloseRxTx_ISR(hspi);
}
}
}
#if (USE_SPI_CRC != 0U)
/**
* @brief Manage the CRC 8-bit receive in Interrupt context.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
{
__IO uint8_t tmpreg;
tmpreg = *((__IO uint8_t*)&hspi->Instance->DR);
UNUSED(tmpreg); /* To avoid GCC warning */
hspi->CRCSize--;
if(hspi->CRCSize == 0)
{
SPI_CloseRx_ISR(hspi);
}
}
#endif
/**
* @brief Manage the receive 8-bit in Interrupt context.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
{
*hspi->pRxBuffPtr++ = (*(__IO uint8_t *)&hspi->Instance->DR);
hspi->RxXferCount--;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
}
#endif
if(hspi->RxXferCount == 0)
{
#if (USE_SPI_CRC != 0U)
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->RxISR = SPI_RxISR_8BITCRC;
return;
}
#endif
SPI_CloseRx_ISR(hspi);
}
}
#if (USE_SPI_CRC != 0U)
/**
* @brief Manage the CRC 16-bit receive in Interrupt context.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
{
__IO uint16_t tmpreg;
tmpreg = hspi->Instance->DR;
UNUSED(tmpreg); /* To avoid GCC warning */
/* Disable RXNE and ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
SPI_CloseRx_ISR(hspi);
}
#endif
/**
* @brief Manage the 16-bit receive in Interrupt context.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
{
*((uint16_t *)hspi->pRxBuffPtr) = hspi->Instance->DR;
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount--;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
}
#endif
if(hspi->RxXferCount == 0)
{
#if (USE_SPI_CRC != 0U)
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->RxISR = SPI_RxISR_16BITCRC;
return;
}
#endif
SPI_CloseRx_ISR(hspi);
}
}
/**
* @brief Handle the data 8-bit transmit in Interrupt mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
{
*(__IO uint8_t *)&hspi->Instance->DR = (*hspi->pTxBuffPtr++);
hspi->TxXferCount--;
if(hspi->TxXferCount == 0)
{
#if (USE_SPI_CRC != 0U)
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Enable CRC Transmission */
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
}
#endif
SPI_CloseTx_ISR(hspi);
}
}
/**
* @brief Handle the data 16-bit transmit in Interrupt mode.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
{
/* Transmit data in 16 Bit mode */
hspi->Instance->DR = *((uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
if(hspi->TxXferCount == 0)
{
#if (USE_SPI_CRC != 0U)
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Enable CRC Transmission */
hspi->Instance->CR1 |= SPI_CR1_CRCNEXT;
}
#endif
SPI_CloseTx_ISR(hspi);
}
}
/**
* @brief Handle SPI Communication Timeout.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param Flag : SPI flag to check
* @param State : flag state to check
* @param Timeout : Timeout duration
* @retval HAL status
*/
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, uint32_t State, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
while((hspi->Instance->SR & Flag) != State)
{
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0) || ((HAL_GetTick()-tickstart) >= Timeout))
{
/* Disable the SPI and reset the CRC: the CRC value should be cleared
on both master and slave sides in order to resynchronize the master
and slave for their respective CRC calculation */
/* Disable TXE, RXNE and ERR interrupts for the interrupt process */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
{
/* Disable SPI peripheral */
__HAL_SPI_DISABLE(hspi);
}
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
hspi->State= HAL_SPI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief Handle SPI FIFO Communication Timeout.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param Fifo : Fifo to check
* @param State : Fifo state to check
* @param Timeout : Timeout duration
* @retval HAL status
*/
static HAL_StatusTypeDef SPI_WaitFifoStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Fifo, uint32_t State, uint32_t Timeout)
{
__IO uint8_t tmpreg;
uint32_t tickstart = HAL_GetTick();
while((hspi->Instance->SR & Fifo) != State)
{
if((Fifo == SPI_SR_FRLVL) && (State == SPI_FRLVL_EMPTY))
{
tmpreg = *((__IO uint8_t*)&hspi->Instance->DR);
UNUSED(tmpreg); /* To avoid GCC warning */
}
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0) || ((HAL_GetTick()-tickstart) >= Timeout))
{
/* Disable the SPI and reset the CRC: the CRC value should be cleared
on both master and slave sides in order to resynchronize the master
and slave for their respective CRC calculation */
/* Disable TXE, RXNE and ERR interrupts for the interrupt process */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
{
/* Disable SPI peripheral */
__HAL_SPI_DISABLE(hspi);
}
/* Reset CRC Calculation */
if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
hspi->State = HAL_SPI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief Handle the check of the RX transaction complete.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param Timeout : Timeout duration
* @retval None
*/
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout)
{
if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
{
/* Disable SPI peripheral */
__HAL_SPI_DISABLE(hspi);
}
/* Control the BSY flag */
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout) != HAL_OK)
{
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
return HAL_TIMEOUT;
}
if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
{
/* Empty the FRLVL fifo */
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout) != HAL_OK)
{
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Handle the check of the RXTX or TX transaction complete.
* @param hspi: SPI handle
* @param Timeout : Timeout duration
*/
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout)
{
/* Procedure to check the transaction complete */
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FTLVL, SPI_FTLVL_EMPTY, Timeout) != HAL_OK)
{
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
return HAL_TIMEOUT;
}
if(SPI_WaitFifoStateUntilTimeout(hspi, SPI_FLAG_FRLVL, SPI_FRLVL_EMPTY, Timeout) != HAL_OK)
{
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
return HAL_TIMEOUT;
}
/* Control the BSY flag */
if(SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout) != HAL_OK)
{
hspi->ErrorCode |= HAL_SPI_ERROR_FLAG;
return HAL_TIMEOUT;
}
return HAL_OK;
}
/**
* @brief Handle the end of the RXTX transaction.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi)
{
/* Disable ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
/* Check the end of the transaction */
if(SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT)!=HAL_OK)
{
hspi->ErrorCode|= HAL_SPI_ERROR_FLAG;
}
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
hspi->State = HAL_SPI_STATE_READY;
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
HAL_SPI_ErrorCallback(hspi);
}
else
{
#endif
if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
{
if(hspi->State == HAL_SPI_STATE_BUSY_RX)
{
hspi->State = HAL_SPI_STATE_READY;
HAL_SPI_RxCpltCallback(hspi);
}
else
{
hspi->State = HAL_SPI_STATE_READY;
HAL_SPI_TxRxCpltCallback(hspi);
}
}
else
{
hspi->State = HAL_SPI_STATE_READY;
HAL_SPI_ErrorCallback(hspi);
}
#if (USE_SPI_CRC != 0U)
}
#endif
}
/**
* @brief Handle the end of the RX transaction.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi)
{
/* Disable RXNE and ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
/* Check the end of the transaction */
if(SPI_EndRxTransaction(hspi,SPI_DEFAULT_TIMEOUT)!=HAL_OK)
{
hspi->ErrorCode|= HAL_SPI_ERROR_FLAG;
}
hspi->State = HAL_SPI_STATE_READY;
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
hspi->ErrorCode|= HAL_SPI_ERROR_CRC;
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
HAL_SPI_ErrorCallback(hspi);
}
else
{
#endif
if(hspi->ErrorCode == HAL_SPI_ERROR_NONE)
{
HAL_SPI_RxCpltCallback(hspi);
}
else
{
HAL_SPI_ErrorCallback(hspi);
}
#if (USE_SPI_CRC != 0U)
}
#endif
}
/**
* @brief Handle the end of the TX transaction.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi)
{
/* Disable TXE and ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
/* Check the end of the transaction */
if(SPI_EndRxTxTransaction(hspi,SPI_DEFAULT_TIMEOUT)!=HAL_OK)
{
hspi->ErrorCode|= HAL_SPI_ERROR_FLAG;
}
/* Clear overrun flag in 2 Lines communication mode because received is not read */
if(hspi->Init.Direction == SPI_DIRECTION_2LINES)
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
hspi->State = HAL_SPI_STATE_READY;
if(hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
HAL_SPI_ErrorCallback(hspi);
}
else
{
HAL_SPI_TxCpltCallback(hspi);
}
}
/**
* @}
*/
#endif /* HAL_SPI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/