This commit is contained in:
treymarc 2014-01-01 10:18:18 +01:00
parent 239120ba4e
commit 01f079c254
2 changed files with 574 additions and 569 deletions

View File

@ -40,42 +40,42 @@
#define U_ID_2 (*(uint32_t*)0x1FFFF7F0)
typedef enum {
SENSOR_GYRO = 1 << 0, // always present
SENSOR_ACC = 1 << 1,
SENSOR_BARO = 1 << 2,
SENSOR_MAG = 1 << 3,
SENSOR_SONAR = 1 << 4,
SENSOR_GPS = 1 << 5,
SENSOR_GPSMAG = 1 << 6,
SENSOR_GYRO = 1 << 0, // always present
SENSOR_ACC = 1 << 1,
SENSOR_BARO = 1 << 2,
SENSOR_MAG = 1 << 3,
SENSOR_SONAR = 1 << 4,
SENSOR_GPS = 1 << 5,
SENSOR_GPSMAG = 1 << 6,
} AvailableSensors;
// Type of accelerometer used/detected
typedef enum AccelSensors {
ACC_DEFAULT = 0,
ACC_ADXL345 = 1,
ACC_MPU6050 = 2,
ACC_MMA8452 = 3,
ACC_BMA280 = 4,
ACC_NONE = 5
ACC_DEFAULT = 0,
ACC_ADXL345 = 1,
ACC_MPU6050 = 2,
ACC_MMA8452 = 3,
ACC_BMA280 = 4,
ACC_NONE = 5
} AccelSensors;
typedef enum {
FEATURE_PPM = 1 << 0,
FEATURE_VBAT = 1 << 1,
FEATURE_INFLIGHT_ACC_CAL = 1 << 2,
FEATURE_SERIALRX = 1 << 3,
FEATURE_MOTOR_STOP = 1 << 4,
FEATURE_SERVO_TILT = 1 << 5,
FEATURE_GYRO_SMOOTHING = 1 << 6,
FEATURE_LED_RING = 1 << 7,
FEATURE_GPS = 1 << 8,
FEATURE_FAILSAFE = 1 << 9,
FEATURE_SONAR = 1 << 10,
FEATURE_TELEMETRY = 1 << 11,
FEATURE_POWERMETER = 1 << 12,
FEATURE_VARIO = 1 << 13,
FEATURE_3D = 1 << 14,
FEATURE_SOFTSERIAL = 1 << 15,
FEATURE_PPM = 1 << 0,
FEATURE_VBAT = 1 << 1,
FEATURE_INFLIGHT_ACC_CAL = 1 << 2,
FEATURE_SERIALRX = 1 << 3,
FEATURE_MOTOR_STOP = 1 << 4,
FEATURE_SERVO_TILT = 1 << 5,
FEATURE_GYRO_SMOOTHING = 1 << 6,
FEATURE_LED_RING = 1 << 7,
FEATURE_GPS = 1 << 8,
FEATURE_FAILSAFE = 1 << 9,
FEATURE_SONAR = 1 << 10,
FEATURE_TELEMETRY = 1 << 11,
FEATURE_POWERMETER = 1 << 12,
FEATURE_VARIO = 1 << 13,
FEATURE_3D = 1 << 14,
FEATURE_SOFTSERIAL = 1 << 15,
} AvailableFeatures;
typedef enum {
@ -104,60 +104,63 @@ typedef enum {
} sensor_axis_e;
typedef enum {
ALIGN_DEFAULT = 0, // driver-provided alignment
CW0_DEG = 1,
CW90_DEG = 2,
CW180_DEG = 3,
CW270_DEG = 4,
CW0_DEG_FLIP = 5,
CW90_DEG_FLIP = 6,
CW180_DEG_FLIP = 7,
CW270_DEG_FLIP = 8
ALIGN_DEFAULT = 0, // driver-provided alignment
CW0_DEG = 1,
CW90_DEG = 2,
CW180_DEG = 3,
CW270_DEG = 4,
CW0_DEG_FLIP = 5,
CW90_DEG_FLIP = 6,
CW180_DEG_FLIP = 7,
CW270_DEG_FLIP = 8
} sensor_align_e;
enum {
GYRO_UPDATED = 1 << 0,
ACC_UPDATED = 1 << 1,
MAG_UPDATED = 1 << 2,
TEMP_UPDATED = 1 << 3
GYRO_UPDATED = 1 << 0,
ACC_UPDATED = 1 << 1,
MAG_UPDATED = 1 << 2,
TEMP_UPDATED = 1 << 3
};
typedef struct sensor_data_t {
int16_t gyro[3];
int16_t acc[3];
int16_t mag[3];
float temperature;
int updated;
typedef struct sensor_data_t
{
int16_t gyro[3];
int16_t acc[3];
int16_t mag[3];
float temperature;
int updated;
} sensor_data_t;
typedef void (*sensorInitFuncPtr)(sensor_align_e align); // sensor init prototype
typedef void (*sensorReadFuncPtr)(int16_t *data); // sensor read and align prototype
typedef void (*baroOpFuncPtr)(void); // baro start operation
typedef void (*baroCalculateFuncPtr)(int32_t *pressure, int32_t *temperature); // baro calculation (filled params are pressure and temperature)
typedef void (*serialReceiveCallbackPtr)(uint16_t data); // used by serial drivers to return frames to app
typedef uint16_t (*rcReadRawDataPtr)(uint8_t chan); // used by receiver driver to return channel data
typedef void (*pidControllerFuncPtr)(void); // pid controller function prototype
typedef void (* sensorInitFuncPtr)(sensor_align_e align); // sensor init prototype
typedef void (* sensorReadFuncPtr)(int16_t *data); // sensor read and align prototype
typedef void (* baroOpFuncPtr)(void); // baro start operation
typedef void (* baroCalculateFuncPtr)(int32_t *pressure, int32_t *temperature); // baro calculation (filled params are pressure and temperature)
typedef void (* serialReceiveCallbackPtr)(uint16_t data); // used by serial drivers to return frames to app
typedef uint16_t (* rcReadRawDataPtr)(uint8_t chan); // used by receiver driver to return channel data
typedef void (* pidControllerFuncPtr)(void); // pid controller function prototype
typedef struct sensor_t {
sensorInitFuncPtr init; // initialize function
sensorReadFuncPtr read; // read 3 axis data function
sensorReadFuncPtr temperature; // read temperature if available
float scale; // scalefactor (currently used for gyro only, todo for accel)
typedef struct sensor_t
{
sensorInitFuncPtr init; // initialize function
sensorReadFuncPtr read; // read 3 axis data function
sensorReadFuncPtr temperature; // read temperature if available
float scale; // scalefactor (currently used for gyro only, todo for accel)
} sensor_t;
typedef struct baro_t {
uint16_t ut_delay;
uint16_t up_delay;
baroOpFuncPtr start_ut;
baroOpFuncPtr get_ut;
baroOpFuncPtr start_up;
baroOpFuncPtr get_up;
baroCalculateFuncPtr calculate;
typedef struct baro_t
{
uint16_t ut_delay;
uint16_t up_delay;
baroOpFuncPtr start_ut;
baroOpFuncPtr get_ut;
baroOpFuncPtr start_up;
baroOpFuncPtr get_up;
baroCalculateFuncPtr calculate;
} baro_t;
// Hardware definitions and GPIO
#ifdef FY90Q
// FY90Q
// FY90Q
#define LED0_GPIO GPIOC
#define LED0_PIN Pin_12
#define LED1_GPIO GPIOA
@ -178,6 +181,7 @@ typedef struct baro_t {
#define LED0_PIN Pin_1 // D3, PA1/USART2_RTS/ADC1/TIM2_CH3 - "LED2" on silkscreen, Yellow
#define LED1_GPIO GPIOA
#define LED1_PIN Pin_5 // D13, PA5/SPI1_SCK/ADC5 - "LED1" on silkscreen, Green
#define GYRO
#define ACC
@ -227,10 +231,11 @@ typedef struct baro_t {
#endif
#undef SOFT_I2C // enable to test software i2c
#include "utils.h"
#ifdef FY90Q
// FY90Q
// FY90Q
#include "drv_adc.h"
#include "drv_i2c.h"
#include "drv_pwm.h"
@ -253,7 +258,7 @@ typedef struct baro_t {
#include "drv_softserial.h"
#else
// AfroFlight32
// AfroFlight32
#include "drv_adc.h"
#include "drv_adxl345.h"
#include "drv_bma280.h"

View File

@ -1,498 +1,498 @@
#include "board.h"
#include "mw.h"
static uint8_t numberMotor = 0;
int16_t motor[MAX_MOTORS];
int16_t motor_disarmed[MAX_MOTORS];
int16_t servo[MAX_SERVOS] = { 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500 };
static motorMixer_t currentMixer[MAX_MOTORS];
static const motorMixer_t mixerTri[] = {
{ 1.0f, 0.0f, 1.333333f, 0.0f }, // REAR
{ 1.0f, -1.0f, -0.666667f, 0.0f }, // RIGHT
{ 1.0f, 1.0f, -0.666667f, 0.0f }, // LEFT
};
static const motorMixer_t mixerQuadP[] = {
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
{ 1.0f, -1.0f, 0.0f, 1.0f }, // RIGHT
{ 1.0f, 1.0f, 0.0f, 1.0f }, // LEFT
{ 1.0f, 0.0f, -1.0f, -1.0f }, // FRONT
};
static const motorMixer_t mixerQuadX[] = {
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
};
static const motorMixer_t mixerBi[] = {
{ 1.0f, 1.0f, 0.0f, 0.0f }, // LEFT
{ 1.0f, -1.0f, 0.0f, 0.0f }, // RIGHT
};
static const motorMixer_t mixerY6[] = {
{ 1.0f, 0.0f, 1.333333f, 1.0f }, // REAR
{ 1.0f, -1.0f, -0.666667f, -1.0f }, // RIGHT
{ 1.0f, 1.0f, -0.666667f, -1.0f }, // LEFT
{ 1.0f, 0.0f, 1.333333f, -1.0f }, // UNDER_REAR
{ 1.0f, -1.0f, -0.666667f, 1.0f }, // UNDER_RIGHT
{ 1.0f, 1.0f, -0.666667f, 1.0f }, // UNDER_LEFT
};
static const motorMixer_t mixerHex6P[] = {
{ 1.0f, -0.866025f, 0.5f, 1.0f }, // REAR_R
{ 1.0f, -0.866025f, -0.5f, -1.0f }, // FRONT_R
{ 1.0f, 0.866025f, 0.5f, 1.0f }, // REAR_L
{ 1.0f, 0.866025f, -0.5f, -1.0f }, // FRONT_L
{ 1.0f, 0.0f, -1.0f, 1.0f }, // FRONT
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
};
static const motorMixer_t mixerY4[] = {
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR_TOP CW
{ 1.0f, -1.0f, -1.0f, 0.0f }, // FRONT_R CCW
{ 1.0f, 0.0f, 1.0f, 1.0f }, // REAR_BOTTOM CCW
{ 1.0f, 1.0f, -1.0f, 0.0f }, // FRONT_L CW
};
static const motorMixer_t mixerHex6X[] = {
{ 1.0f, -0.5f, 0.866025f, 1.0f }, // REAR_R
{ 1.0f, -0.5f, -0.866025f, 1.0f }, // FRONT_R
{ 1.0f, 0.5f, 0.866025f, -1.0f }, // REAR_L
{ 1.0f, 0.5f, -0.866025f, -1.0f }, // FRONT_L
{ 1.0f, -1.0f, 0.0f, -1.0f }, // RIGHT
{ 1.0f, 1.0f, 0.0f, 1.0f }, // LEFT
};
static const motorMixer_t mixerOctoX8[] = {
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
{ 1.0f, -1.0f, 1.0f, 1.0f }, // UNDER_REAR_R
{ 1.0f, -1.0f, -1.0f, -1.0f }, // UNDER_FRONT_R
{ 1.0f, 1.0f, 1.0f, -1.0f }, // UNDER_REAR_L
{ 1.0f, 1.0f, -1.0f, 1.0f }, // UNDER_FRONT_L
};
static const motorMixer_t mixerOctoFlatP[] = {
{ 1.0f, 0.707107f, -0.707107f, 1.0f }, // FRONT_L
{ 1.0f, -0.707107f, -0.707107f, 1.0f }, // FRONT_R
{ 1.0f, -0.707107f, 0.707107f, 1.0f }, // REAR_R
{ 1.0f, 0.707107f, 0.707107f, 1.0f }, // REAR_L
{ 1.0f, 0.0f, -1.0f, -1.0f }, // FRONT
{ 1.0f, -1.0f, 0.0f, -1.0f }, // RIGHT
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
{ 1.0f, 1.0f, 0.0f, -1.0f }, // LEFT
};
static const motorMixer_t mixerOctoFlatX[] = {
{ 1.0f, 1.0f, -0.5f, 1.0f }, // MIDFRONT_L
{ 1.0f, -0.5f, -1.0f, 1.0f }, // FRONT_R
{ 1.0f, -1.0f, 0.5f, 1.0f }, // MIDREAR_R
{ 1.0f, 0.5f, 1.0f, 1.0f }, // REAR_L
{ 1.0f, 0.5f, -1.0f, -1.0f }, // FRONT_L
{ 1.0f, -1.0f, -0.5f, -1.0f }, // MIDFRONT_R
{ 1.0f, -0.5f, 1.0f, -1.0f }, // REAR_R
{ 1.0f, 1.0f, 0.5f, -1.0f }, // MIDREAR_L
};
static const motorMixer_t mixerVtail4[] = {
{ 1.0f, 0.0f, 1.0f, 1.0f }, // REAR_R
{ 1.0f, -1.0f, -1.0f, 0.0f }, // FRONT_R
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR_L
{ 1.0f, 1.0f, -1.0f, -0.0f }, // FRONT_L
};
static const motorMixer_t mixerHex6H[] = {
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
{ 1.0f, 0.0f, 0.0f, 0.0f }, // RIGHT
{ 1.0f, 0.0f, 0.0f, 0.0f }, // LEFT
};
static const motorMixer_t mixerDualcopter[] = {
{ 1.0f, 0.0f, 0.0f, -1.0f }, // LEFT
{ 1.0f, 0.0f, 0.0f, 1.0f }, // RIGHT
};
// Keep this synced with MultiType struct in mw.h!
const mixer_t mixers[] = {
// Mo Se Mixtable
{ 0, 0, NULL }, // entry 0
{ 3, 1, mixerTri }, // MULTITYPE_TRI
{ 4, 0, mixerQuadP }, // MULTITYPE_QUADP
{ 4, 0, mixerQuadX }, // MULTITYPE_QUADX
{ 2, 1, mixerBi }, // MULTITYPE_BI
{ 0, 1, NULL }, // * MULTITYPE_GIMBAL
{ 6, 0, mixerY6 }, // MULTITYPE_Y6
{ 6, 0, mixerHex6P }, // MULTITYPE_HEX6
{ 1, 1, NULL }, // * MULTITYPE_FLYING_WING
{ 4, 0, mixerY4 }, // MULTITYPE_Y4
{ 6, 0, mixerHex6X }, // MULTITYPE_HEX6X
{ 8, 0, mixerOctoX8 }, // MULTITYPE_OCTOX8
{ 8, 0, mixerOctoFlatP }, // MULTITYPE_OCTOFLATP
{ 8, 0, mixerOctoFlatX }, // MULTITYPE_OCTOFLATX
{ 1, 1, NULL }, // * MULTITYPE_AIRPLANE
{ 0, 1, NULL }, // * MULTITYPE_HELI_120_CCPM
{ 0, 1, NULL }, // * MULTITYPE_HELI_90_DEG
{ 4, 0, mixerVtail4 }, // MULTITYPE_VTAIL4
{ 6, 0, mixerHex6H }, // MULTITYPE_HEX6H
{ 0, 1, NULL }, // * MULTITYPE_PPM_TO_SERVO
{ 2, 1, mixerDualcopter }, // MULTITYPE_DUALCOPTER
{ 1, 1, NULL }, // MULTITYPE_SINGLECOPTER
{ 0, 0, NULL }, // MULTITYPE_CUSTOM
};
int16_t servoMiddle(int nr)
{
// Normally, servo.middle is a value between 1000..2000, but for the purposes of stupid, if it's less than
// the number of RC channels, it means the center value is taken FROM that RC channel (by its index)
if (cfg.servoConf[nr].middle < RC_CHANS && nr < MAX_SERVOS)
return rcData[cfg.servoConf[nr].middle];
else
return cfg.servoConf[nr].middle;
}
int servoDirection(int nr, int lr)
{
// servo.rate is overloaded for servos that don't have a rate, but only need direction
// bit set = negative, clear = positive
// rate[2] = ???_direction
// rate[1] = roll_direction
// rate[0] = pitch_direction
// servo.rate is also used as gimbal gain multiplier (yeah)
if (cfg.servoConf[nr].rate & lr)
return -1;
else
return 1;
}
void mixerInit(void)
{
int i;
// enable servos for mixes that require them. note, this shifts motor counts.
core.useServo = mixers[mcfg.mixerConfiguration].useServo;
// if we want camstab/trig, that also enables servos, even if mixer doesn't
if (feature(FEATURE_SERVO_TILT))
core.useServo = 1;
if (mcfg.mixerConfiguration == MULTITYPE_CUSTOM) {
// load custom mixer into currentMixer
for (i = 0; i < MAX_MOTORS; i++) {
// check if done
if (mcfg.customMixer[i].throttle == 0.0f)
break;
currentMixer[i] = mcfg.customMixer[i];
numberMotor++;
}
} else {
numberMotor = mixers[mcfg.mixerConfiguration].numberMotor;
// copy motor-based mixers
if (mixers[mcfg.mixerConfiguration].motor) {
for (i = 0; i < numberMotor; i++)
currentMixer[i] = mixers[mcfg.mixerConfiguration].motor[i];
}
}
// in 3D mode, mixer gain has to be halved
if (feature(FEATURE_3D)) {
if (numberMotor > 1) {
for (i = 0; i < numberMotor; i++) {
currentMixer[i].pitch *= 0.5f;
currentMixer[i].roll *= 0.5f;
currentMixer[i].yaw *= 0.5f;
}
}
}
mixerResetMotors();
}
void mixerResetMotors(void)
{
int i;
// set disarmed motor values
for (i = 0; i < MAX_MOTORS; i++)
motor_disarmed[i] = feature(FEATURE_3D) ? mcfg.neutral3d : mcfg.mincommand;
}
void mixerLoadMix(int index)
{
int i;
// we're 1-based
index++;
// clear existing
for (i = 0; i < MAX_MOTORS; i++)
mcfg.customMixer[i].throttle = 0.0f;
// do we have anything here to begin with?
if (mixers[index].motor != NULL) {
for (i = 0; i < mixers[index].numberMotor; i++)
mcfg.customMixer[i] = mixers[index].motor[i];
}
}
void writeServos(void)
{
if (!core.useServo)
return;
switch (mcfg.mixerConfiguration) {
case MULTITYPE_BI:
pwmWriteServo(0, servo[4]);
pwmWriteServo(1, servo[5]);
break;
case MULTITYPE_TRI:
if (cfg.tri_unarmed_servo) {
// if unarmed flag set, we always move servo
pwmWriteServo(0, servo[5]);
} else {
// otherwise, only move servo when copter is armed
if (f.ARMED)
pwmWriteServo(0, servo[5]);
else
pwmWriteServo(0, 0); // kill servo signal completely.
}
break;
case MULTITYPE_FLYING_WING:
pwmWriteServo(0, servo[3]);
pwmWriteServo(1, servo[4]);
break;
case MULTITYPE_GIMBAL:
pwmWriteServo(0, servo[0]);
pwmWriteServo(1, servo[1]);
break;
case MULTITYPE_DUALCOPTER:
pwmWriteServo(0, servo[4]);
pwmWriteServo(1, servo[5]);
break;
case MULTITYPE_AIRPLANE:
case MULTITYPE_SINGLECOPTER:
pwmWriteServo(0, servo[3]);
pwmWriteServo(1, servo[4]);
pwmWriteServo(2, servo[5]);
pwmWriteServo(3, servo[6]);
break;
default:
// Two servos for SERVO_TILT, if enabled
if (feature(FEATURE_SERVO_TILT)) {
pwmWriteServo(0, servo[0]);
pwmWriteServo(1, servo[1]);
}
break;
}
}
extern uint8_t cliMode;
void writeMotors(void)
{
uint8_t i;
for (i = 0; i < numberMotor; i++)
pwmWriteMotor(i, motor[i]);
}
void writeAllMotors(int16_t mc)
{
uint8_t i;
// Sends commands to all motors
for (i = 0; i < numberMotor; i++)
motor[i] = mc;
writeMotors();
}
static void airplaneMixer(void)
{
int16_t flapperons[2] = { 0, 0 };
int i;
if (!f.ARMED)
servo[7] = mcfg.mincommand; // Kill throttle when disarmed
else
servo[7] = constrain(rcCommand[THROTTLE], mcfg.minthrottle, mcfg.maxthrottle);
motor[0] = servo[7];
#if 0
if (cfg.flaperons) {
}
#endif
if (mcfg.flaps_speed) {
// configure SERVO3 middle point in GUI to using an AUX channel for FLAPS control
// use servo min, servo max and servo rate for proper endpoints adjust
static int16_t slow_LFlaps;
int16_t lFlap = servoMiddle(2);
lFlap = constrain(lFlap, cfg.servoConf[2].min, cfg.servoConf[2].max);
lFlap = mcfg.midrc - lFlap; // shouldn't this be servoConf[2].middle?
if (slow_LFlaps < lFlap)
slow_LFlaps += mcfg.flaps_speed;
else if (slow_LFlaps > lFlap)
slow_LFlaps -= mcfg.flaps_speed;
servo[2] = ((int32_t)cfg.servoConf[2].rate * slow_LFlaps) / 100L;
servo[2] += mcfg.midrc;
}
if (f.PASSTHRU_MODE) { // Direct passthru from RX
servo[3] = rcCommand[ROLL] + flapperons[0]; // Wing 1
servo[4] = rcCommand[ROLL] + flapperons[1]; // Wing 2
servo[5] = rcCommand[YAW]; // Rudder
servo[6] = rcCommand[PITCH]; // Elevator
} else {
// Assisted modes (gyro only or gyro+acc according to AUX configuration in Gui
servo[3] = axisPID[ROLL] + flapperons[0]; // Wing 1
servo[4] = axisPID[ROLL] + flapperons[1]; // Wing 2
servo[5] = axisPID[YAW]; // Rudder
servo[6] = axisPID[PITCH]; // Elevator
}
for (i = 3; i < 7; i++) {
servo[i] = ((int32_t)cfg.servoConf[i].rate * servo[i]) / 100L; // servo rates
servo[i] += servoMiddle(i);
}
}
void mixTable(void)
{
int16_t maxMotor;
uint32_t i;
if (numberMotor > 3) {
// prevent "yaw jump" during yaw correction
axisPID[YAW] = constrain(axisPID[YAW], -100 - abs(rcCommand[YAW]), +100 + abs(rcCommand[YAW]));
}
// motors for non-servo mixes
if (numberMotor > 1)
for (i = 0; i < numberMotor; i++)
motor[i] = rcCommand[THROTTLE] * currentMixer[i].throttle + axisPID[PITCH] * currentMixer[i].pitch + axisPID[ROLL] * currentMixer[i].roll + -cfg.yaw_direction * axisPID[YAW] * currentMixer[i].yaw;
// airplane / servo mixes
switch (mcfg.mixerConfiguration) {
case MULTITYPE_BI:
servo[4] = (servoDirection(4, 2) * axisPID[YAW]) + (servoDirection(4, 1) * axisPID[PITCH]) + servoMiddle(4); // LEFT
servo[5] = (servoDirection(5, 2) * axisPID[YAW]) + (servoDirection(5, 1) * axisPID[PITCH]) + servoMiddle(5); // RIGHT
break;
case MULTITYPE_TRI:
servo[5] = (servoDirection(5, 1) * axisPID[YAW]) + servoMiddle(5); // REAR
break;
case MULTITYPE_GIMBAL:
servo[0] = (((int32_t)cfg.servoConf[0].rate * angle[PITCH]) / 50) + servoMiddle(0);
servo[1] = (((int32_t)cfg.servoConf[1].rate * angle[ROLL]) / 50) + servoMiddle(1);
break;
case MULTITYPE_AIRPLANE:
airplaneMixer();
break;
case MULTITYPE_FLYING_WING:
if (!f.ARMED)
servo[7] = mcfg.mincommand;
else
servo[7] = constrain(rcCommand[THROTTLE], mcfg.minthrottle, mcfg.maxthrottle);
motor[0] = servo[7];
if (f.PASSTHRU_MODE) {
// do not use sensors for correction, simple 2 channel mixing
servo[3] = (servoDirection(3, 1) * rcCommand[PITCH]) + (servoDirection(3, 2) * rcCommand[ROLL]);
servo[4] = (servoDirection(4, 1) * rcCommand[PITCH]) + (servoDirection(4, 2) * rcCommand[ROLL]);
} else {
// use sensors to correct (gyro only or gyro + acc)
servo[3] = (servoDirection(3, 1) * axisPID[PITCH]) + (servoDirection(3, 2) * axisPID[ROLL]);
servo[4] = (servoDirection(4, 1) * axisPID[PITCH]) + (servoDirection(4, 2) * axisPID[ROLL]);
}
servo[3] += servoMiddle(3);
servo[4] += servoMiddle(4);
break;
case MULTITYPE_DUALCOPTER:
for (i = 4; i < 6; i++ ) {
servo[i] = axisPID[5 - i] * servoDirection(i, 1); // mix and setup direction
servo[i] += servoMiddle(i);
}
break;
case MULTITYPE_SINGLECOPTER:
for (i = 3; i < 7; i++) {
servo[i] = (axisPID[YAW] * servoDirection(i, 2)) + (axisPID[(6 - i) >> 1] * servoDirection(i, 1)); // mix and setup direction
servo[i] += servoMiddle(i);
}
motor[0] = rcCommand[THROTTLE];
break;
}
// do camstab
if (feature(FEATURE_SERVO_TILT)) {
// center at fixed position, or vary either pitch or roll by RC channel
servo[0] = servoMiddle(0);
servo[1] = servoMiddle(1);
if (rcOptions[BOXCAMSTAB]) {
if (cfg.gimbal_flags & GIMBAL_MIXTILT) {
servo[0] -= (-(int32_t)cfg.servoConf[0].rate) * angle[PITCH] / 50 - (int32_t)cfg.servoConf[1].rate * angle[ROLL] / 50;
servo[1] += (-(int32_t)cfg.servoConf[0].rate) * angle[PITCH] / 50 + (int32_t)cfg.servoConf[1].rate * angle[ROLL] / 50;
} else {
servo[0] += (int32_t)cfg.servoConf[0].rate * angle[PITCH] / 50;
servo[1] += (int32_t)cfg.servoConf[0].rate * angle[ROLL] / 50;
}
}
}
// constrain servos
for (i = 0; i < MAX_SERVOS; i++)
servo[i] = constrain(servo[i], cfg.servoConf[i].min, cfg.servoConf[i].max); // limit the values
// forward AUX1-4 to servo outputs (not constrained)
if (cfg.gimbal_flags & GIMBAL_FORWARDAUX) {
int offset = 0;
if (feature(FEATURE_SERVO_TILT))
offset = 2;
for (i = 0; i < 4; i++)
pwmWriteServo(i + offset, rcData[AUX1 + i]);
}
maxMotor = motor[0];
for (i = 1; i < numberMotor; i++)
if (motor[i] > maxMotor)
maxMotor = motor[i];
for (i = 0; i < numberMotor; i++) {
if (maxMotor > mcfg.maxthrottle) // this is a way to still have good gyro corrections if at least one motor reaches its max.
motor[i] -= maxMotor - mcfg.maxthrottle;
if (feature(FEATURE_3D)) {
if ((rcData[THROTTLE]) > 1500) {
motor[i] = constrain(motor[i], mcfg.deadband3d_high, mcfg.maxthrottle);
} else {
motor[i] = constrain(motor[i], mcfg.mincommand, mcfg.deadband3d_low);
}
} else {
motor[i] = constrain(motor[i], mcfg.minthrottle, mcfg.maxthrottle);
if ((rcData[THROTTLE]) < mcfg.mincheck) {
if (!feature(FEATURE_MOTOR_STOP))
motor[i] = mcfg.minthrottle;
else
motor[i] = mcfg.mincommand;
}
}
if (!f.ARMED) {
motor[i] = motor_disarmed[i];
}
}
}
#include "board.h"
#include "mw.h"
static uint8_t numberMotor = 0;
int16_t motor[MAX_MOTORS];
int16_t motor_disarmed[MAX_MOTORS];
int16_t servo[MAX_SERVOS] = { 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500 };
static motorMixer_t currentMixer[MAX_MOTORS];
static const motorMixer_t mixerTri[] = {
{ 1.0f, 0.0f, 1.333333f, 0.0f }, // REAR
{ 1.0f, -1.0f, -0.666667f, 0.0f }, // RIGHT
{ 1.0f, 1.0f, -0.666667f, 0.0f }, // LEFT
};
static const motorMixer_t mixerQuadP[] = {
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
{ 1.0f, -1.0f, 0.0f, 1.0f }, // RIGHT
{ 1.0f, 1.0f, 0.0f, 1.0f }, // LEFT
{ 1.0f, 0.0f, -1.0f, -1.0f }, // FRONT
};
static const motorMixer_t mixerQuadX[] = {
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
};
static const motorMixer_t mixerBi[] = {
{ 1.0f, 1.0f, 0.0f, 0.0f }, // LEFT
{ 1.0f, -1.0f, 0.0f, 0.0f }, // RIGHT
};
static const motorMixer_t mixerY6[] = {
{ 1.0f, 0.0f, 1.333333f, 1.0f }, // REAR
{ 1.0f, -1.0f, -0.666667f, -1.0f }, // RIGHT
{ 1.0f, 1.0f, -0.666667f, -1.0f }, // LEFT
{ 1.0f, 0.0f, 1.333333f, -1.0f }, // UNDER_REAR
{ 1.0f, -1.0f, -0.666667f, 1.0f }, // UNDER_RIGHT
{ 1.0f, 1.0f, -0.666667f, 1.0f }, // UNDER_LEFT
};
static const motorMixer_t mixerHex6P[] = {
{ 1.0f, -1.0f, 0.866025f, 1.0f }, // REAR_R
{ 1.0f, -1.0f, -0.866025f, -1.0f }, // FRONT_R
{ 1.0f, 1.0f, 0.866025f, 1.0f }, // REAR_L
{ 1.0f, 1.0f, -0.866025f, -1.0f }, // FRONT_L
{ 1.0f, 0.0f, -0.866025f, 1.0f }, // FRONT
{ 1.0f, 0.0f, 0.866025f, -1.0f }, // REAR
};
static const motorMixer_t mixerY4[] = {
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR_TOP CW
{ 1.0f, -1.0f, -1.0f, 0.0f }, // FRONT_R CCW
{ 1.0f, 0.0f, 1.0f, 1.0f }, // REAR_BOTTOM CCW
{ 1.0f, 1.0f, -1.0f, 0.0f }, // FRONT_L CW
};
static const motorMixer_t mixerHex6X[] = {
{ 1.0f, -0.866025f, 1.0f, 1.0f }, // REAR_R
{ 1.0f, -0.866025f, -1.0f, 1.0f }, // FRONT_R
{ 1.0f, 0.866025f, 1.0f, -1.0f }, // REAR_L
{ 1.0f, 0.866025f, -1.0f, -1.0f }, // FRONT_L
{ 1.0f, -0.866025f, 0.0f, -1.0f }, // RIGHT
{ 1.0f, 0.866025f, 0.0f, 1.0f }, // LEFT
};
static const motorMixer_t mixerOctoX8[] = {
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
{ 1.0f, -1.0f, 1.0f, 1.0f }, // UNDER_REAR_R
{ 1.0f, -1.0f, -1.0f, -1.0f }, // UNDER_FRONT_R
{ 1.0f, 1.0f, 1.0f, -1.0f }, // UNDER_REAR_L
{ 1.0f, 1.0f, -1.0f, 1.0f }, // UNDER_FRONT_L
};
static const motorMixer_t mixerOctoFlatP[] = {
{ 1.0f, 0.707107f, -0.707107f, 1.0f }, // FRONT_L
{ 1.0f, -0.707107f, -0.707107f, 1.0f }, // FRONT_R
{ 1.0f, -0.707107f, 0.707107f, 1.0f }, // REAR_R
{ 1.0f, 0.707107f, 0.707107f, 1.0f }, // REAR_L
{ 1.0f, 0.0f, -1.0f, -1.0f }, // FRONT
{ 1.0f, -1.0f, 0.0f, -1.0f }, // RIGHT
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
{ 1.0f, 1.0f, 0.0f, -1.0f }, // LEFT
};
static const motorMixer_t mixerOctoFlatX[] = {
{ 1.0f, 1.0f, -0.5f, 1.0f }, // MIDFRONT_L
{ 1.0f, -0.5f, -1.0f, 1.0f }, // FRONT_R
{ 1.0f, -1.0f, 0.5f, 1.0f }, // MIDREAR_R
{ 1.0f, 0.5f, 1.0f, 1.0f }, // REAR_L
{ 1.0f, 0.5f, -1.0f, -1.0f }, // FRONT_L
{ 1.0f, -1.0f, -0.5f, -1.0f }, // MIDFRONT_R
{ 1.0f, -0.5f, 1.0f, -1.0f }, // REAR_R
{ 1.0f, 1.0f, 0.5f, -1.0f }, // MIDREAR_L
};
static const motorMixer_t mixerVtail4[] = {
{ 1.0f, 0.0f, 1.0f, 1.0f }, // REAR_R
{ 1.0f, -1.0f, -1.0f, 0.0f }, // FRONT_R
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR_L
{ 1.0f, 1.0f, -1.0f, -0.0f }, // FRONT_L
};
static const motorMixer_t mixerHex6H[] = {
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
{ 1.0f, 0.0f, 0.0f, 0.0f }, // RIGHT
{ 1.0f, 0.0f, 0.0f, 0.0f }, // LEFT
};
static const motorMixer_t mixerDualcopter[] = {
{ 1.0f, 0.0f, 0.0f, -1.0f }, // LEFT
{ 1.0f, 0.0f, 0.0f, 1.0f }, // RIGHT
};
// Keep this synced with MultiType struct in mw.h!
const mixer_t mixers[] = {
// Mo Se Mixtable
{ 0, 0, NULL }, // entry 0
{ 3, 1, mixerTri }, // MULTITYPE_TRI
{ 4, 0, mixerQuadP }, // MULTITYPE_QUADP
{ 4, 0, mixerQuadX }, // MULTITYPE_QUADX
{ 2, 1, mixerBi }, // MULTITYPE_BI
{ 0, 1, NULL }, // * MULTITYPE_GIMBAL
{ 6, 0, mixerY6 }, // MULTITYPE_Y6
{ 6, 0, mixerHex6P }, // MULTITYPE_HEX6
{ 1, 1, NULL }, // * MULTITYPE_FLYING_WING
{ 4, 0, mixerY4 }, // MULTITYPE_Y4
{ 6, 0, mixerHex6X }, // MULTITYPE_HEX6X
{ 8, 0, mixerOctoX8 }, // MULTITYPE_OCTOX8
{ 8, 0, mixerOctoFlatP }, // MULTITYPE_OCTOFLATP
{ 8, 0, mixerOctoFlatX }, // MULTITYPE_OCTOFLATX
{ 1, 1, NULL }, // * MULTITYPE_AIRPLANE
{ 0, 1, NULL }, // * MULTITYPE_HELI_120_CCPM
{ 0, 1, NULL }, // * MULTITYPE_HELI_90_DEG
{ 4, 0, mixerVtail4 }, // MULTITYPE_VTAIL4
{ 6, 0, mixerHex6H }, // MULTITYPE_HEX6H
{ 0, 1, NULL }, // * MULTITYPE_PPM_TO_SERVO
{ 2, 1, mixerDualcopter }, // MULTITYPE_DUALCOPTER
{ 1, 1, NULL }, // MULTITYPE_SINGLECOPTER
{ 0, 0, NULL }, // MULTITYPE_CUSTOM
};
int16_t servoMiddle(int nr)
{
// Normally, servo.middle is a value between 1000..2000, but for the purposes of stupid, if it's less than
// the number of RC channels, it means the center value is taken FROM that RC channel (by its index)
if (cfg.servoConf[nr].middle < RC_CHANS && nr < MAX_SERVOS)
return rcData[cfg.servoConf[nr].middle];
else
return cfg.servoConf[nr].middle;
}
int servoDirection(int nr, int lr)
{
// servo.rate is overloaded for servos that don't have a rate, but only need direction
// bit set = negative, clear = positive
// rate[2] = ???_direction
// rate[1] = roll_direction
// rate[0] = pitch_direction
// servo.rate is also used as gimbal gain multiplier (yeah)
if (cfg.servoConf[nr].rate & lr)
return -1;
else
return 1;
}
void mixerInit(void)
{
int i;
// enable servos for mixes that require them. note, this shifts motor counts.
core.useServo = mixers[mcfg.mixerConfiguration].useServo;
// if we want camstab/trig, that also enables servos, even if mixer doesn't
if (feature(FEATURE_SERVO_TILT))
core.useServo = 1;
if (mcfg.mixerConfiguration == MULTITYPE_CUSTOM) {
// load custom mixer into currentMixer
for (i = 0; i < MAX_MOTORS; i++) {
// check if done
if (mcfg.customMixer[i].throttle == 0.0f)
break;
currentMixer[i] = mcfg.customMixer[i];
numberMotor++;
}
} else {
numberMotor = mixers[mcfg.mixerConfiguration].numberMotor;
// copy motor-based mixers
if (mixers[mcfg.mixerConfiguration].motor) {
for (i = 0; i < numberMotor; i++)
currentMixer[i] = mixers[mcfg.mixerConfiguration].motor[i];
}
}
// in 3D mode, mixer gain has to be halved
if (feature(FEATURE_3D)) {
if (numberMotor > 1) {
for (i = 0; i < numberMotor; i++) {
currentMixer[i].pitch *= 0.5f;
currentMixer[i].roll *= 0.5f;
currentMixer[i].yaw *= 0.5f;
}
}
}
mixerResetMotors();
}
void mixerResetMotors(void)
{
int i;
// set disarmed motor values
for (i = 0; i < MAX_MOTORS; i++)
motor_disarmed[i] = feature(FEATURE_3D) ? mcfg.neutral3d : mcfg.mincommand;
}
void mixerLoadMix(int index)
{
int i;
// we're 1-based
index++;
// clear existing
for (i = 0; i < MAX_MOTORS; i++)
mcfg.customMixer[i].throttle = 0.0f;
// do we have anything here to begin with?
if (mixers[index].motor != NULL) {
for (i = 0; i < mixers[index].numberMotor; i++)
mcfg.customMixer[i] = mixers[index].motor[i];
}
}
void writeServos(void)
{
if (!core.useServo)
return;
switch (mcfg.mixerConfiguration) {
case MULTITYPE_BI:
pwmWriteServo(0, servo[4]);
pwmWriteServo(1, servo[5]);
break;
case MULTITYPE_TRI:
if (cfg.tri_unarmed_servo) {
// if unarmed flag set, we always move servo
pwmWriteServo(0, servo[5]);
} else {
// otherwise, only move servo when copter is armed
if (f.ARMED)
pwmWriteServo(0, servo[5]);
else
pwmWriteServo(0, 0); // kill servo signal completely.
}
break;
case MULTITYPE_FLYING_WING:
pwmWriteServo(0, servo[3]);
pwmWriteServo(1, servo[4]);
break;
case MULTITYPE_GIMBAL:
pwmWriteServo(0, servo[0]);
pwmWriteServo(1, servo[1]);
break;
case MULTITYPE_DUALCOPTER:
pwmWriteServo(0, servo[4]);
pwmWriteServo(1, servo[5]);
break;
case MULTITYPE_AIRPLANE:
case MULTITYPE_SINGLECOPTER:
pwmWriteServo(0, servo[3]);
pwmWriteServo(1, servo[4]);
pwmWriteServo(2, servo[5]);
pwmWriteServo(3, servo[6]);
break;
default:
// Two servos for SERVO_TILT, if enabled
if (feature(FEATURE_SERVO_TILT)) {
pwmWriteServo(0, servo[0]);
pwmWriteServo(1, servo[1]);
}
break;
}
}
extern uint8_t cliMode;
void writeMotors(void)
{
uint8_t i;
for (i = 0; i < numberMotor; i++)
pwmWriteMotor(i, motor[i]);
}
void writeAllMotors(int16_t mc)
{
uint8_t i;
// Sends commands to all motors
for (i = 0; i < numberMotor; i++)
motor[i] = mc;
writeMotors();
}
static void airplaneMixer(void)
{
int16_t flapperons[2] = { 0, 0 };
int i;
if (!f.ARMED)
servo[7] = mcfg.mincommand; // Kill throttle when disarmed
else
servo[7] = constrain(rcCommand[THROTTLE], mcfg.minthrottle, mcfg.maxthrottle);
motor[0] = servo[7];
#if 0
if (cfg.flaperons) {
}
#endif
if (mcfg.flaps_speed) {
// configure SERVO3 middle point in GUI to using an AUX channel for FLAPS control
// use servo min, servo max and servo rate for proper endpoints adjust
static int16_t slow_LFlaps;
int16_t lFlap = servoMiddle(2);
lFlap = constrain(lFlap, cfg.servoConf[2].min, cfg.servoConf[2].max);
lFlap = mcfg.midrc - lFlap; // shouldn't this be servoConf[2].middle?
if (slow_LFlaps < lFlap)
slow_LFlaps += mcfg.flaps_speed;
else if (slow_LFlaps > lFlap)
slow_LFlaps -= mcfg.flaps_speed;
servo[2] = ((int32_t)cfg.servoConf[2].rate * slow_LFlaps) / 100L;
servo[2] += mcfg.midrc;
}
if (f.PASSTHRU_MODE) { // Direct passthru from RX
servo[3] = rcCommand[ROLL] + flapperons[0]; // Wing 1
servo[4] = rcCommand[ROLL] + flapperons[1]; // Wing 2
servo[5] = rcCommand[YAW]; // Rudder
servo[6] = rcCommand[PITCH]; // Elevator
} else {
// Assisted modes (gyro only or gyro+acc according to AUX configuration in Gui
servo[3] = axisPID[ROLL] + flapperons[0]; // Wing 1
servo[4] = axisPID[ROLL] + flapperons[1]; // Wing 2
servo[5] = axisPID[YAW]; // Rudder
servo[6] = axisPID[PITCH]; // Elevator
}
for (i = 3; i < 7; i++) {
servo[i] = ((int32_t)cfg.servoConf[i].rate * servo[i]) / 100L; // servo rates
servo[i] += servoMiddle(i);
}
}
void mixTable(void)
{
int16_t maxMotor;
uint32_t i;
if (numberMotor > 3) {
// prevent "yaw jump" during yaw correction
axisPID[YAW] = constrain(axisPID[YAW], -100 - abs(rcCommand[YAW]), +100 + abs(rcCommand[YAW]));
}
// motors for non-servo mixes
if (numberMotor > 1)
for (i = 0; i < numberMotor; i++)
motor[i] = rcCommand[THROTTLE] * currentMixer[i].throttle + axisPID[PITCH] * currentMixer[i].pitch + axisPID[ROLL] * currentMixer[i].roll + -cfg.yaw_direction * axisPID[YAW] * currentMixer[i].yaw;
// airplane / servo mixes
switch (mcfg.mixerConfiguration) {
case MULTITYPE_BI:
servo[4] = (servoDirection(4, 2) * axisPID[YAW]) + (servoDirection(4, 1) * axisPID[PITCH]) + servoMiddle(4); // LEFT
servo[5] = (servoDirection(5, 2) * axisPID[YAW]) + (servoDirection(5, 1) * axisPID[PITCH]) + servoMiddle(5); // RIGHT
break;
case MULTITYPE_TRI:
servo[5] = (servoDirection(5, 1) * axisPID[YAW]) + servoMiddle(5); // REAR
break;
case MULTITYPE_GIMBAL:
servo[0] = (((int32_t)cfg.servoConf[0].rate * angle[PITCH]) / 50) + servoMiddle(0);
servo[1] = (((int32_t)cfg.servoConf[1].rate * angle[ROLL]) / 50) + servoMiddle(1);
break;
case MULTITYPE_AIRPLANE:
airplaneMixer();
break;
case MULTITYPE_FLYING_WING:
if (!f.ARMED)
servo[7] = mcfg.mincommand;
else
servo[7] = constrain(rcCommand[THROTTLE], mcfg.minthrottle, mcfg.maxthrottle);
motor[0] = servo[7];
if (f.PASSTHRU_MODE) {
// do not use sensors for correction, simple 2 channel mixing
servo[3] = (servoDirection(3, 1) * rcCommand[PITCH]) + (servoDirection(3, 2) * rcCommand[ROLL]);
servo[4] = (servoDirection(4, 1) * rcCommand[PITCH]) + (servoDirection(4, 2) * rcCommand[ROLL]);
} else {
// use sensors to correct (gyro only or gyro + acc)
servo[3] = (servoDirection(3, 1) * axisPID[PITCH]) + (servoDirection(3, 2) * axisPID[ROLL]);
servo[4] = (servoDirection(4, 1) * axisPID[PITCH]) + (servoDirection(4, 2) * axisPID[ROLL]);
}
servo[3] += servoMiddle(3);
servo[4] += servoMiddle(4);
break;
case MULTITYPE_DUALCOPTER:
for (i = 4; i < 6; i++ ) {
servo[i] = axisPID[5 - i] * servoDirection(i, 1); // mix and setup direction
servo[i] += servoMiddle(i);
}
break;
case MULTITYPE_SINGLECOPTER:
for (i = 3; i < 7; i++) {
servo[i] = (axisPID[YAW] * servoDirection(i, 2)) + (axisPID[(6 - i) >> 1] * servoDirection(i, 1)); // mix and setup direction
servo[i] += servoMiddle(i);
}
motor[0] = rcCommand[THROTTLE];
break;
}
// do camstab
if (feature(FEATURE_SERVO_TILT)) {
// center at fixed position, or vary either pitch or roll by RC channel
servo[0] = servoMiddle(0);
servo[1] = servoMiddle(1);
if (rcOptions[BOXCAMSTAB]) {
if (cfg.gimbal_flags & GIMBAL_MIXTILT) {
servo[0] -= (-(int32_t)cfg.servoConf[0].rate) * angle[PITCH] / 50 - (int32_t)cfg.servoConf[1].rate * angle[ROLL] / 50;
servo[1] += (-(int32_t)cfg.servoConf[0].rate) * angle[PITCH] / 50 + (int32_t)cfg.servoConf[1].rate * angle[ROLL] / 50;
} else {
servo[0] += (int32_t)cfg.servoConf[0].rate * angle[PITCH] / 50;
servo[1] += (int32_t)cfg.servoConf[0].rate * angle[ROLL] / 50;
}
}
}
// constrain servos
for (i = 0; i < MAX_SERVOS; i++)
servo[i] = constrain(servo[i], cfg.servoConf[i].min, cfg.servoConf[i].max); // limit the values
// forward AUX1-4 to servo outputs (not constrained)
if (cfg.gimbal_flags & GIMBAL_FORWARDAUX) {
int offset = 0;
if (feature(FEATURE_SERVO_TILT))
offset = 2;
for (i = 0; i < 4; i++)
pwmWriteServo(i + offset, rcData[AUX1 + i]);
}
maxMotor = motor[0];
for (i = 1; i < numberMotor; i++)
if (motor[i] > maxMotor)
maxMotor = motor[i];
for (i = 0; i < numberMotor; i++) {
if (maxMotor > mcfg.maxthrottle) // this is a way to still have good gyro corrections if at least one motor reaches its max.
motor[i] -= maxMotor - mcfg.maxthrottle;
if (feature(FEATURE_3D)) {
if ((rcData[THROTTLE]) > 1500) {
motor[i] = constrain(motor[i], mcfg.deadband3d_high, mcfg.maxthrottle);
} else {
motor[i] = constrain(motor[i], mcfg.mincommand, mcfg.deadband3d_low);
}
} else {
motor[i] = constrain(motor[i], mcfg.minthrottle, mcfg.maxthrottle);
if ((rcData[THROTTLE]) < mcfg.mincheck) {
if (!feature(FEATURE_MOTOR_STOP))
motor[i] = mcfg.minthrottle;
else
motor[i] = mcfg.mincommand;
}
}
if (!f.ARMED) {
motor[i] = motor_disarmed[i];
}
}
}