This commit is contained in:
parent
239120ba4e
commit
01f079c254
147
src/board.h
147
src/board.h
|
@ -40,42 +40,42 @@
|
|||
#define U_ID_2 (*(uint32_t*)0x1FFFF7F0)
|
||||
|
||||
typedef enum {
|
||||
SENSOR_GYRO = 1 << 0, // always present
|
||||
SENSOR_ACC = 1 << 1,
|
||||
SENSOR_BARO = 1 << 2,
|
||||
SENSOR_MAG = 1 << 3,
|
||||
SENSOR_SONAR = 1 << 4,
|
||||
SENSOR_GPS = 1 << 5,
|
||||
SENSOR_GPSMAG = 1 << 6,
|
||||
SENSOR_GYRO = 1 << 0, // always present
|
||||
SENSOR_ACC = 1 << 1,
|
||||
SENSOR_BARO = 1 << 2,
|
||||
SENSOR_MAG = 1 << 3,
|
||||
SENSOR_SONAR = 1 << 4,
|
||||
SENSOR_GPS = 1 << 5,
|
||||
SENSOR_GPSMAG = 1 << 6,
|
||||
} AvailableSensors;
|
||||
|
||||
// Type of accelerometer used/detected
|
||||
typedef enum AccelSensors {
|
||||
ACC_DEFAULT = 0,
|
||||
ACC_ADXL345 = 1,
|
||||
ACC_MPU6050 = 2,
|
||||
ACC_MMA8452 = 3,
|
||||
ACC_BMA280 = 4,
|
||||
ACC_NONE = 5
|
||||
ACC_DEFAULT = 0,
|
||||
ACC_ADXL345 = 1,
|
||||
ACC_MPU6050 = 2,
|
||||
ACC_MMA8452 = 3,
|
||||
ACC_BMA280 = 4,
|
||||
ACC_NONE = 5
|
||||
} AccelSensors;
|
||||
|
||||
typedef enum {
|
||||
FEATURE_PPM = 1 << 0,
|
||||
FEATURE_VBAT = 1 << 1,
|
||||
FEATURE_INFLIGHT_ACC_CAL = 1 << 2,
|
||||
FEATURE_SERIALRX = 1 << 3,
|
||||
FEATURE_MOTOR_STOP = 1 << 4,
|
||||
FEATURE_SERVO_TILT = 1 << 5,
|
||||
FEATURE_GYRO_SMOOTHING = 1 << 6,
|
||||
FEATURE_LED_RING = 1 << 7,
|
||||
FEATURE_GPS = 1 << 8,
|
||||
FEATURE_FAILSAFE = 1 << 9,
|
||||
FEATURE_SONAR = 1 << 10,
|
||||
FEATURE_TELEMETRY = 1 << 11,
|
||||
FEATURE_POWERMETER = 1 << 12,
|
||||
FEATURE_VARIO = 1 << 13,
|
||||
FEATURE_3D = 1 << 14,
|
||||
FEATURE_SOFTSERIAL = 1 << 15,
|
||||
FEATURE_PPM = 1 << 0,
|
||||
FEATURE_VBAT = 1 << 1,
|
||||
FEATURE_INFLIGHT_ACC_CAL = 1 << 2,
|
||||
FEATURE_SERIALRX = 1 << 3,
|
||||
FEATURE_MOTOR_STOP = 1 << 4,
|
||||
FEATURE_SERVO_TILT = 1 << 5,
|
||||
FEATURE_GYRO_SMOOTHING = 1 << 6,
|
||||
FEATURE_LED_RING = 1 << 7,
|
||||
FEATURE_GPS = 1 << 8,
|
||||
FEATURE_FAILSAFE = 1 << 9,
|
||||
FEATURE_SONAR = 1 << 10,
|
||||
FEATURE_TELEMETRY = 1 << 11,
|
||||
FEATURE_POWERMETER = 1 << 12,
|
||||
FEATURE_VARIO = 1 << 13,
|
||||
FEATURE_3D = 1 << 14,
|
||||
FEATURE_SOFTSERIAL = 1 << 15,
|
||||
} AvailableFeatures;
|
||||
|
||||
typedef enum {
|
||||
|
@ -104,60 +104,63 @@ typedef enum {
|
|||
} sensor_axis_e;
|
||||
|
||||
typedef enum {
|
||||
ALIGN_DEFAULT = 0, // driver-provided alignment
|
||||
CW0_DEG = 1,
|
||||
CW90_DEG = 2,
|
||||
CW180_DEG = 3,
|
||||
CW270_DEG = 4,
|
||||
CW0_DEG_FLIP = 5,
|
||||
CW90_DEG_FLIP = 6,
|
||||
CW180_DEG_FLIP = 7,
|
||||
CW270_DEG_FLIP = 8
|
||||
ALIGN_DEFAULT = 0, // driver-provided alignment
|
||||
CW0_DEG = 1,
|
||||
CW90_DEG = 2,
|
||||
CW180_DEG = 3,
|
||||
CW270_DEG = 4,
|
||||
CW0_DEG_FLIP = 5,
|
||||
CW90_DEG_FLIP = 6,
|
||||
CW180_DEG_FLIP = 7,
|
||||
CW270_DEG_FLIP = 8
|
||||
} sensor_align_e;
|
||||
|
||||
enum {
|
||||
GYRO_UPDATED = 1 << 0,
|
||||
ACC_UPDATED = 1 << 1,
|
||||
MAG_UPDATED = 1 << 2,
|
||||
TEMP_UPDATED = 1 << 3
|
||||
GYRO_UPDATED = 1 << 0,
|
||||
ACC_UPDATED = 1 << 1,
|
||||
MAG_UPDATED = 1 << 2,
|
||||
TEMP_UPDATED = 1 << 3
|
||||
};
|
||||
|
||||
typedef struct sensor_data_t {
|
||||
int16_t gyro[3];
|
||||
int16_t acc[3];
|
||||
int16_t mag[3];
|
||||
float temperature;
|
||||
int updated;
|
||||
typedef struct sensor_data_t
|
||||
{
|
||||
int16_t gyro[3];
|
||||
int16_t acc[3];
|
||||
int16_t mag[3];
|
||||
float temperature;
|
||||
int updated;
|
||||
} sensor_data_t;
|
||||
|
||||
typedef void (*sensorInitFuncPtr)(sensor_align_e align); // sensor init prototype
|
||||
typedef void (*sensorReadFuncPtr)(int16_t *data); // sensor read and align prototype
|
||||
typedef void (*baroOpFuncPtr)(void); // baro start operation
|
||||
typedef void (*baroCalculateFuncPtr)(int32_t *pressure, int32_t *temperature); // baro calculation (filled params are pressure and temperature)
|
||||
typedef void (*serialReceiveCallbackPtr)(uint16_t data); // used by serial drivers to return frames to app
|
||||
typedef uint16_t (*rcReadRawDataPtr)(uint8_t chan); // used by receiver driver to return channel data
|
||||
typedef void (*pidControllerFuncPtr)(void); // pid controller function prototype
|
||||
typedef void (* sensorInitFuncPtr)(sensor_align_e align); // sensor init prototype
|
||||
typedef void (* sensorReadFuncPtr)(int16_t *data); // sensor read and align prototype
|
||||
typedef void (* baroOpFuncPtr)(void); // baro start operation
|
||||
typedef void (* baroCalculateFuncPtr)(int32_t *pressure, int32_t *temperature); // baro calculation (filled params are pressure and temperature)
|
||||
typedef void (* serialReceiveCallbackPtr)(uint16_t data); // used by serial drivers to return frames to app
|
||||
typedef uint16_t (* rcReadRawDataPtr)(uint8_t chan); // used by receiver driver to return channel data
|
||||
typedef void (* pidControllerFuncPtr)(void); // pid controller function prototype
|
||||
|
||||
typedef struct sensor_t {
|
||||
sensorInitFuncPtr init; // initialize function
|
||||
sensorReadFuncPtr read; // read 3 axis data function
|
||||
sensorReadFuncPtr temperature; // read temperature if available
|
||||
float scale; // scalefactor (currently used for gyro only, todo for accel)
|
||||
typedef struct sensor_t
|
||||
{
|
||||
sensorInitFuncPtr init; // initialize function
|
||||
sensorReadFuncPtr read; // read 3 axis data function
|
||||
sensorReadFuncPtr temperature; // read temperature if available
|
||||
float scale; // scalefactor (currently used for gyro only, todo for accel)
|
||||
} sensor_t;
|
||||
|
||||
typedef struct baro_t {
|
||||
uint16_t ut_delay;
|
||||
uint16_t up_delay;
|
||||
baroOpFuncPtr start_ut;
|
||||
baroOpFuncPtr get_ut;
|
||||
baroOpFuncPtr start_up;
|
||||
baroOpFuncPtr get_up;
|
||||
baroCalculateFuncPtr calculate;
|
||||
typedef struct baro_t
|
||||
{
|
||||
uint16_t ut_delay;
|
||||
uint16_t up_delay;
|
||||
baroOpFuncPtr start_ut;
|
||||
baroOpFuncPtr get_ut;
|
||||
baroOpFuncPtr start_up;
|
||||
baroOpFuncPtr get_up;
|
||||
baroCalculateFuncPtr calculate;
|
||||
} baro_t;
|
||||
|
||||
// Hardware definitions and GPIO
|
||||
#ifdef FY90Q
|
||||
// FY90Q
|
||||
// FY90Q
|
||||
#define LED0_GPIO GPIOC
|
||||
#define LED0_PIN Pin_12
|
||||
#define LED1_GPIO GPIOA
|
||||
|
@ -178,6 +181,7 @@ typedef struct baro_t {
|
|||
#define LED0_PIN Pin_1 // D3, PA1/USART2_RTS/ADC1/TIM2_CH3 - "LED2" on silkscreen, Yellow
|
||||
#define LED1_GPIO GPIOA
|
||||
#define LED1_PIN Pin_5 // D13, PA5/SPI1_SCK/ADC5 - "LED1" on silkscreen, Green
|
||||
|
||||
#define GYRO
|
||||
#define ACC
|
||||
|
||||
|
@ -227,10 +231,11 @@ typedef struct baro_t {
|
|||
#endif
|
||||
|
||||
#undef SOFT_I2C // enable to test software i2c
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
#ifdef FY90Q
|
||||
// FY90Q
|
||||
// FY90Q
|
||||
#include "drv_adc.h"
|
||||
#include "drv_i2c.h"
|
||||
#include "drv_pwm.h"
|
||||
|
@ -253,7 +258,7 @@ typedef struct baro_t {
|
|||
#include "drv_softserial.h"
|
||||
#else
|
||||
|
||||
// AfroFlight32
|
||||
// AfroFlight32
|
||||
#include "drv_adc.h"
|
||||
#include "drv_adxl345.h"
|
||||
#include "drv_bma280.h"
|
||||
|
|
996
src/mixer.c
996
src/mixer.c
|
@ -1,498 +1,498 @@
|
|||
#include "board.h"
|
||||
#include "mw.h"
|
||||
|
||||
static uint8_t numberMotor = 0;
|
||||
int16_t motor[MAX_MOTORS];
|
||||
int16_t motor_disarmed[MAX_MOTORS];
|
||||
int16_t servo[MAX_SERVOS] = { 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500 };
|
||||
|
||||
static motorMixer_t currentMixer[MAX_MOTORS];
|
||||
|
||||
static const motorMixer_t mixerTri[] = {
|
||||
{ 1.0f, 0.0f, 1.333333f, 0.0f }, // REAR
|
||||
{ 1.0f, -1.0f, -0.666667f, 0.0f }, // RIGHT
|
||||
{ 1.0f, 1.0f, -0.666667f, 0.0f }, // LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerQuadP[] = {
|
||||
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
|
||||
{ 1.0f, -1.0f, 0.0f, 1.0f }, // RIGHT
|
||||
{ 1.0f, 1.0f, 0.0f, 1.0f }, // LEFT
|
||||
{ 1.0f, 0.0f, -1.0f, -1.0f }, // FRONT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerQuadX[] = {
|
||||
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerBi[] = {
|
||||
{ 1.0f, 1.0f, 0.0f, 0.0f }, // LEFT
|
||||
{ 1.0f, -1.0f, 0.0f, 0.0f }, // RIGHT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerY6[] = {
|
||||
{ 1.0f, 0.0f, 1.333333f, 1.0f }, // REAR
|
||||
{ 1.0f, -1.0f, -0.666667f, -1.0f }, // RIGHT
|
||||
{ 1.0f, 1.0f, -0.666667f, -1.0f }, // LEFT
|
||||
{ 1.0f, 0.0f, 1.333333f, -1.0f }, // UNDER_REAR
|
||||
{ 1.0f, -1.0f, -0.666667f, 1.0f }, // UNDER_RIGHT
|
||||
{ 1.0f, 1.0f, -0.666667f, 1.0f }, // UNDER_LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerHex6P[] = {
|
||||
{ 1.0f, -0.866025f, 0.5f, 1.0f }, // REAR_R
|
||||
{ 1.0f, -0.866025f, -0.5f, -1.0f }, // FRONT_R
|
||||
{ 1.0f, 0.866025f, 0.5f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 0.866025f, -0.5f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, 0.0f, -1.0f, 1.0f }, // FRONT
|
||||
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerY4[] = {
|
||||
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR_TOP CW
|
||||
{ 1.0f, -1.0f, -1.0f, 0.0f }, // FRONT_R CCW
|
||||
{ 1.0f, 0.0f, 1.0f, 1.0f }, // REAR_BOTTOM CCW
|
||||
{ 1.0f, 1.0f, -1.0f, 0.0f }, // FRONT_L CW
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerHex6X[] = {
|
||||
{ 1.0f, -0.5f, 0.866025f, 1.0f }, // REAR_R
|
||||
{ 1.0f, -0.5f, -0.866025f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, 0.5f, 0.866025f, -1.0f }, // REAR_L
|
||||
{ 1.0f, 0.5f, -0.866025f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, -1.0f, 0.0f, -1.0f }, // RIGHT
|
||||
{ 1.0f, 1.0f, 0.0f, 1.0f }, // LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerOctoX8[] = {
|
||||
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, -1.0f, 1.0f, 1.0f }, // UNDER_REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, -1.0f }, // UNDER_FRONT_R
|
||||
{ 1.0f, 1.0f, 1.0f, -1.0f }, // UNDER_REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, 1.0f }, // UNDER_FRONT_L
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerOctoFlatP[] = {
|
||||
{ 1.0f, 0.707107f, -0.707107f, 1.0f }, // FRONT_L
|
||||
{ 1.0f, -0.707107f, -0.707107f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, -0.707107f, 0.707107f, 1.0f }, // REAR_R
|
||||
{ 1.0f, 0.707107f, 0.707107f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 0.0f, -1.0f, -1.0f }, // FRONT
|
||||
{ 1.0f, -1.0f, 0.0f, -1.0f }, // RIGHT
|
||||
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
|
||||
{ 1.0f, 1.0f, 0.0f, -1.0f }, // LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerOctoFlatX[] = {
|
||||
{ 1.0f, 1.0f, -0.5f, 1.0f }, // MIDFRONT_L
|
||||
{ 1.0f, -0.5f, -1.0f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, -1.0f, 0.5f, 1.0f }, // MIDREAR_R
|
||||
{ 1.0f, 0.5f, 1.0f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 0.5f, -1.0f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, -1.0f, -0.5f, -1.0f }, // MIDFRONT_R
|
||||
{ 1.0f, -0.5f, 1.0f, -1.0f }, // REAR_R
|
||||
{ 1.0f, 1.0f, 0.5f, -1.0f }, // MIDREAR_L
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerVtail4[] = {
|
||||
{ 1.0f, 0.0f, 1.0f, 1.0f }, // REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, 0.0f }, // FRONT_R
|
||||
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, -0.0f }, // FRONT_L
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerHex6H[] = {
|
||||
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, 0.0f, 0.0f, 0.0f }, // RIGHT
|
||||
{ 1.0f, 0.0f, 0.0f, 0.0f }, // LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerDualcopter[] = {
|
||||
{ 1.0f, 0.0f, 0.0f, -1.0f }, // LEFT
|
||||
{ 1.0f, 0.0f, 0.0f, 1.0f }, // RIGHT
|
||||
};
|
||||
|
||||
// Keep this synced with MultiType struct in mw.h!
|
||||
const mixer_t mixers[] = {
|
||||
// Mo Se Mixtable
|
||||
{ 0, 0, NULL }, // entry 0
|
||||
{ 3, 1, mixerTri }, // MULTITYPE_TRI
|
||||
{ 4, 0, mixerQuadP }, // MULTITYPE_QUADP
|
||||
{ 4, 0, mixerQuadX }, // MULTITYPE_QUADX
|
||||
{ 2, 1, mixerBi }, // MULTITYPE_BI
|
||||
{ 0, 1, NULL }, // * MULTITYPE_GIMBAL
|
||||
{ 6, 0, mixerY6 }, // MULTITYPE_Y6
|
||||
{ 6, 0, mixerHex6P }, // MULTITYPE_HEX6
|
||||
{ 1, 1, NULL }, // * MULTITYPE_FLYING_WING
|
||||
{ 4, 0, mixerY4 }, // MULTITYPE_Y4
|
||||
{ 6, 0, mixerHex6X }, // MULTITYPE_HEX6X
|
||||
{ 8, 0, mixerOctoX8 }, // MULTITYPE_OCTOX8
|
||||
{ 8, 0, mixerOctoFlatP }, // MULTITYPE_OCTOFLATP
|
||||
{ 8, 0, mixerOctoFlatX }, // MULTITYPE_OCTOFLATX
|
||||
{ 1, 1, NULL }, // * MULTITYPE_AIRPLANE
|
||||
{ 0, 1, NULL }, // * MULTITYPE_HELI_120_CCPM
|
||||
{ 0, 1, NULL }, // * MULTITYPE_HELI_90_DEG
|
||||
{ 4, 0, mixerVtail4 }, // MULTITYPE_VTAIL4
|
||||
{ 6, 0, mixerHex6H }, // MULTITYPE_HEX6H
|
||||
{ 0, 1, NULL }, // * MULTITYPE_PPM_TO_SERVO
|
||||
{ 2, 1, mixerDualcopter }, // MULTITYPE_DUALCOPTER
|
||||
{ 1, 1, NULL }, // MULTITYPE_SINGLECOPTER
|
||||
{ 0, 0, NULL }, // MULTITYPE_CUSTOM
|
||||
};
|
||||
|
||||
int16_t servoMiddle(int nr)
|
||||
{
|
||||
// Normally, servo.middle is a value between 1000..2000, but for the purposes of stupid, if it's less than
|
||||
// the number of RC channels, it means the center value is taken FROM that RC channel (by its index)
|
||||
if (cfg.servoConf[nr].middle < RC_CHANS && nr < MAX_SERVOS)
|
||||
return rcData[cfg.servoConf[nr].middle];
|
||||
else
|
||||
return cfg.servoConf[nr].middle;
|
||||
}
|
||||
|
||||
int servoDirection(int nr, int lr)
|
||||
{
|
||||
// servo.rate is overloaded for servos that don't have a rate, but only need direction
|
||||
// bit set = negative, clear = positive
|
||||
// rate[2] = ???_direction
|
||||
// rate[1] = roll_direction
|
||||
// rate[0] = pitch_direction
|
||||
// servo.rate is also used as gimbal gain multiplier (yeah)
|
||||
if (cfg.servoConf[nr].rate & lr)
|
||||
return -1;
|
||||
else
|
||||
return 1;
|
||||
}
|
||||
|
||||
void mixerInit(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
// enable servos for mixes that require them. note, this shifts motor counts.
|
||||
core.useServo = mixers[mcfg.mixerConfiguration].useServo;
|
||||
// if we want camstab/trig, that also enables servos, even if mixer doesn't
|
||||
if (feature(FEATURE_SERVO_TILT))
|
||||
core.useServo = 1;
|
||||
|
||||
if (mcfg.mixerConfiguration == MULTITYPE_CUSTOM) {
|
||||
// load custom mixer into currentMixer
|
||||
for (i = 0; i < MAX_MOTORS; i++) {
|
||||
// check if done
|
||||
if (mcfg.customMixer[i].throttle == 0.0f)
|
||||
break;
|
||||
currentMixer[i] = mcfg.customMixer[i];
|
||||
numberMotor++;
|
||||
}
|
||||
} else {
|
||||
numberMotor = mixers[mcfg.mixerConfiguration].numberMotor;
|
||||
// copy motor-based mixers
|
||||
if (mixers[mcfg.mixerConfiguration].motor) {
|
||||
for (i = 0; i < numberMotor; i++)
|
||||
currentMixer[i] = mixers[mcfg.mixerConfiguration].motor[i];
|
||||
}
|
||||
}
|
||||
|
||||
// in 3D mode, mixer gain has to be halved
|
||||
if (feature(FEATURE_3D)) {
|
||||
if (numberMotor > 1) {
|
||||
for (i = 0; i < numberMotor; i++) {
|
||||
currentMixer[i].pitch *= 0.5f;
|
||||
currentMixer[i].roll *= 0.5f;
|
||||
currentMixer[i].yaw *= 0.5f;
|
||||
}
|
||||
}
|
||||
}
|
||||
mixerResetMotors();
|
||||
}
|
||||
|
||||
void mixerResetMotors(void)
|
||||
{
|
||||
int i;
|
||||
// set disarmed motor values
|
||||
for (i = 0; i < MAX_MOTORS; i++)
|
||||
motor_disarmed[i] = feature(FEATURE_3D) ? mcfg.neutral3d : mcfg.mincommand;
|
||||
}
|
||||
|
||||
void mixerLoadMix(int index)
|
||||
{
|
||||
int i;
|
||||
|
||||
// we're 1-based
|
||||
index++;
|
||||
// clear existing
|
||||
for (i = 0; i < MAX_MOTORS; i++)
|
||||
mcfg.customMixer[i].throttle = 0.0f;
|
||||
|
||||
// do we have anything here to begin with?
|
||||
if (mixers[index].motor != NULL) {
|
||||
for (i = 0; i < mixers[index].numberMotor; i++)
|
||||
mcfg.customMixer[i] = mixers[index].motor[i];
|
||||
}
|
||||
}
|
||||
|
||||
void writeServos(void)
|
||||
{
|
||||
if (!core.useServo)
|
||||
return;
|
||||
|
||||
switch (mcfg.mixerConfiguration) {
|
||||
case MULTITYPE_BI:
|
||||
pwmWriteServo(0, servo[4]);
|
||||
pwmWriteServo(1, servo[5]);
|
||||
break;
|
||||
|
||||
case MULTITYPE_TRI:
|
||||
if (cfg.tri_unarmed_servo) {
|
||||
// if unarmed flag set, we always move servo
|
||||
pwmWriteServo(0, servo[5]);
|
||||
} else {
|
||||
// otherwise, only move servo when copter is armed
|
||||
if (f.ARMED)
|
||||
pwmWriteServo(0, servo[5]);
|
||||
else
|
||||
pwmWriteServo(0, 0); // kill servo signal completely.
|
||||
}
|
||||
break;
|
||||
|
||||
case MULTITYPE_FLYING_WING:
|
||||
pwmWriteServo(0, servo[3]);
|
||||
pwmWriteServo(1, servo[4]);
|
||||
break;
|
||||
|
||||
case MULTITYPE_GIMBAL:
|
||||
pwmWriteServo(0, servo[0]);
|
||||
pwmWriteServo(1, servo[1]);
|
||||
break;
|
||||
|
||||
case MULTITYPE_DUALCOPTER:
|
||||
pwmWriteServo(0, servo[4]);
|
||||
pwmWriteServo(1, servo[5]);
|
||||
break;
|
||||
|
||||
case MULTITYPE_AIRPLANE:
|
||||
case MULTITYPE_SINGLECOPTER:
|
||||
pwmWriteServo(0, servo[3]);
|
||||
pwmWriteServo(1, servo[4]);
|
||||
pwmWriteServo(2, servo[5]);
|
||||
pwmWriteServo(3, servo[6]);
|
||||
break;
|
||||
|
||||
default:
|
||||
// Two servos for SERVO_TILT, if enabled
|
||||
if (feature(FEATURE_SERVO_TILT)) {
|
||||
pwmWriteServo(0, servo[0]);
|
||||
pwmWriteServo(1, servo[1]);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
extern uint8_t cliMode;
|
||||
|
||||
void writeMotors(void)
|
||||
{
|
||||
uint8_t i;
|
||||
|
||||
for (i = 0; i < numberMotor; i++)
|
||||
pwmWriteMotor(i, motor[i]);
|
||||
}
|
||||
|
||||
void writeAllMotors(int16_t mc)
|
||||
{
|
||||
uint8_t i;
|
||||
|
||||
// Sends commands to all motors
|
||||
for (i = 0; i < numberMotor; i++)
|
||||
motor[i] = mc;
|
||||
writeMotors();
|
||||
}
|
||||
|
||||
static void airplaneMixer(void)
|
||||
{
|
||||
int16_t flapperons[2] = { 0, 0 };
|
||||
int i;
|
||||
|
||||
if (!f.ARMED)
|
||||
servo[7] = mcfg.mincommand; // Kill throttle when disarmed
|
||||
else
|
||||
servo[7] = constrain(rcCommand[THROTTLE], mcfg.minthrottle, mcfg.maxthrottle);
|
||||
motor[0] = servo[7];
|
||||
|
||||
#if 0
|
||||
if (cfg.flaperons) {
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
if (mcfg.flaps_speed) {
|
||||
// configure SERVO3 middle point in GUI to using an AUX channel for FLAPS control
|
||||
// use servo min, servo max and servo rate for proper endpoints adjust
|
||||
static int16_t slow_LFlaps;
|
||||
int16_t lFlap = servoMiddle(2);
|
||||
|
||||
lFlap = constrain(lFlap, cfg.servoConf[2].min, cfg.servoConf[2].max);
|
||||
lFlap = mcfg.midrc - lFlap; // shouldn't this be servoConf[2].middle?
|
||||
if (slow_LFlaps < lFlap)
|
||||
slow_LFlaps += mcfg.flaps_speed;
|
||||
else if (slow_LFlaps > lFlap)
|
||||
slow_LFlaps -= mcfg.flaps_speed;
|
||||
|
||||
servo[2] = ((int32_t)cfg.servoConf[2].rate * slow_LFlaps) / 100L;
|
||||
servo[2] += mcfg.midrc;
|
||||
}
|
||||
|
||||
if (f.PASSTHRU_MODE) { // Direct passthru from RX
|
||||
servo[3] = rcCommand[ROLL] + flapperons[0]; // Wing 1
|
||||
servo[4] = rcCommand[ROLL] + flapperons[1]; // Wing 2
|
||||
servo[5] = rcCommand[YAW]; // Rudder
|
||||
servo[6] = rcCommand[PITCH]; // Elevator
|
||||
} else {
|
||||
// Assisted modes (gyro only or gyro+acc according to AUX configuration in Gui
|
||||
servo[3] = axisPID[ROLL] + flapperons[0]; // Wing 1
|
||||
servo[4] = axisPID[ROLL] + flapperons[1]; // Wing 2
|
||||
servo[5] = axisPID[YAW]; // Rudder
|
||||
servo[6] = axisPID[PITCH]; // Elevator
|
||||
}
|
||||
for (i = 3; i < 7; i++) {
|
||||
servo[i] = ((int32_t)cfg.servoConf[i].rate * servo[i]) / 100L; // servo rates
|
||||
servo[i] += servoMiddle(i);
|
||||
}
|
||||
}
|
||||
|
||||
void mixTable(void)
|
||||
{
|
||||
int16_t maxMotor;
|
||||
uint32_t i;
|
||||
|
||||
if (numberMotor > 3) {
|
||||
// prevent "yaw jump" during yaw correction
|
||||
axisPID[YAW] = constrain(axisPID[YAW], -100 - abs(rcCommand[YAW]), +100 + abs(rcCommand[YAW]));
|
||||
}
|
||||
|
||||
// motors for non-servo mixes
|
||||
if (numberMotor > 1)
|
||||
for (i = 0; i < numberMotor; i++)
|
||||
motor[i] = rcCommand[THROTTLE] * currentMixer[i].throttle + axisPID[PITCH] * currentMixer[i].pitch + axisPID[ROLL] * currentMixer[i].roll + -cfg.yaw_direction * axisPID[YAW] * currentMixer[i].yaw;
|
||||
|
||||
// airplane / servo mixes
|
||||
switch (mcfg.mixerConfiguration) {
|
||||
case MULTITYPE_BI:
|
||||
servo[4] = (servoDirection(4, 2) * axisPID[YAW]) + (servoDirection(4, 1) * axisPID[PITCH]) + servoMiddle(4); // LEFT
|
||||
servo[5] = (servoDirection(5, 2) * axisPID[YAW]) + (servoDirection(5, 1) * axisPID[PITCH]) + servoMiddle(5); // RIGHT
|
||||
break;
|
||||
|
||||
case MULTITYPE_TRI:
|
||||
servo[5] = (servoDirection(5, 1) * axisPID[YAW]) + servoMiddle(5); // REAR
|
||||
break;
|
||||
|
||||
case MULTITYPE_GIMBAL:
|
||||
servo[0] = (((int32_t)cfg.servoConf[0].rate * angle[PITCH]) / 50) + servoMiddle(0);
|
||||
servo[1] = (((int32_t)cfg.servoConf[1].rate * angle[ROLL]) / 50) + servoMiddle(1);
|
||||
break;
|
||||
|
||||
case MULTITYPE_AIRPLANE:
|
||||
airplaneMixer();
|
||||
break;
|
||||
|
||||
case MULTITYPE_FLYING_WING:
|
||||
if (!f.ARMED)
|
||||
servo[7] = mcfg.mincommand;
|
||||
else
|
||||
servo[7] = constrain(rcCommand[THROTTLE], mcfg.minthrottle, mcfg.maxthrottle);
|
||||
motor[0] = servo[7];
|
||||
if (f.PASSTHRU_MODE) {
|
||||
// do not use sensors for correction, simple 2 channel mixing
|
||||
servo[3] = (servoDirection(3, 1) * rcCommand[PITCH]) + (servoDirection(3, 2) * rcCommand[ROLL]);
|
||||
servo[4] = (servoDirection(4, 1) * rcCommand[PITCH]) + (servoDirection(4, 2) * rcCommand[ROLL]);
|
||||
} else {
|
||||
// use sensors to correct (gyro only or gyro + acc)
|
||||
servo[3] = (servoDirection(3, 1) * axisPID[PITCH]) + (servoDirection(3, 2) * axisPID[ROLL]);
|
||||
servo[4] = (servoDirection(4, 1) * axisPID[PITCH]) + (servoDirection(4, 2) * axisPID[ROLL]);
|
||||
}
|
||||
servo[3] += servoMiddle(3);
|
||||
servo[4] += servoMiddle(4);
|
||||
break;
|
||||
|
||||
case MULTITYPE_DUALCOPTER:
|
||||
for (i = 4; i < 6; i++ ) {
|
||||
servo[i] = axisPID[5 - i] * servoDirection(i, 1); // mix and setup direction
|
||||
servo[i] += servoMiddle(i);
|
||||
}
|
||||
break;
|
||||
|
||||
case MULTITYPE_SINGLECOPTER:
|
||||
for (i = 3; i < 7; i++) {
|
||||
servo[i] = (axisPID[YAW] * servoDirection(i, 2)) + (axisPID[(6 - i) >> 1] * servoDirection(i, 1)); // mix and setup direction
|
||||
servo[i] += servoMiddle(i);
|
||||
}
|
||||
motor[0] = rcCommand[THROTTLE];
|
||||
break;
|
||||
}
|
||||
|
||||
// do camstab
|
||||
if (feature(FEATURE_SERVO_TILT)) {
|
||||
// center at fixed position, or vary either pitch or roll by RC channel
|
||||
servo[0] = servoMiddle(0);
|
||||
servo[1] = servoMiddle(1);
|
||||
|
||||
if (rcOptions[BOXCAMSTAB]) {
|
||||
if (cfg.gimbal_flags & GIMBAL_MIXTILT) {
|
||||
servo[0] -= (-(int32_t)cfg.servoConf[0].rate) * angle[PITCH] / 50 - (int32_t)cfg.servoConf[1].rate * angle[ROLL] / 50;
|
||||
servo[1] += (-(int32_t)cfg.servoConf[0].rate) * angle[PITCH] / 50 + (int32_t)cfg.servoConf[1].rate * angle[ROLL] / 50;
|
||||
} else {
|
||||
servo[0] += (int32_t)cfg.servoConf[0].rate * angle[PITCH] / 50;
|
||||
servo[1] += (int32_t)cfg.servoConf[0].rate * angle[ROLL] / 50;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// constrain servos
|
||||
for (i = 0; i < MAX_SERVOS; i++)
|
||||
servo[i] = constrain(servo[i], cfg.servoConf[i].min, cfg.servoConf[i].max); // limit the values
|
||||
|
||||
// forward AUX1-4 to servo outputs (not constrained)
|
||||
if (cfg.gimbal_flags & GIMBAL_FORWARDAUX) {
|
||||
int offset = 0;
|
||||
if (feature(FEATURE_SERVO_TILT))
|
||||
offset = 2;
|
||||
for (i = 0; i < 4; i++)
|
||||
pwmWriteServo(i + offset, rcData[AUX1 + i]);
|
||||
}
|
||||
|
||||
maxMotor = motor[0];
|
||||
for (i = 1; i < numberMotor; i++)
|
||||
if (motor[i] > maxMotor)
|
||||
maxMotor = motor[i];
|
||||
for (i = 0; i < numberMotor; i++) {
|
||||
if (maxMotor > mcfg.maxthrottle) // this is a way to still have good gyro corrections if at least one motor reaches its max.
|
||||
motor[i] -= maxMotor - mcfg.maxthrottle;
|
||||
if (feature(FEATURE_3D)) {
|
||||
if ((rcData[THROTTLE]) > 1500) {
|
||||
motor[i] = constrain(motor[i], mcfg.deadband3d_high, mcfg.maxthrottle);
|
||||
} else {
|
||||
motor[i] = constrain(motor[i], mcfg.mincommand, mcfg.deadband3d_low);
|
||||
}
|
||||
} else {
|
||||
motor[i] = constrain(motor[i], mcfg.minthrottle, mcfg.maxthrottle);
|
||||
if ((rcData[THROTTLE]) < mcfg.mincheck) {
|
||||
if (!feature(FEATURE_MOTOR_STOP))
|
||||
motor[i] = mcfg.minthrottle;
|
||||
else
|
||||
motor[i] = mcfg.mincommand;
|
||||
}
|
||||
}
|
||||
if (!f.ARMED) {
|
||||
motor[i] = motor_disarmed[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
#include "board.h"
|
||||
#include "mw.h"
|
||||
|
||||
static uint8_t numberMotor = 0;
|
||||
int16_t motor[MAX_MOTORS];
|
||||
int16_t motor_disarmed[MAX_MOTORS];
|
||||
int16_t servo[MAX_SERVOS] = { 1500, 1500, 1500, 1500, 1500, 1500, 1500, 1500 };
|
||||
|
||||
static motorMixer_t currentMixer[MAX_MOTORS];
|
||||
|
||||
static const motorMixer_t mixerTri[] = {
|
||||
{ 1.0f, 0.0f, 1.333333f, 0.0f }, // REAR
|
||||
{ 1.0f, -1.0f, -0.666667f, 0.0f }, // RIGHT
|
||||
{ 1.0f, 1.0f, -0.666667f, 0.0f }, // LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerQuadP[] = {
|
||||
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
|
||||
{ 1.0f, -1.0f, 0.0f, 1.0f }, // RIGHT
|
||||
{ 1.0f, 1.0f, 0.0f, 1.0f }, // LEFT
|
||||
{ 1.0f, 0.0f, -1.0f, -1.0f }, // FRONT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerQuadX[] = {
|
||||
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerBi[] = {
|
||||
{ 1.0f, 1.0f, 0.0f, 0.0f }, // LEFT
|
||||
{ 1.0f, -1.0f, 0.0f, 0.0f }, // RIGHT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerY6[] = {
|
||||
{ 1.0f, 0.0f, 1.333333f, 1.0f }, // REAR
|
||||
{ 1.0f, -1.0f, -0.666667f, -1.0f }, // RIGHT
|
||||
{ 1.0f, 1.0f, -0.666667f, -1.0f }, // LEFT
|
||||
{ 1.0f, 0.0f, 1.333333f, -1.0f }, // UNDER_REAR
|
||||
{ 1.0f, -1.0f, -0.666667f, 1.0f }, // UNDER_RIGHT
|
||||
{ 1.0f, 1.0f, -0.666667f, 1.0f }, // UNDER_LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerHex6P[] = {
|
||||
{ 1.0f, -1.0f, 0.866025f, 1.0f }, // REAR_R
|
||||
{ 1.0f, -1.0f, -0.866025f, -1.0f }, // FRONT_R
|
||||
{ 1.0f, 1.0f, 0.866025f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 1.0f, -0.866025f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, 0.0f, -0.866025f, 1.0f }, // FRONT
|
||||
{ 1.0f, 0.0f, 0.866025f, -1.0f }, // REAR
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerY4[] = {
|
||||
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR_TOP CW
|
||||
{ 1.0f, -1.0f, -1.0f, 0.0f }, // FRONT_R CCW
|
||||
{ 1.0f, 0.0f, 1.0f, 1.0f }, // REAR_BOTTOM CCW
|
||||
{ 1.0f, 1.0f, -1.0f, 0.0f }, // FRONT_L CW
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerHex6X[] = {
|
||||
{ 1.0f, -0.866025f, 1.0f, 1.0f }, // REAR_R
|
||||
{ 1.0f, -0.866025f, -1.0f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, 0.866025f, 1.0f, -1.0f }, // REAR_L
|
||||
{ 1.0f, 0.866025f, -1.0f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, -0.866025f, 0.0f, -1.0f }, // RIGHT
|
||||
{ 1.0f, 0.866025f, 0.0f, 1.0f }, // LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerOctoX8[] = {
|
||||
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, -1.0f, 1.0f, 1.0f }, // UNDER_REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, -1.0f }, // UNDER_FRONT_R
|
||||
{ 1.0f, 1.0f, 1.0f, -1.0f }, // UNDER_REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, 1.0f }, // UNDER_FRONT_L
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerOctoFlatP[] = {
|
||||
{ 1.0f, 0.707107f, -0.707107f, 1.0f }, // FRONT_L
|
||||
{ 1.0f, -0.707107f, -0.707107f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, -0.707107f, 0.707107f, 1.0f }, // REAR_R
|
||||
{ 1.0f, 0.707107f, 0.707107f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 0.0f, -1.0f, -1.0f }, // FRONT
|
||||
{ 1.0f, -1.0f, 0.0f, -1.0f }, // RIGHT
|
||||
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR
|
||||
{ 1.0f, 1.0f, 0.0f, -1.0f }, // LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerOctoFlatX[] = {
|
||||
{ 1.0f, 1.0f, -0.5f, 1.0f }, // MIDFRONT_L
|
||||
{ 1.0f, -0.5f, -1.0f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, -1.0f, 0.5f, 1.0f }, // MIDREAR_R
|
||||
{ 1.0f, 0.5f, 1.0f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 0.5f, -1.0f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, -1.0f, -0.5f, -1.0f }, // MIDFRONT_R
|
||||
{ 1.0f, -0.5f, 1.0f, -1.0f }, // REAR_R
|
||||
{ 1.0f, 1.0f, 0.5f, -1.0f }, // MIDREAR_L
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerVtail4[] = {
|
||||
{ 1.0f, 0.0f, 1.0f, 1.0f }, // REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, 0.0f }, // FRONT_R
|
||||
{ 1.0f, 0.0f, 1.0f, -1.0f }, // REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, -0.0f }, // FRONT_L
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerHex6H[] = {
|
||||
{ 1.0f, -1.0f, 1.0f, -1.0f }, // REAR_R
|
||||
{ 1.0f, -1.0f, -1.0f, 1.0f }, // FRONT_R
|
||||
{ 1.0f, 1.0f, 1.0f, 1.0f }, // REAR_L
|
||||
{ 1.0f, 1.0f, -1.0f, -1.0f }, // FRONT_L
|
||||
{ 1.0f, 0.0f, 0.0f, 0.0f }, // RIGHT
|
||||
{ 1.0f, 0.0f, 0.0f, 0.0f }, // LEFT
|
||||
};
|
||||
|
||||
static const motorMixer_t mixerDualcopter[] = {
|
||||
{ 1.0f, 0.0f, 0.0f, -1.0f }, // LEFT
|
||||
{ 1.0f, 0.0f, 0.0f, 1.0f }, // RIGHT
|
||||
};
|
||||
|
||||
// Keep this synced with MultiType struct in mw.h!
|
||||
const mixer_t mixers[] = {
|
||||
// Mo Se Mixtable
|
||||
{ 0, 0, NULL }, // entry 0
|
||||
{ 3, 1, mixerTri }, // MULTITYPE_TRI
|
||||
{ 4, 0, mixerQuadP }, // MULTITYPE_QUADP
|
||||
{ 4, 0, mixerQuadX }, // MULTITYPE_QUADX
|
||||
{ 2, 1, mixerBi }, // MULTITYPE_BI
|
||||
{ 0, 1, NULL }, // * MULTITYPE_GIMBAL
|
||||
{ 6, 0, mixerY6 }, // MULTITYPE_Y6
|
||||
{ 6, 0, mixerHex6P }, // MULTITYPE_HEX6
|
||||
{ 1, 1, NULL }, // * MULTITYPE_FLYING_WING
|
||||
{ 4, 0, mixerY4 }, // MULTITYPE_Y4
|
||||
{ 6, 0, mixerHex6X }, // MULTITYPE_HEX6X
|
||||
{ 8, 0, mixerOctoX8 }, // MULTITYPE_OCTOX8
|
||||
{ 8, 0, mixerOctoFlatP }, // MULTITYPE_OCTOFLATP
|
||||
{ 8, 0, mixerOctoFlatX }, // MULTITYPE_OCTOFLATX
|
||||
{ 1, 1, NULL }, // * MULTITYPE_AIRPLANE
|
||||
{ 0, 1, NULL }, // * MULTITYPE_HELI_120_CCPM
|
||||
{ 0, 1, NULL }, // * MULTITYPE_HELI_90_DEG
|
||||
{ 4, 0, mixerVtail4 }, // MULTITYPE_VTAIL4
|
||||
{ 6, 0, mixerHex6H }, // MULTITYPE_HEX6H
|
||||
{ 0, 1, NULL }, // * MULTITYPE_PPM_TO_SERVO
|
||||
{ 2, 1, mixerDualcopter }, // MULTITYPE_DUALCOPTER
|
||||
{ 1, 1, NULL }, // MULTITYPE_SINGLECOPTER
|
||||
{ 0, 0, NULL }, // MULTITYPE_CUSTOM
|
||||
};
|
||||
|
||||
int16_t servoMiddle(int nr)
|
||||
{
|
||||
// Normally, servo.middle is a value between 1000..2000, but for the purposes of stupid, if it's less than
|
||||
// the number of RC channels, it means the center value is taken FROM that RC channel (by its index)
|
||||
if (cfg.servoConf[nr].middle < RC_CHANS && nr < MAX_SERVOS)
|
||||
return rcData[cfg.servoConf[nr].middle];
|
||||
else
|
||||
return cfg.servoConf[nr].middle;
|
||||
}
|
||||
|
||||
int servoDirection(int nr, int lr)
|
||||
{
|
||||
// servo.rate is overloaded for servos that don't have a rate, but only need direction
|
||||
// bit set = negative, clear = positive
|
||||
// rate[2] = ???_direction
|
||||
// rate[1] = roll_direction
|
||||
// rate[0] = pitch_direction
|
||||
// servo.rate is also used as gimbal gain multiplier (yeah)
|
||||
if (cfg.servoConf[nr].rate & lr)
|
||||
return -1;
|
||||
else
|
||||
return 1;
|
||||
}
|
||||
|
||||
void mixerInit(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
// enable servos for mixes that require them. note, this shifts motor counts.
|
||||
core.useServo = mixers[mcfg.mixerConfiguration].useServo;
|
||||
// if we want camstab/trig, that also enables servos, even if mixer doesn't
|
||||
if (feature(FEATURE_SERVO_TILT))
|
||||
core.useServo = 1;
|
||||
|
||||
if (mcfg.mixerConfiguration == MULTITYPE_CUSTOM) {
|
||||
// load custom mixer into currentMixer
|
||||
for (i = 0; i < MAX_MOTORS; i++) {
|
||||
// check if done
|
||||
if (mcfg.customMixer[i].throttle == 0.0f)
|
||||
break;
|
||||
currentMixer[i] = mcfg.customMixer[i];
|
||||
numberMotor++;
|
||||
}
|
||||
} else {
|
||||
numberMotor = mixers[mcfg.mixerConfiguration].numberMotor;
|
||||
// copy motor-based mixers
|
||||
if (mixers[mcfg.mixerConfiguration].motor) {
|
||||
for (i = 0; i < numberMotor; i++)
|
||||
currentMixer[i] = mixers[mcfg.mixerConfiguration].motor[i];
|
||||
}
|
||||
}
|
||||
|
||||
// in 3D mode, mixer gain has to be halved
|
||||
if (feature(FEATURE_3D)) {
|
||||
if (numberMotor > 1) {
|
||||
for (i = 0; i < numberMotor; i++) {
|
||||
currentMixer[i].pitch *= 0.5f;
|
||||
currentMixer[i].roll *= 0.5f;
|
||||
currentMixer[i].yaw *= 0.5f;
|
||||
}
|
||||
}
|
||||
}
|
||||
mixerResetMotors();
|
||||
}
|
||||
|
||||
void mixerResetMotors(void)
|
||||
{
|
||||
int i;
|
||||
// set disarmed motor values
|
||||
for (i = 0; i < MAX_MOTORS; i++)
|
||||
motor_disarmed[i] = feature(FEATURE_3D) ? mcfg.neutral3d : mcfg.mincommand;
|
||||
}
|
||||
|
||||
void mixerLoadMix(int index)
|
||||
{
|
||||
int i;
|
||||
|
||||
// we're 1-based
|
||||
index++;
|
||||
// clear existing
|
||||
for (i = 0; i < MAX_MOTORS; i++)
|
||||
mcfg.customMixer[i].throttle = 0.0f;
|
||||
|
||||
// do we have anything here to begin with?
|
||||
if (mixers[index].motor != NULL) {
|
||||
for (i = 0; i < mixers[index].numberMotor; i++)
|
||||
mcfg.customMixer[i] = mixers[index].motor[i];
|
||||
}
|
||||
}
|
||||
|
||||
void writeServos(void)
|
||||
{
|
||||
if (!core.useServo)
|
||||
return;
|
||||
|
||||
switch (mcfg.mixerConfiguration) {
|
||||
case MULTITYPE_BI:
|
||||
pwmWriteServo(0, servo[4]);
|
||||
pwmWriteServo(1, servo[5]);
|
||||
break;
|
||||
|
||||
case MULTITYPE_TRI:
|
||||
if (cfg.tri_unarmed_servo) {
|
||||
// if unarmed flag set, we always move servo
|
||||
pwmWriteServo(0, servo[5]);
|
||||
} else {
|
||||
// otherwise, only move servo when copter is armed
|
||||
if (f.ARMED)
|
||||
pwmWriteServo(0, servo[5]);
|
||||
else
|
||||
pwmWriteServo(0, 0); // kill servo signal completely.
|
||||
}
|
||||
break;
|
||||
|
||||
case MULTITYPE_FLYING_WING:
|
||||
pwmWriteServo(0, servo[3]);
|
||||
pwmWriteServo(1, servo[4]);
|
||||
break;
|
||||
|
||||
case MULTITYPE_GIMBAL:
|
||||
pwmWriteServo(0, servo[0]);
|
||||
pwmWriteServo(1, servo[1]);
|
||||
break;
|
||||
|
||||
case MULTITYPE_DUALCOPTER:
|
||||
pwmWriteServo(0, servo[4]);
|
||||
pwmWriteServo(1, servo[5]);
|
||||
break;
|
||||
|
||||
case MULTITYPE_AIRPLANE:
|
||||
case MULTITYPE_SINGLECOPTER:
|
||||
pwmWriteServo(0, servo[3]);
|
||||
pwmWriteServo(1, servo[4]);
|
||||
pwmWriteServo(2, servo[5]);
|
||||
pwmWriteServo(3, servo[6]);
|
||||
break;
|
||||
|
||||
default:
|
||||
// Two servos for SERVO_TILT, if enabled
|
||||
if (feature(FEATURE_SERVO_TILT)) {
|
||||
pwmWriteServo(0, servo[0]);
|
||||
pwmWriteServo(1, servo[1]);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
extern uint8_t cliMode;
|
||||
|
||||
void writeMotors(void)
|
||||
{
|
||||
uint8_t i;
|
||||
|
||||
for (i = 0; i < numberMotor; i++)
|
||||
pwmWriteMotor(i, motor[i]);
|
||||
}
|
||||
|
||||
void writeAllMotors(int16_t mc)
|
||||
{
|
||||
uint8_t i;
|
||||
|
||||
// Sends commands to all motors
|
||||
for (i = 0; i < numberMotor; i++)
|
||||
motor[i] = mc;
|
||||
writeMotors();
|
||||
}
|
||||
|
||||
static void airplaneMixer(void)
|
||||
{
|
||||
int16_t flapperons[2] = { 0, 0 };
|
||||
int i;
|
||||
|
||||
if (!f.ARMED)
|
||||
servo[7] = mcfg.mincommand; // Kill throttle when disarmed
|
||||
else
|
||||
servo[7] = constrain(rcCommand[THROTTLE], mcfg.minthrottle, mcfg.maxthrottle);
|
||||
motor[0] = servo[7];
|
||||
|
||||
#if 0
|
||||
if (cfg.flaperons) {
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
if (mcfg.flaps_speed) {
|
||||
// configure SERVO3 middle point in GUI to using an AUX channel for FLAPS control
|
||||
// use servo min, servo max and servo rate for proper endpoints adjust
|
||||
static int16_t slow_LFlaps;
|
||||
int16_t lFlap = servoMiddle(2);
|
||||
|
||||
lFlap = constrain(lFlap, cfg.servoConf[2].min, cfg.servoConf[2].max);
|
||||
lFlap = mcfg.midrc - lFlap; // shouldn't this be servoConf[2].middle?
|
||||
if (slow_LFlaps < lFlap)
|
||||
slow_LFlaps += mcfg.flaps_speed;
|
||||
else if (slow_LFlaps > lFlap)
|
||||
slow_LFlaps -= mcfg.flaps_speed;
|
||||
|
||||
servo[2] = ((int32_t)cfg.servoConf[2].rate * slow_LFlaps) / 100L;
|
||||
servo[2] += mcfg.midrc;
|
||||
}
|
||||
|
||||
if (f.PASSTHRU_MODE) { // Direct passthru from RX
|
||||
servo[3] = rcCommand[ROLL] + flapperons[0]; // Wing 1
|
||||
servo[4] = rcCommand[ROLL] + flapperons[1]; // Wing 2
|
||||
servo[5] = rcCommand[YAW]; // Rudder
|
||||
servo[6] = rcCommand[PITCH]; // Elevator
|
||||
} else {
|
||||
// Assisted modes (gyro only or gyro+acc according to AUX configuration in Gui
|
||||
servo[3] = axisPID[ROLL] + flapperons[0]; // Wing 1
|
||||
servo[4] = axisPID[ROLL] + flapperons[1]; // Wing 2
|
||||
servo[5] = axisPID[YAW]; // Rudder
|
||||
servo[6] = axisPID[PITCH]; // Elevator
|
||||
}
|
||||
for (i = 3; i < 7; i++) {
|
||||
servo[i] = ((int32_t)cfg.servoConf[i].rate * servo[i]) / 100L; // servo rates
|
||||
servo[i] += servoMiddle(i);
|
||||
}
|
||||
}
|
||||
|
||||
void mixTable(void)
|
||||
{
|
||||
int16_t maxMotor;
|
||||
uint32_t i;
|
||||
|
||||
if (numberMotor > 3) {
|
||||
// prevent "yaw jump" during yaw correction
|
||||
axisPID[YAW] = constrain(axisPID[YAW], -100 - abs(rcCommand[YAW]), +100 + abs(rcCommand[YAW]));
|
||||
}
|
||||
|
||||
// motors for non-servo mixes
|
||||
if (numberMotor > 1)
|
||||
for (i = 0; i < numberMotor; i++)
|
||||
motor[i] = rcCommand[THROTTLE] * currentMixer[i].throttle + axisPID[PITCH] * currentMixer[i].pitch + axisPID[ROLL] * currentMixer[i].roll + -cfg.yaw_direction * axisPID[YAW] * currentMixer[i].yaw;
|
||||
|
||||
// airplane / servo mixes
|
||||
switch (mcfg.mixerConfiguration) {
|
||||
case MULTITYPE_BI:
|
||||
servo[4] = (servoDirection(4, 2) * axisPID[YAW]) + (servoDirection(4, 1) * axisPID[PITCH]) + servoMiddle(4); // LEFT
|
||||
servo[5] = (servoDirection(5, 2) * axisPID[YAW]) + (servoDirection(5, 1) * axisPID[PITCH]) + servoMiddle(5); // RIGHT
|
||||
break;
|
||||
|
||||
case MULTITYPE_TRI:
|
||||
servo[5] = (servoDirection(5, 1) * axisPID[YAW]) + servoMiddle(5); // REAR
|
||||
break;
|
||||
|
||||
case MULTITYPE_GIMBAL:
|
||||
servo[0] = (((int32_t)cfg.servoConf[0].rate * angle[PITCH]) / 50) + servoMiddle(0);
|
||||
servo[1] = (((int32_t)cfg.servoConf[1].rate * angle[ROLL]) / 50) + servoMiddle(1);
|
||||
break;
|
||||
|
||||
case MULTITYPE_AIRPLANE:
|
||||
airplaneMixer();
|
||||
break;
|
||||
|
||||
case MULTITYPE_FLYING_WING:
|
||||
if (!f.ARMED)
|
||||
servo[7] = mcfg.mincommand;
|
||||
else
|
||||
servo[7] = constrain(rcCommand[THROTTLE], mcfg.minthrottle, mcfg.maxthrottle);
|
||||
motor[0] = servo[7];
|
||||
if (f.PASSTHRU_MODE) {
|
||||
// do not use sensors for correction, simple 2 channel mixing
|
||||
servo[3] = (servoDirection(3, 1) * rcCommand[PITCH]) + (servoDirection(3, 2) * rcCommand[ROLL]);
|
||||
servo[4] = (servoDirection(4, 1) * rcCommand[PITCH]) + (servoDirection(4, 2) * rcCommand[ROLL]);
|
||||
} else {
|
||||
// use sensors to correct (gyro only or gyro + acc)
|
||||
servo[3] = (servoDirection(3, 1) * axisPID[PITCH]) + (servoDirection(3, 2) * axisPID[ROLL]);
|
||||
servo[4] = (servoDirection(4, 1) * axisPID[PITCH]) + (servoDirection(4, 2) * axisPID[ROLL]);
|
||||
}
|
||||
servo[3] += servoMiddle(3);
|
||||
servo[4] += servoMiddle(4);
|
||||
break;
|
||||
|
||||
case MULTITYPE_DUALCOPTER:
|
||||
for (i = 4; i < 6; i++ ) {
|
||||
servo[i] = axisPID[5 - i] * servoDirection(i, 1); // mix and setup direction
|
||||
servo[i] += servoMiddle(i);
|
||||
}
|
||||
break;
|
||||
|
||||
case MULTITYPE_SINGLECOPTER:
|
||||
for (i = 3; i < 7; i++) {
|
||||
servo[i] = (axisPID[YAW] * servoDirection(i, 2)) + (axisPID[(6 - i) >> 1] * servoDirection(i, 1)); // mix and setup direction
|
||||
servo[i] += servoMiddle(i);
|
||||
}
|
||||
motor[0] = rcCommand[THROTTLE];
|
||||
break;
|
||||
}
|
||||
|
||||
// do camstab
|
||||
if (feature(FEATURE_SERVO_TILT)) {
|
||||
// center at fixed position, or vary either pitch or roll by RC channel
|
||||
servo[0] = servoMiddle(0);
|
||||
servo[1] = servoMiddle(1);
|
||||
|
||||
if (rcOptions[BOXCAMSTAB]) {
|
||||
if (cfg.gimbal_flags & GIMBAL_MIXTILT) {
|
||||
servo[0] -= (-(int32_t)cfg.servoConf[0].rate) * angle[PITCH] / 50 - (int32_t)cfg.servoConf[1].rate * angle[ROLL] / 50;
|
||||
servo[1] += (-(int32_t)cfg.servoConf[0].rate) * angle[PITCH] / 50 + (int32_t)cfg.servoConf[1].rate * angle[ROLL] / 50;
|
||||
} else {
|
||||
servo[0] += (int32_t)cfg.servoConf[0].rate * angle[PITCH] / 50;
|
||||
servo[1] += (int32_t)cfg.servoConf[0].rate * angle[ROLL] / 50;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// constrain servos
|
||||
for (i = 0; i < MAX_SERVOS; i++)
|
||||
servo[i] = constrain(servo[i], cfg.servoConf[i].min, cfg.servoConf[i].max); // limit the values
|
||||
|
||||
// forward AUX1-4 to servo outputs (not constrained)
|
||||
if (cfg.gimbal_flags & GIMBAL_FORWARDAUX) {
|
||||
int offset = 0;
|
||||
if (feature(FEATURE_SERVO_TILT))
|
||||
offset = 2;
|
||||
for (i = 0; i < 4; i++)
|
||||
pwmWriteServo(i + offset, rcData[AUX1 + i]);
|
||||
}
|
||||
|
||||
maxMotor = motor[0];
|
||||
for (i = 1; i < numberMotor; i++)
|
||||
if (motor[i] > maxMotor)
|
||||
maxMotor = motor[i];
|
||||
for (i = 0; i < numberMotor; i++) {
|
||||
if (maxMotor > mcfg.maxthrottle) // this is a way to still have good gyro corrections if at least one motor reaches its max.
|
||||
motor[i] -= maxMotor - mcfg.maxthrottle;
|
||||
if (feature(FEATURE_3D)) {
|
||||
if ((rcData[THROTTLE]) > 1500) {
|
||||
motor[i] = constrain(motor[i], mcfg.deadband3d_high, mcfg.maxthrottle);
|
||||
} else {
|
||||
motor[i] = constrain(motor[i], mcfg.mincommand, mcfg.deadband3d_low);
|
||||
}
|
||||
} else {
|
||||
motor[i] = constrain(motor[i], mcfg.minthrottle, mcfg.maxthrottle);
|
||||
if ((rcData[THROTTLE]) < mcfg.mincheck) {
|
||||
if (!feature(FEATURE_MOTOR_STOP))
|
||||
motor[i] = mcfg.minthrottle;
|
||||
else
|
||||
motor[i] = mcfg.mincommand;
|
||||
}
|
||||
}
|
||||
if (!f.ARMED) {
|
||||
motor[i] = motor_disarmed[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue