Support compilation of EXST (EXTERNAL STORAGE) targets

- Initial

- Adjust load address of EXST firmware.

- Add helper script to pad an EXST binary to the expected size.

Padded firmware currently required due to a bug in the flash/dfu code
which causes anything less than a flash page size to be truncated when
uploading new firmware via the bootloader DFU.

- Minor linker script cleanups.

- STM32H7.mk change hardcoded TARGET_FLASH (384) to FIRMWARE_SIZE

- Delete unused configuration section entries from linker
scripts.

- Increase EXST firmware size to 448K.
It turns out 384K wasn't enough for a feature-complete firmware.

- Update pad-exst.sh to use 448K by default.

- Move the EXST file generation to the makefile.

[EXST] Embed firmware hash in ELF

- Add debug marker at end of CODE_RAM section.

It was found when transferring firmware to the H7 RAM via a BMP probe
using the 'gdb load' command, that the last few bytes were not
transferred, this debug marker is present to ensure all needed parts of
the firmware are present.

Example memory view of corrupted bytes at end of transfer:
0x2407DFAE  DEB90000 DEB9DEB9 DEB9DEB9 DEB9DEB9  ..¹Þ¹Þ¹Þ¹Þ¹Þ¹Þ¹Þ
0x2407DFBE  000000B9 00000000 00000000 00000000  ¹...............

should be:
0x2407DFAE  DEB9DEB9 DEB9DEB9 DEB9DEB9 DEB9DEB9  ¹Þ¹Þ¹Þ¹Þ¹Þ¹Þ¹Þ¹Þ
0x2407DFBE  00000000 00000000 00000000 00000000  ................

- Remove debug marker in EXST firmware.

STM32H750_EXST - Provide space for empty hash.

* Bootloader will run firmware if hash is empty, without re-verifying
RAM content against hash.
* CODE_RAM always shows as 100% usage.

STM32H750_EXST - Use a specific ELF section for a hash.

Two benefits:
1) CODE_RAM no-longer shows 100% full, since it is no-longer
padded/filled.
2) Prepares the code so that objcopy can be used to inject the hash
into the ELF.

STM32H750_EXST - Patch MD5 into ELF.

Process is now as follows.

* Binary generated (via make target dependency) so there is something to
hash.
* Binary copied (and padded).
* MD5 Hash computed.
* xxd patch file generated from hash.
* xxd hash patch applied to copy of binary at correct address.
* elf .exst_hash section dumped.
* hash injected into into dumped section.
* elf .exst_hash section updated with updated dumped section.

Replace EXST with USE_EXST.

Add documentation for the EXST firmware format.

Add table formatting to EXST documentation.

Update bootloader block.

Update H750 EXST linker script to use block format 0x00.

Use .exst.elf and .exst.bin on the exst files.

Add 'no checksum' to list of checksum hash methods.

Update EXST build system so it generates the following sets of files

obj/main/betaflight_TARGET.elf
obj/main/betaflight_TARGET.map
obj/main/betaflight_TARGET_EXST.elf
obj/betaflight_VERSION_TARGET.bin
obj/betaflight_VERSION_TARGET.bin.md5
obj/betaflight_VERSION_TARGET_EXST.bin

Update EXST build system to be more user-friendly.

* user-flashable files are generated in the normal place.
* Intermediate files are generated in `obj/main/...`
* Removes the `exst` goal.
* Adds .hex generation for EXST builds based on the patched .elf.

To build EXST targets, simply use `make TARGET=x` as normal and flash
the resulting `.hex/.bin` files rather than the .exst.bin file.

Developers can use either the `.elf` or patched `_EXST.elf` file as is
appropriate for their needs.

EXST documentation updated to match changes to build system.
This commit is contained in:
Dominic Clifton 2019-05-08 15:38:31 +09:00 committed by mikeller
parent 0c8c671cde
commit 0632eeb934
10 changed files with 513 additions and 15 deletions

View File

@ -24,6 +24,9 @@ OPTIONS ?=
# compile for OpenPilot BootLoader support
OPBL ?= no
# compile for External Storage Bootloader support
EXST ?= no
# Debugger optons:
# empty - ordinary build with all optimizations enabled
# RELWITHDEBINFO - ordinary build with debug symbols and all optimizations enabled
@ -275,14 +278,18 @@ CPPCHECK = cppcheck $(CSOURCES) --enable=all --platform=unix64 \
#
# Things we will build
#
TARGET_S19 = $(BIN_DIR)/$(FORKNAME)_$(FC_VER)_$(TARGET).s19
TARGET_BIN = $(BIN_DIR)/$(FORKNAME)_$(FC_VER)_$(TARGET).bin
TARGET_HEX = $(BIN_DIR)/$(FORKNAME)_$(FC_VER)_$(TARGET).hex
TARGET_ELF = $(OBJECT_DIR)/$(FORKNAME)_$(TARGET).elf
TARGET_EXST_ELF = $(OBJECT_DIR)/$(FORKNAME)_$(TARGET)_EXST.elf
TARGET_UNPATCHED_BIN = $(OBJECT_DIR)/$(FORKNAME)_$(TARGET)_UNPATCHED.bin
TARGET_LST = $(OBJECT_DIR)/$(FORKNAME)_$(TARGET).lst
TARGET_OBJS = $(addsuffix .o,$(addprefix $(OBJECT_DIR)/$(TARGET)/,$(basename $(SRC))))
TARGET_DEPS = $(addsuffix .d,$(addprefix $(OBJECT_DIR)/$(TARGET)/,$(basename $(SRC))))
TARGET_MAP = $(OBJECT_DIR)/$(FORKNAME)_$(TARGET).map
TARGET_EXST_HASH_SECTION_FILE = $(OBJECT_DIR)/$(TARGET)/exst_hash_section.bin
CLEAN_ARTIFACTS := $(TARGET_BIN)
CLEAN_ARTIFACTS += $(TARGET_HEX)
@ -298,14 +305,52 @@ $(OBJECT_DIR)/$(TARGET)/build/version.o : $(SRC)
$(TARGET_LST): $(TARGET_ELF)
$(V0) $(OBJDUMP) -S --disassemble $< > $@
$(TARGET_S19): $(TARGET_ELF)
@echo "Creating srec/S19 $(TARGET_S19)" "$(STDOUT)"
$(V1) $(OBJCOPY) --output-target=srec $(TARGET_S19)
ifeq ($(EXST),no)
$(TARGET_BIN): $(TARGET_ELF)
@echo "Creating BIN $(TARGET_BIN)" "$(STDOUT)"
$(V1) $(OBJCOPY) -O binary $< $@
$(TARGET_HEX): $(TARGET_ELF)
@echo "Creating HEX $(TARGET_HEX)" "$(STDOUT)"
$(V1) $(OBJCOPY) -O ihex --set-start 0x8000000 $< $@
$(TARGET_BIN): $(TARGET_ELF)
@echo "Creating BIN $(TARGET_BIN)" "$(STDOUT)"
else
CLEAN_ARTIFACTS += $(TARGET_UNPATCHED_BIN) $(TARGET_EXST_HASH_SECTION_FILE) $(TARGET_EXST_ELF)
$(TARGET_UNPATCHED_BIN): $(TARGET_ELF)
@echo "Creating BIN (without checksum) $(TARGET_UNPATCHED_BIN)" "$(STDOUT)"
$(V1) $(OBJCOPY) -O binary $< $@
$(TARGET_BIN): $(TARGET_UNPATCHED_BIN)
@echo "Creating EXST $(TARGET_BIN)" "$(STDOUT)"
# Linker script should allow .bin generation from a .elf which results in a file that is the same length as the FIRMWARE_SIZE.
# These 'dd' commands will pad a short binary to length FIRMWARE_SIZE.
$(V1) dd if=/dev/zero ibs=1k count=$(FIRMWARE_SIZE) of=$(TARGET_BIN)
$(V1) dd if=$(TARGET_UNPATCHED_BIN) of=$(TARGET_BIN) conv=notrunc
@echo "Generating MD5 hash of binary" "$(STDOUT)"
$(V1) openssl dgst -md5 $(TARGET_BIN) > $(TARGET_UNPATCHED_BIN).md5
@echo "Patching MD5 hash into binary" "$(STDOUT)"
$(V1) cat $(TARGET_UNPATCHED_BIN).md5 | awk '{printf("%08x: %s",(1024*$(FIRMWARE_SIZE))-16,$$2);}' | xxd -r - $(TARGET_BIN)
$(V1) echo $(FIRMWARE_SIZE) | awk '{printf("-s 0x%08x -l 16 -c 16 %s",(1024*$$1)-16,"$(TARGET_BIN)");}' | xargs xxd
@echo "Patching MD5 hash into exst elf" "$(STDOUT)"
$(OBJCOPY) $(TARGET_ELF) --dump-section .exst_hash=$(TARGET_EXST_HASH_SECTION_FILE)
$(V1) cat $(TARGET_UNPATCHED_BIN).md5 | awk '{printf("%08x: %s",64-16,$$2);}' | xxd -r - $(TARGET_EXST_HASH_SECTION_FILE)
$(OBJCOPY) $(TARGET_ELF) $(TARGET_EXST_ELF) --update-section .exst_hash=$(TARGET_EXST_HASH_SECTION_FILE)
$(TARGET_HEX): $(TARGET_BIN)
@echo "Creating EXST HEX from patched EXST ELF $(TARGET_HEX)" "$(STDOUT)"
$(V1) $(OBJCOPY) -O ihex --set-start 0x8000000 $(TARGET_EXST_ELF) $@
endif
$(TARGET_ELF): $(TARGET_OBJS) $(LD_SCRIPT)
@echo "Linking $(TARGET)" "$(STDOUT)"
$(V1) $(CROSS_CC) -o $@ $(filter-out %.ld,$^) $(LD_FLAGS)
@ -468,6 +513,9 @@ endif
binary:
$(V0) $(MAKE) -j $(TARGET_BIN)
srec:
$(V0) $(MAKE) -j $(TARGET_S19)
hex:
$(V0) $(MAKE) -j $(TARGET_HEX)

107
docs/EXST bootloader.md Normal file
View File

@ -0,0 +1,107 @@
# EXST bootloader
The EXST (External Storage) system requires that the targets' CPU has a small program, called a bootloader, that provides functionality to load firmware from an external storage into the CPU's RAM so that the firmware can be executed.
Example external storage systems include:
* External Flash using Firmware Partition
* File on an SD card.
EXST targets also have the requirement of providing a mechansim to load and save configuration ('eeprom'). options for this include:
* CPU Embedded flash page.
* External Flash using Config Partition
* File on an SD card.
Since external storage systems can become corrupted, and communication errors can occur, Bootloaders should verify correct loading of the firmware from an external storage system, or after transferring via a debugger. An hash is provided for this purpose.
Bootloaders are not limited to just one storage system.
Bootloaders may offer additional functionality, such as:
* a means to update the firmware on an external storage medium (e.g. via DFU)
* update one external storage system from another (i.e. update external flash from file on SD card)
* backup, select, swap or erase firmware
* backup, select, swap or erase configuration.
Users should consult the manual that came with their EXST bootloader-equipped flight controller for details on how to use any such features.
The build system provides a way to build files suitable for transferring onto an external storage medium via the standard 'bin'/'hex' make goals.
```
make TARGET=<targetname>
```
This results in the usual `*.bin` and `*.hex` files and also a `*_EXST.elf` file which have been patched to contain information required for bootloader operation.
The `.bin` file is a binary file which should be transferred to the storage medium and is suitable for distribution.
The `.hex` file is a hex file which can be used by tools for uploading to a bootloader and is suitable for distribution.
For developers there is a `_EXST.elf` file which is a standard `.elf` file that has had one section replaced, this file is suitable for uploading to targets using a debugger such as GDB.
For details on the memory sections used refer to the linker files.
## EXST format
The format for EXST targets is as follows:
* Firmware.
* Bootloader block.
The bootloader block is 64 bytes.
For example a 448K EXST `.bin` file is comprised as follows:
| Start Address | End address | Usage |
| ------------- | ----------- | ---------------- |
| 0x00000 | 0x6FFBF | Firmware section |
| 0x6FFC0 | 0x6FFFF | Bootloader block |
## EXST bootloader block
The bootloader block is comprised as follows:
| Start Address | End address | Usage |
| ------------- | ----------- | ---------------- |
| 0x00 | 0x00 | Block Format |
| 0x01 | 0x3F | Block Content |
Block Formats
| Value | Meaning |
| ----- | ----------------- |
| 0x00 | Block format 0x00 |
### Block Format 0x00 Content
Note: addresses relative to start of bootloader block
| Start Address | End address | Usage |
| ------------- | ----------- | ---------------- |
| 0x01 | 0x01 | Checksum/Hash method |
| 0x02 | 0x2F | Reserved, fill with 0x00 |
| 0x30 | 0x3F | Checksum value, pad with trailing 0x00 |
Checksum Hash methods
| Value | Meaning |
| ----- | ---------------- |
| 0x00 | No checksum. |
| 0x01 | MD5. |
Checksum locations:
| Start Address | End address | Usage |
| ------------- | ----------- | ---------------- |
| 0x30 | 0x3F | MD5 hash of firmware section |
The bootloader should make no attempt to use any reserved area otherwise this prevents it's future use by the firmware.
The bootloader should ensure this block is in RAM when the firmware is loaded. i.e. copy the entire EXST image.
As the reserved area is under control of the build system, not the bootloader, additional information can stored there for use by the firmware or future bootloaders. Extreme care must be taken not to break the bootloaders ability to load firmware. Consultation with the developers for any changes to this area is required.
### Example possible future enhancements for the EXST bootloader block
* Hardware layout identification - to allow the firmware to identify the hardware, such that IO pins and peripherals can be reserved/initialised.
* Alternative hashes/CRCs.

View File

@ -168,10 +168,18 @@ STARTUP_SRC = startup_stm32h743xx.s
TARGET_FLASH := 2048
else ifeq ($(TARGET),$(filter $(TARGET),$(H750xB_TARGETS)))
DEVICE_FLAGS += -DSTM32H750xx
LD_SCRIPT = $(LINKER_DIR)/stm32_flash_h750.ld
LD_SCRIPT = $(LINKER_DIR)/stm32_flash_h750_128k.ld
STARTUP_SRC = startup_stm32h743xx.s
TARGET_FLASH := 128
ifeq ($(EXST),yes)
FIRMWARE_SIZE := 448
# TARGET_FLASH now becomes the amount of RAM memory that is occupied by the firmware
# and the maximum size of the data stored on the external storage device.
TARGET_FLASH := FIRMWARE_SIZE
LD_SCRIPT = $(LINKER_DIR)/stm32_flash_h750_exst.ld
endif
ifneq ($(DEBUG),GDB)
OPTIMISE_DEFAULT := -Os
OPTIMISE_SPEED := -Os

View File

@ -183,6 +183,10 @@ COMMON_DEVICE_SRC = \
COMMON_SRC := $(COMMON_SRC) $(COMMON_DEVICE_SRC)
ifeq ($(EXST),yes)
TARGET_FLAGS := -DUSE_EXST $(TARGET_FLAGS)
endif
ifeq ($(SIMULATOR_BUILD),yes)
TARGET_FLAGS := -DSIMULATOR_BUILD $(TARGET_FLAGS)
endif

View File

@ -6,15 +6,14 @@ $(error The target specified, $(TARGET), cannot be built. Use one of the ALT tar
endif
BASE_TARGET := $(call get_base_target,$(TARGET))
ifneq ($(TARGET),$(BASE_TARGET))
include $(ROOT)/src/main/target/$(BASE_TARGET)/$(TARGET).mk
endif
# silently ignore if the file is not present. Allows for target specific.
-include $(ROOT)/src/main/target/$(BASE_TARGET)/$(TARGET).mk
ifeq ($(filter $(TARGET),$(OPBL_TARGETS)), $(TARGET))
OPBL = yes
endif
# silently ignore if the file is not present. Allows for target specific.
# silently ignore if the file is not present. Allows for target defaults.
-include $(ROOT)/src/main/target/$(BASE_TARGET)/target.mk
F4_TARGETS := $(F405_TARGETS) $(F411_TARGETS) $(F446_TARGETS)

View File

@ -23,7 +23,6 @@ ALT_TARGETS = $(sort $(notdir $(BASE_ALT_PAIRS)))
BASE_TARGETS = $(sort $(notdir $(patsubst %/,%,$(dir $(wildcard $(ROOT)/src/main/target/*/target.mk)))))
NOBUILD_TARGETS = $(sort $(filter-out target,$(basename $(notdir $(wildcard $(ROOT)/src/main/target/*/*.nomk)))))
OPBL_TARGETS = $(sort $(filter %_OPBL,$(ALT_TARGETS)))
VALID_TARGETS = $(sort $(filter-out $(NOBUILD_TARGETS),$(BASE_TARGETS) $(ALT_TARGETS)))
# For alt targets, returns their base target name.

View File

@ -262,7 +262,11 @@ void systemResetToBootloader(void)
}
#endif
#endif
#ifdef USE_EXST
persistentObjectWrite(PERSISTENT_OBJECT_RESET_REASON, RESET_FLASH_BOOTLOADER_REQUEST);
#else
persistentObjectWrite(PERSISTENT_OBJECT_RESET_REASON, RESET_BOOTLOADER_REQUEST);
#endif
__disable_irq();
NVIC_SystemReset();
}

View File

@ -1,7 +1,7 @@
/*
*****************************************************************************
**
** File : stm32_flash_h7x3_2m.ld
** File : stm32_flash_h750_128k.ld
**
** Abstract : Linker script for STM32H743xI Device with
** 512K AXI-RAM mapped onto AXI bus on D1 domain
@ -66,12 +66,6 @@ ENTRY(Reset_Handler)
/* Highest address of the user mode stack */
_estack = ORIGIN(STACKRAM) + LENGTH(STACKRAM); /* end of RAM */
/* Base address where the config is stored. */
/*
__config_start = ORIGIN(FLASH_CONFIG);
__config_end = ORIGIN(FLASH_CONFIG) + LENGTH(FLASH_CONFIG);
*/
/* Base address where the quad spi. */
__quad_spi_start = ORIGIN(QUADSPI);

View File

@ -0,0 +1,320 @@
/*
*****************************************************************************
**
** File : stm32_flash_h750_exst.ld
**
** Abstract : Linker script for STM32H743xI Device with
** 512K AXI-RAM mapped onto AXI bus on D1 domain
** 128K SRAM1 mapped on D2 domain
** 128K SRAM2 mapped on D2 domain
** 32K SRAM3 mapped on D2 domain
** 64K SRAM4 mapped on D3 domain
** 64K ITCM
** 128K DTCM
**
*****************************************************************************
*/
/* Entry Point */
ENTRY(Reset_Handler)
/*
0x00000000 to 0x0000FFFF 64K ITCM
0x20000000 to 0x2001FFFF 128K DTCM
0x24000000 to 0x2407FFFF 512K AXI SRAM, D1 domain, main RAM
0x30000000 to 0x3001FFFF 128K SRAM1, D2 domain, unused
0x30020000 to 0x3003FFFF 128K SRAM2, D2 domain, unused
0x30040000 to 0x30047FFF 32K SRAM3, D2 domain, unused
0x38000000 to 0x3800FFFF 64K SRAM4, D3 domain, unused
0x38800000 to 0x38800FFF 4K BACKUP SRAM, Backup domain, unused
0x08000000 to 0x0801FFFF 128K isr vector, startup code, firmware, no config! // FLASH_Sector_0
*/
/*
For H7 EXST (External Storage) targets a binary is built that is placed on an external device.
The bootloader will then copy this entire binary to RAM, at the CODE_RAM address. The bootloader
then executes code at the CODE_RAM address.
Currently, this is inefficient as there are two copies of some sections in RAM. e.g. .tcm_code.
It would be technically possible to free more RAM by having a more intelligent build system
and bootloader which creates files for each of the sections that are usually copied from flash
to ram and one section for the main code. e.g. one file for .tcm_code, one file for .data and
one for the main code/data, then load each to the appropriate address and adjust the usual startup
code which will no-longer need to duplicate code/data sections from RAM to ITCM/DTCM RAM.
The initial CODE_RAM is sized at 448K to enable all firmware features and to as much RAM free as
possible.
*/
/* see .exst section below */
_exst_hash_size = 64;
/* Specify the memory areas */
MEMORY
{
ITCM_RAM (rwx) : ORIGIN = 0x00000000, LENGTH = 64K
DTCM_RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 128K
RAM (rwx) : ORIGIN = 0x24000000, LENGTH = 64K
CODE_RAM (rx) : ORIGIN = 0x24010000, LENGTH = 448K - _exst_hash_size
EXST_HASH (rx) : ORIGIN = 0x24010000 + LENGTH(CODE_RAM), LENGTH = _exst_hash_size
D2_RAM (rwx) : ORIGIN = 0x30000000, LENGTH = 256K /* SRAM1 + SRAM2 */
MEMORY_B1 (rx) : ORIGIN = 0x60000000, LENGTH = 0K
QUADSPI (rx) : ORIGIN = 0x90000000, LENGTH = 0K
}
REGION_ALIAS("STACKRAM", DTCM_RAM)
REGION_ALIAS("FASTRAM", DTCM_RAM)
/* INCLUDE "stm32_flash_f7_split.ld" */
/*
*****************************************************************************
**
** File : stm32_flash_f7_split.ld
**
** Abstract : Common linker script for STM32 devices.
**
*****************************************************************************
*/
/* Entry Point */
ENTRY(Reset_Handler)
/* Highest address of the user mode stack */
_estack = ORIGIN(STACKRAM) + LENGTH(STACKRAM); /* end of RAM */
/* Base address where the quad spi. */
__quad_spi_start = ORIGIN(QUADSPI);
/* Generate a link error if heap and stack don't fit into RAM */
_Min_Heap_Size = 0; /* required amount of heap */
_Min_Stack_Size = 0x800; /* required amount of stack */
/* Define output sections */
SECTIONS
{
/* The startup code goes first into CODE_RAM */
.isr_vector :
{
. = ALIGN(512);
PROVIDE (isr_vector_table_base = .);
KEEP(*(.isr_vector)) /* Startup code */
. = ALIGN(4);
} >CODE_RAM
/* The program code and other data goes into CODE_RAM */
.text :
{
. = ALIGN(4);
*(.text) /* .text sections (code) */
*(.text*) /* .text* sections (code) */
*(.rodata) /* .rodata sections (constants, strings, etc.) */
*(.rodata*) /* .rodata* sections (constants, strings, etc.) */
*(.glue_7) /* glue arm to thumb code */
*(.glue_7t) /* glue thumb to arm code */
*(.eh_frame)
KEEP (*(.init))
KEEP (*(.fini))
. = ALIGN(4);
_etext = .; /* define a global symbols at end of code */
} >CODE_RAM
/* Critical program code goes into ITCM RAM */
/* Copy specific fast-executing code to ITCM RAM */
tcm_code = LOADADDR(.tcm_code);
.tcm_code :
{
. = ALIGN(4);
tcm_code_start = .;
*(.tcm_code)
*(.tcm_code*)
. = ALIGN(4);
tcm_code_end = .;
} >ITCM_RAM AT >CODE_RAM
.ARM.extab :
{
*(.ARM.extab* .gnu.linkonce.armextab.*)
} >CODE_RAM
.ARM :
{
__exidx_start = .;
*(.ARM.exidx*) __exidx_end = .;
} >CODE_RAM
.pg_registry :
{
PROVIDE_HIDDEN (__pg_registry_start = .);
KEEP (*(.pg_registry))
KEEP (*(SORT(.pg_registry.*)))
PROVIDE_HIDDEN (__pg_registry_end = .);
} >CODE_RAM
.pg_resetdata :
{
PROVIDE_HIDDEN (__pg_resetdata_start = .);
KEEP (*(.pg_resetdata))
PROVIDE_HIDDEN (__pg_resetdata_end = .);
} >CODE_RAM
/* used by the startup to initialize data */
_sidata = LOADADDR(.data);
/* Initialized data sections goes into RAM, load LMA copy after code */
.data :
{
. = ALIGN(4);
_sdata = .; /* create a global symbol at data start */
*(.data) /* .data sections */
*(.data*) /* .data* sections */
. = ALIGN(4);
_edata = .; /* define a global symbol at data end */
} >RAM AT >CODE_RAM
/* Uninitialized data section */
. = ALIGN(4);
.bss (NOLOAD) :
{
/* This is used by the startup in order to initialize the .bss secion */
_sbss = .; /* define a global symbol at bss start */
__bss_start__ = _sbss;
*(.bss)
*(SORT_BY_ALIGNMENT(.bss*))
*(COMMON)
. = ALIGN(4);
_ebss = .; /* define a global symbol at bss end */
__bss_end__ = _ebss;
} >RAM
/* Uninitialized data section */
. = ALIGN(4);
.sram2 (NOLOAD) :
{
/* This is used by the startup in order to initialize the .sram2 secion */
_ssram2 = .; /* define a global symbol at sram2 start */
__sram2_start__ = _ssram2;
*(.sram2)
*(SORT_BY_ALIGNMENT(.sram2*))
. = ALIGN(4);
_esram2 = .; /* define a global symbol at sram2 end */
__sram2_end__ = _esram2;
} >RAM
/* used during startup to initialized fastram_data */
_sfastram_idata = LOADADDR(.fastram_data);
/* Initialized FAST_RAM section for unsuspecting developers */
.fastram_data :
{
. = ALIGN(4);
_sfastram_data = .; /* create a global symbol at data start */
*(.fastram_data) /* .data sections */
*(.fastram_data*) /* .data* sections */
. = ALIGN(4);
_efastram_data = .; /* define a global symbol at data end */
} >FASTRAM AT >CODE_RAM
. = ALIGN(4);
.fastram_bss (NOLOAD) :
{
_sfastram_bss = .;
__fastram_bss_start__ = _sfastram_bss;
*(.fastram_bss)
*(SORT_BY_ALIGNMENT(.fastram_bss*))
. = ALIGN(4);
_efastram_bss = .;
__fastram_bss_end__ = _efastram_bss;
} >FASTRAM
.DMA_RAM (NOLOAD) :
{
_sdmaram = .;
_dmaram_start__ = _sdmaram;
KEEP(*(.DMA_RAM))
_edmaram = .;
_dmaram_end__ = _edmaram;
} >D2_RAM
.persistent_data (NOLOAD) :
{
__persistent_data_start__ = .;
*(.persistent_data)
. = ALIGN(4);
__persistent_data_end__ = .;
} >RAM
/* User_heap_stack section, used to check that there is enough RAM left */
_heap_stack_end = ORIGIN(STACKRAM)+LENGTH(STACKRAM) - 8; /* 8 bytes to allow for alignment */
_heap_stack_begin = _heap_stack_end - _Min_Stack_Size - _Min_Heap_Size;
. = _heap_stack_begin;
._user_heap_stack :
{
. = ALIGN(4);
PROVIDE ( end = . );
PROVIDE ( _end = . );
. = . + _Min_Heap_Size;
. = . + _Min_Stack_Size;
. = ALIGN(4);
} >STACKRAM = 0xa5
/* MEMORY_bank1 section, code must be located here explicitly */
/* Example: extern int foo(void) __attribute__ ((section (".mb1text"))); */
.memory_b1_text :
{
*(.mb1text) /* .mb1text sections (code) */
*(.mb1text*) /* .mb1text* sections (code) */
*(.mb1rodata) /* read-only data (constants) */
*(.mb1rodata*)
} >MEMORY_B1
/* Create space for a hash. Currently an MD5 has is used, which is 16 */
/* bytes long. however the last 64 bytes are RESERVED for hash related */
.exst_hash :
{
/* 64 bytes is the size of an MD5 hashing block size. */
. = ORIGIN(EXST_HASH);
BYTE(0x00); /* block format */
BYTE(0x00); /* Checksum method, 0x00 = MD5 hash */
BYTE(0x00); /* Reserved */
BYTE(0x00); /* Reserved */
/* Fill the last 60 bytes with data, including an empty hash aligned */
/* to the last 16 bytes. */
FILL(0x00000000); /* Reserved */
. = ORIGIN(EXST_HASH) + LENGTH(EXST_HASH) - 16;
__md5_hash_address__ = .;
LONG(0x00000000);
LONG(0x00000000);
LONG(0x00000000);
LONG(0x00000000);
. = ORIGIN(EXST_HASH) + LENGTH(EXST_HASH);
__firmware_end__ = .;
} >EXST_HASH
/* Remove information from the standard libraries */
/DISCARD/ :
{
libc.a ( * )
libm.a ( * )
libgcc.a ( * )
}
.ARM.attributes 0 : { *(.ARM.attributes) }
}

View File

@ -546,7 +546,11 @@ void MPU_Config()
// The Base Address 0x24000000 is the SRAM1 accessible by the SDIO internal DMA.
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x24000000;
#if defined(USE_EXST)
MPU_InitStruct.Size = MPU_REGION_SIZE_64KB;
#else
MPU_InitStruct.Size = MPU_REGION_SIZE_512KB;
#endif
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
@ -577,7 +581,12 @@ void resetMPU(void)
/* Disable the MPU */
HAL_MPU_Disable();
#if !defined(USE_EXST)
uint8_t highestRegion = MPU_REGION_NUMBER15;
#else
uint8_t highestRegion = MPU_REGION_NUMBER7;// currently 8-15 reserved by bootloader. Bootloader may write-protect the firmware region, this firmware can examine and undo this at it's peril.
#endif
// disable all existing regions
for (uint8_t region = MPU_REGION_NUMBER0; region <= highestRegion; region++) {
@ -594,7 +603,11 @@ void SystemInit (void)
initialiseMemorySections();
#if !defined(USE_EXST)
// only stand-alone and bootloader firmware needs to do this.
// if it's done in the EXST firmware as well as the BOOTLOADER firmware you get a reset loop.
systemCheckResetReason();
#endif
// FPU settings
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
@ -666,6 +679,8 @@ void SystemInit (void)
/* Configure the Vector Table location add offset address ------------------*/
#if defined(VECT_TAB_SRAM)
SCB->VTOR = D1_AXISRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal ITCMSRAM */
#elif defined(USE_EXST)
// Don't touch the vector table, the bootloader will have already set it.
#else
SCB->VTOR = FLASH_BANK1_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif