new althold PID

althold should work better now, the PID settings are preliminary. There
is definetly room for improvement.
For aquiring your own PID settings set ALT_P = 0 and tune the VEL pid
until the copter only drifts a little from its position when you
activate althold. Then set ALT_P to a value where it holds the position
stable
This commit is contained in:
Lukas S 2014-01-27 16:10:17 +01:00
parent cae8682c62
commit 073f5116bb
2 changed files with 34 additions and 23 deletions

View File

@ -230,9 +230,9 @@ static void resetConf(void)
cfg.P8[YAW] = 85; cfg.P8[YAW] = 85;
cfg.I8[YAW] = 45; cfg.I8[YAW] = 45;
cfg.D8[YAW] = 0; cfg.D8[YAW] = 0;
cfg.P8[PIDALT] = 40; cfg.P8[PIDALT] = 50;
cfg.I8[PIDALT] = 25; cfg.I8[PIDALT] = 0;
cfg.D8[PIDALT] = 60; cfg.D8[PIDALT] = 0;
cfg.P8[PIDPOS] = 11; // POSHOLD_P * 100; cfg.P8[PIDPOS] = 11; // POSHOLD_P * 100;
cfg.I8[PIDPOS] = 0; // POSHOLD_I * 100; cfg.I8[PIDPOS] = 0; // POSHOLD_I * 100;
cfg.D8[PIDPOS] = 0; cfg.D8[PIDPOS] = 0;
@ -246,9 +246,9 @@ static void resetConf(void)
cfg.I8[PIDLEVEL] = 10; cfg.I8[PIDLEVEL] = 10;
cfg.D8[PIDLEVEL] = 100; cfg.D8[PIDLEVEL] = 100;
cfg.P8[PIDMAG] = 40; cfg.P8[PIDMAG] = 40;
cfg.P8[PIDVEL] = 0; cfg.P8[PIDVEL] = 120;
cfg.I8[PIDVEL] = 0; cfg.I8[PIDVEL] = 45;
cfg.D8[PIDVEL] = 0; cfg.D8[PIDVEL] = 1;
cfg.rcRate8 = 90; cfg.rcRate8 = 90;
cfg.rcExpo8 = 65; cfg.rcExpo8 = 65;
cfg.rollPitchRate = 0; cfg.rollPitchRate = 0;
@ -266,8 +266,8 @@ static void resetConf(void)
cfg.accxy_deadband = 40; cfg.accxy_deadband = 40;
cfg.baro_tab_size = 21; cfg.baro_tab_size = 21;
cfg.baro_noise_lpf = 0.6f; cfg.baro_noise_lpf = 0.6f;
cfg.baro_cf_vel = 0.995f; cfg.baro_cf_vel = 0.985f;
cfg.baro_cf_alt = 0.950f; cfg.baro_cf_alt = 0.965f;
cfg.acc_unarmedcal = 1; cfg.acc_unarmedcal = 1;
// Radio // Radio

41
src/imu.c Executable file → Normal file
View File

@ -174,7 +174,7 @@ int32_t applyDeadband(int32_t value, int32_t deadband)
return value; return value;
} }
#define F_CUT_ACCZ 20.0f #define F_CUT_ACCZ 10.0f // 10Hz should still be fast enough
static const float fc_acc = 0.5f / (M_PI * F_CUT_ACCZ); static const float fc_acc = 0.5f / (M_PI * F_CUT_ACCZ);
// rotate acc into Earth frame and calculate acceleration in it // rotate acc into Earth frame and calculate acceleration in it
@ -332,8 +332,11 @@ int getEstimatedAltitude(void)
int32_t baroVel; int32_t baroVel;
int32_t vel_tmp; int32_t vel_tmp;
int32_t BaroAlt_tmp; int32_t BaroAlt_tmp;
int32_t setVel;
float dt; float dt;
float vel_acc; float vel_acc;
float accZ_tmp;
static float accZ_old = 0.0f;
static float vel = 0.0f; static float vel = 0.0f;
static float accAlt = 0.0f; static float accAlt = 0.0f;
static int32_t lastBaroAlt; static int32_t lastBaroAlt;
@ -364,7 +367,8 @@ int getEstimatedAltitude(void)
dt = accTimeSum * 1e-6f; // delta acc reading time in seconds dt = accTimeSum * 1e-6f; // delta acc reading time in seconds
// Integrator - velocity, cm/sec // Integrator - velocity, cm/sec
vel_acc = (float)accSum[2] * accVelScale * (float)accTimeSum / (float)accSumCount; accZ_tmp = (float)accSum[2] / (float)accSumCount;
vel_acc = accZ_tmp * accVelScale * (float)accTimeSum;
// Integrator - Altitude in cm // Integrator - Altitude in cm
accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2) accAlt += (vel_acc * 0.5f) * dt + vel * dt; // integrate velocity to get distance (x= a/2 * t^2)
@ -380,16 +384,6 @@ int getEstimatedAltitude(void)
accSum_reset(); accSum_reset();
//P
error = constrain(AltHold - EstAlt, -300, 300);
error = applyDeadband(error, 10); // remove small P parametr to reduce noise near zero position
BaroPID = constrain((cfg.P8[PIDALT] * error / 128), -200, +200);
//I
errorAltitudeI += cfg.I8[PIDALT] * error / 64;
errorAltitudeI = constrain(errorAltitudeI, -50000, 50000);
BaroPID += errorAltitudeI / 512; // I in range +/-100
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime; baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
lastBaroAlt = BaroAlt; lastBaroAlt = BaroAlt;
@ -399,13 +393,30 @@ int getEstimatedAltitude(void)
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity). // apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay // By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
vel = vel * cfg.baro_cf_vel + baroVel * (1 - cfg.baro_cf_vel); vel = vel * cfg.baro_cf_vel + baroVel * (1 - cfg.baro_cf_vel);
vel = constrain(vel, -1000, 1000); // limit max velocity to +/- 10m/s (36km/h)
// D // set vario
vel_tmp = lrintf(vel); vel_tmp = lrintf(vel);
vel_tmp = applyDeadband(vel_tmp, 5); vel_tmp = applyDeadband(vel_tmp, 5);
vario = vel_tmp; vario = vel_tmp;
BaroPID -= constrain(cfg.D8[PIDALT] * vel_tmp / 16, -150, 150);
// Altitude P-Controller
error = constrain(AltHold - EstAlt, -500, 500);
error = applyDeadband(error, 10); // remove small P parametr to reduce noise near zero position
setVel = constrain((cfg.P8[PIDALT] * error / 128), -300, +300); // limit velocity to +/- 3 m/s
// Velocity PID-Controller
// P
error = setVel - lrintf(vel);
BaroPID = constrain((cfg.P8[PIDVEL] * error / 32), -300, +300);
// I
errorAltitudeI += (cfg.I8[PIDVEL] * error) / 8;
errorAltitudeI = constrain(errorAltitudeI, -(1024 * 200), (1024 * 200));
BaroPID += errorAltitudeI / 1024; // I in range +/-200
// D
accZ_old = accZ_tmp;
BaroPID -= constrain(cfg.D8[PIDVEL] * (accZ_tmp + accZ_old) / 64, -150, 150);
return 1; return 1;
} }