PID code cleanup // refactoring

This commit is contained in:
borisbstyle 2016-12-30 12:04:44 +01:00
parent 4e3704374a
commit 1030df294d
8 changed files with 110 additions and 86 deletions

View File

@ -1261,8 +1261,8 @@ static bool blackboxWriteSysinfo()
BLACKBOX_PRINT_HEADER_LINE("itermThrottleThreshold:%d", currentProfile->pidProfile.itermThrottleThreshold); BLACKBOX_PRINT_HEADER_LINE("itermThrottleThreshold:%d", currentProfile->pidProfile.itermThrottleThreshold);
BLACKBOX_PRINT_HEADER_LINE("setpointRelaxRatio:%d", currentProfile->pidProfile.setpointRelaxRatio); BLACKBOX_PRINT_HEADER_LINE("setpointRelaxRatio:%d", currentProfile->pidProfile.setpointRelaxRatio);
BLACKBOX_PRINT_HEADER_LINE("dtermSetpointWeight:%d", currentProfile->pidProfile.dtermSetpointWeight); BLACKBOX_PRINT_HEADER_LINE("dtermSetpointWeight:%d", currentProfile->pidProfile.dtermSetpointWeight);
BLACKBOX_PRINT_HEADER_LINE("yawRateAccelLimit:%d", currentProfile->pidProfile.yawRateAccelLimit); BLACKBOX_PRINT_HEADER_LINE("yawRateAccelLimit:%d", castFloatBytesToInt(currentProfile->pidProfile.yawRateAccelLimit));
BLACKBOX_PRINT_HEADER_LINE("rateAccelLimit:%d", currentProfile->pidProfile.rateAccelLimit); BLACKBOX_PRINT_HEADER_LINE("rateAccelLimit:%d", castFloatBytesToInt(currentProfile->pidProfile.rateAccelLimit));
// End of Betaflight controller parameters // End of Betaflight controller parameters
BLACKBOX_PRINT_HEADER_LINE("deadband:%d", rcControlsConfig()->deadband); BLACKBOX_PRINT_HEADER_LINE("deadband:%d", rcControlsConfig()->deadband);

View File

@ -176,12 +176,13 @@ static void resetPidProfile(pidProfile_t *pidProfile)
pidProfile->dterm_notch_cutoff = 160; pidProfile->dterm_notch_cutoff = 160;
pidProfile->vbatPidCompensation = 0; pidProfile->vbatPidCompensation = 0;
pidProfile->pidAtMinThrottle = PID_STABILISATION_ON; pidProfile->pidAtMinThrottle = PID_STABILISATION_ON;
pidProfile->max_angle_inclination = 70.0f; // 70 degrees
// Betaflight PID controller parameters // Betaflight PID controller parameters
pidProfile->setpointRelaxRatio = 30; pidProfile->setpointRelaxRatio = 30;
pidProfile->dtermSetpointWeight = 200; pidProfile->dtermSetpointWeight = 200;
pidProfile->yawRateAccelLimit = 220; pidProfile->yawRateAccelLimit = 20.0f;
pidProfile->rateAccelLimit = 0; pidProfile->rateAccelLimit = 0.0f;
pidProfile->itermThrottleThreshold = 350; pidProfile->itermThrottleThreshold = 350;
pidProfile->levelSensitivity = 2.0f; pidProfile->levelSensitivity = 2.0f;
} }
@ -612,7 +613,6 @@ void createDefaultConfig(master_t *config)
config->gyroConfig.gyro_sync_denom = 4; config->gyroConfig.gyro_sync_denom = 4;
config->pidConfig.pid_process_denom = 2; config->pidConfig.pid_process_denom = 2;
#endif #endif
config->pidConfig.max_angle_inclination = 700; // 70 degrees
config->gyroConfig.gyro_soft_lpf_type = FILTER_PT1; config->gyroConfig.gyro_soft_lpf_type = FILTER_PT1;
config->gyroConfig.gyro_soft_lpf_hz = 90; config->gyroConfig.gyro_soft_lpf_hz = 90;
config->gyroConfig.gyro_soft_notch_hz_1 = 400; config->gyroConfig.gyro_soft_notch_hz_1 = 400;

View File

@ -92,13 +92,25 @@ uint8_t motorControlEnable = false;
int16_t telemTemperature1; // gyro sensor temperature int16_t telemTemperature1; // gyro sensor temperature
static uint32_t disarmAt; // Time of automatic disarm when "Don't spin the motors when armed" is enabled and auto_disarm_delay is nonzero static uint32_t disarmAt; // Time of automatic disarm when "Don't spin the motors when armed" is enabled and auto_disarm_delay is nonzero
extern uint8_t PIDweight[3]; static float throttlePIDAttenuation;
uint16_t filteredCycleTime; uint16_t filteredCycleTime;
bool isRXDataNew; bool isRXDataNew;
static bool armingCalibrationWasInitialised; static bool armingCalibrationWasInitialised;
float setpointRate[3]; static float setpointRate[3];
float rcInput[3]; static float rcDeflection[3];
float getThrottlePIDAttenuation(void) {
return throttlePIDAttenuation;
}
float getSetpointRate(int axis) {
return setpointRate[axis];
}
float getRcDeflection(int axis) {
return rcDeflection[axis];
}
void applyAndSaveAccelerometerTrimsDelta(rollAndPitchTrims_t *rollAndPitchTrimsDelta) void applyAndSaveAccelerometerTrimsDelta(rollAndPitchTrims_t *rollAndPitchTrimsDelta)
{ {
@ -137,11 +149,11 @@ void calculateSetpointRate(int axis, int16_t rc) {
if (rcRate > 2.0f) rcRate = rcRate + (RC_RATE_INCREMENTAL * (rcRate - 2.0f)); if (rcRate > 2.0f) rcRate = rcRate + (RC_RATE_INCREMENTAL * (rcRate - 2.0f));
rcCommandf = rc / 500.0f; rcCommandf = rc / 500.0f;
rcInput[axis] = ABS(rcCommandf); rcDeflection[axis] = ABS(rcCommandf);
if (rcExpo) { if (rcExpo) {
float expof = rcExpo / 100.0f; float expof = rcExpo / 100.0f;
rcCommandf = rcCommandf * power3(rcInput[axis]) * expof + rcCommandf * (1-expof); rcCommandf = rcCommandf * power3(rcDeflection[axis]) * expof + rcCommandf * (1-expof);
} }
angleRate = 200.0f * rcRate * rcCommandf; angleRate = 200.0f * rcRate * rcCommandf;
@ -270,17 +282,18 @@ void updateRcCommands(void)
int32_t prop; int32_t prop;
if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) { if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) {
prop = 100; prop = 100;
throttlePIDAttenuation = 1.0f;
} else { } else {
if (rcData[THROTTLE] < 2000) { if (rcData[THROTTLE] < 2000) {
prop = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint); prop = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint);
} else { } else {
prop = 100 - currentControlRateProfile->dynThrPID; prop = 100 - currentControlRateProfile->dynThrPID;
} }
throttlePIDAttenuation = prop / 100.0f;
} }
for (int axis = 0; axis < 3; axis++) { for (int axis = 0; axis < 3; axis++) {
// non coupled PID reduction scaler used in PID controller 1 and PID controller 2. // non coupled PID reduction scaler used in PID controller 1 and PID controller 2.
PIDweight[axis] = prop;
int32_t tmp = MIN(ABS(rcData[axis] - rxConfig()->midrc), 500); int32_t tmp = MIN(ABS(rcData[axis] - rxConfig()->midrc), 500);
if (axis == ROLL || axis == PITCH) { if (axis == ROLL || axis == PITCH) {
@ -679,9 +692,7 @@ void subTaskPidController(void)
// PID - note this is function pointer set by setPIDController() // PID - note this is function pointer set by setPIDController()
pidController( pidController(
&currentProfile->pidProfile, &currentProfile->pidProfile,
pidConfig()->max_angle_inclination, &accelerometerConfig()->accelerometerTrims
&accelerometerConfig()->accelerometerTrims,
rxConfig()->midrc
); );
if (debugMode == DEBUG_PIDLOOP || debugMode == DEBUG_SCHEDULER) {debug[1] = micros() - startTime;} if (debugMode == DEBUG_PIDLOOP || debugMode == DEBUG_SCHEDULER) {debug[1] = micros() - startTime;}
} }

View File

@ -34,3 +34,6 @@ void updateLEDs(void);
void updateRcCommands(void); void updateRcCommands(void);
void taskMainPidLoop(timeUs_t currentTimeUs); void taskMainPidLoop(timeUs_t currentTimeUs);
float getThrottlePIDAttenuation(void);
float getSetpointRate(int axis);
float getRcDeflection(int axis);

View File

@ -1164,8 +1164,8 @@ static bool mspFcProcessOutCommand(uint8_t cmdMSP, sbuf_t *dst, mspPostProcessFn
sbufWriteU8(dst, 0); // reserved sbufWriteU8(dst, 0); // reserved
sbufWriteU8(dst, 0); // reserved sbufWriteU8(dst, 0); // reserved
sbufWriteU8(dst, 0); // reserved sbufWriteU8(dst, 0); // reserved
sbufWriteU16(dst, currentProfile->pidProfile.rateAccelLimit); sbufWriteU16(dst, currentProfile->pidProfile.rateAccelLimit * 10);
sbufWriteU16(dst, currentProfile->pidProfile.yawRateAccelLimit); sbufWriteU16(dst, currentProfile->pidProfile.yawRateAccelLimit * 10);
break; break;
case MSP_SENSOR_CONFIG: case MSP_SENSOR_CONFIG:
@ -1512,8 +1512,8 @@ static mspResult_e mspFcProcessInCommand(uint8_t cmdMSP, sbuf_t *src)
sbufReadU8(src); // reserved sbufReadU8(src); // reserved
sbufReadU8(src); // reserved sbufReadU8(src); // reserved
sbufReadU8(src); // reserved sbufReadU8(src); // reserved
currentProfile->pidProfile.rateAccelLimit = sbufReadU16(src); currentProfile->pidProfile.rateAccelLimit = sbufReadU16(src) / 10.0f;
currentProfile->pidProfile.yawRateAccelLimit = sbufReadU16(src); currentProfile->pidProfile.yawRateAccelLimit = sbufReadU16(src) / 10.0f;
pidInitConfig(&currentProfile->pidProfile); pidInitConfig(&currentProfile->pidProfile);
break; break;

View File

@ -28,6 +28,7 @@
#include "common/maths.h" #include "common/maths.h"
#include "common/filter.h" #include "common/filter.h"
#include "fc/fc_main.h"
#include "fc/rc_controls.h" #include "fc/rc_controls.h"
#include "fc/runtime_config.h" #include "fc/runtime_config.h"
@ -38,17 +39,11 @@
#include "sensors/gyro.h" #include "sensors/gyro.h"
#include "sensors/acceleration.h" #include "sensors/acceleration.h"
extern float rcInput[3];
extern float setpointRate[3];
uint32_t targetPidLooptime; uint32_t targetPidLooptime;
static bool pidStabilisationEnabled; static bool pidStabilisationEnabled;
float axisPIDf[3]; float axisPIDf[3];
// PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction
uint8_t PIDweight[3];
#ifdef BLACKBOX #ifdef BLACKBOX
int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3]; int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];
#endif #endif
@ -145,8 +140,7 @@ void pidInitFilters(const pidProfile_t *pidProfile)
} }
} }
static float Kp[3], Ki[3], Kd[3], c[3]; static float Kp[3], Ki[3], Kd[3], c[3], levelGain, horizonGain, horizonTransition, maxVelocity[3], relaxFactor[3];
static float rollPitchMaxVelocity, yawMaxVelocity, relaxFactor[3];
void pidInitConfig(const pidProfile_t *pidProfile) { void pidInitConfig(const pidProfile_t *pidProfile) {
for(int axis = FD_ROLL; axis <= FD_YAW; axis++) { for(int axis = FD_ROLL; axis <= FD_YAW; axis++) {
@ -156,70 +150,85 @@ void pidInitConfig(const pidProfile_t *pidProfile) {
c[axis] = pidProfile->dtermSetpointWeight / 100.0f; c[axis] = pidProfile->dtermSetpointWeight / 100.0f;
relaxFactor[axis] = 1.0f - (pidProfile->setpointRelaxRatio / 100.0f); relaxFactor[axis] = 1.0f - (pidProfile->setpointRelaxRatio / 100.0f);
} }
yawMaxVelocity = pidProfile->yawRateAccelLimit * 1000 * dT; levelGain = pidProfile->P8[PIDLEVEL] / 10.0f;
rollPitchMaxVelocity = pidProfile->rateAccelLimit * 1000 * dT; horizonGain = pidProfile->I8[PIDLEVEL] / 10.0f;
horizonTransition = 100.0f / pidProfile->D8[PIDLEVEL];
maxVelocity[FD_ROLL] = maxVelocity[FD_PITCH] = pidProfile->rateAccelLimit * 1000 * dT;
maxVelocity[FD_YAW] = pidProfile->yawRateAccelLimit * 1000 * dT;
} }
// Betaflight pid controller, which will be maintained in the future with additional features specialised for current (mini) multirotor usage. float currentPidSetpoint = 0, horizonLevelStrength = 1.0f;
// Based on 2DOF reference design (matlab)
void pidController(const pidProfile_t *pidProfile, uint16_t max_angle_inclination, const rollAndPitchTrims_t *angleTrim, uint16_t midrc)
{
static float previousRateError[2];
static float previousSetpoint[3];
float horizonLevelStrength = 1; void calcHorizonLevelStrength(const pidProfile_t *pidProfile) {
if (FLIGHT_MODE(HORIZON_MODE)) { const float mostDeflectedPos = MAX(getRcDeflection(FD_ROLL), getRcDeflection(FD_PITCH));
// Figure out the raw stick positions
const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, midrc));
const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, midrc));
const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle);
// Progressively turn off the horizon self level strength as the stick is banged over // Progressively turn off the horizon self level strength as the stick is banged over
horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection horizonLevelStrength = (1.0f - mostDeflectedPos); // 1 at centre stick, 0 = max stick deflection
if(pidProfile->D8[PIDLEVEL] == 0){ if(pidProfile->D8[PIDLEVEL] == 0){
horizonLevelStrength = 0; horizonLevelStrength = 0;
} else { } else {
horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->D8[PIDLEVEL])) + 1, 0, 1); horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * horizonTransition) + 1, 0, 1);
}
} }
}
// ----------PID controller---------- void pidLevel(int axis, const pidProfile_t *pidProfile, const rollAndPitchTrims_t *angleTrim) {
const float tpaFactor = PIDweight[0] / 100.0f; // tpa is now float
for (int axis = FD_ROLL; axis <= FD_YAW; axis++) {
// Limit abrupt yaw inputs / stops
const float maxVelocity = (axis == FD_YAW) ? yawMaxVelocity : rollPitchMaxVelocity;
if (maxVelocity) {
const float currentVelocity = setpointRate[axis] - previousSetpoint[axis];
if (ABS(currentVelocity) > maxVelocity) {
setpointRate[axis] = (currentVelocity > 0) ? previousSetpoint[axis] + maxVelocity : previousSetpoint[axis] - maxVelocity;
}
}
// Yaw control is GYRO based, direct sticks control is applied to rate PID
if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && axis != YAW) {
// calculate error angle and limit the angle to the max inclination // calculate error angle and limit the angle to the max inclination
float errorAngle = pidProfile->levelSensitivity * rcCommand[axis]; float errorAngle = pidProfile->levelSensitivity * rcCommand[axis];
#ifdef GPS #ifdef GPS
errorAngle += GPS_angle[axis]; errorAngle += GPS_angle[axis];
#endif #endif
errorAngle = constrainf(errorAngle, -max_angle_inclination, max_angle_inclination); errorAngle = constrainf(errorAngle, -pidProfile->max_angle_inclination, pidProfile->max_angle_inclination);
errorAngle = (errorAngle - attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f; errorAngle = (errorAngle - ((attitude.raw[axis] + angleTrim->raw[axis]) / 10.0f));
if (FLIGHT_MODE(ANGLE_MODE)) { if(FLIGHT_MODE(ANGLE_MODE)) {
// ANGLE mode - control is angle based, so control loop is needed // ANGLE mode - control is angle based, so control loop is needed
setpointRate[axis] = errorAngle * pidProfile->P8[PIDLEVEL] / 10.0f; currentPidSetpoint = errorAngle * levelGain;
} else { } else {
// HORIZON mode - direct sticks control is applied to rate PID // HORIZON mode - direct sticks control is applied to rate PID
// mix up angle error to desired AngleRate to add a little auto-level feel // mix up angle error to desired AngleRate to add a little auto-level feel
setpointRate[axis] = setpointRate[axis] + (errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 10.0f); currentPidSetpoint = currentPidSetpoint + (errorAngle * horizonGain * horizonLevelStrength);
} }
}
void accelerationLimit(int axis) {
static float previousSetpoint[3];
const float currentVelocity = currentPidSetpoint- previousSetpoint[axis];
if(ABS(currentVelocity) > maxVelocity[axis])
currentPidSetpoint = (currentVelocity > 0) ? previousSetpoint[axis] + maxVelocity[axis] : previousSetpoint[axis] - maxVelocity[axis];
previousSetpoint[axis] = currentPidSetpoint;
}
// Betaflight pid controller, which will be maintained in the future with additional features specialised for current (mini) multirotor usage.
// Based on 2DOF reference design (matlab)
void pidController(const pidProfile_t *pidProfile, const rollAndPitchTrims_t *angleTrim)
{
static float previousRateError[2];
static float previousSetpoint[3];
if(FLIGHT_MODE(HORIZON_MODE))
calcHorizonLevelStrength(pidProfile);
// ----------PID controller----------
const float tpaFactor = getThrottlePIDAttenuation();
for (int axis = FD_ROLL; axis <= FD_YAW; axis++) {
currentPidSetpoint = getSetpointRate(axis);
if(maxVelocity[axis])
accelerationLimit(axis);
// Yaw control is GYRO based, direct sticks control is applied to rate PID
if ((FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) && axis != YAW) {
pidLevel(axis, pidProfile, angleTrim);
} }
const float PVRate = gyro.gyroADCf[axis]; // Process variable from gyro output in deg/sec const float gyroRate = gyro.gyroADCf[axis]; // Process variable from gyro output in deg/sec
// --------low-level gyro-based PID based on 2DOF PID controller. ---------- // --------low-level gyro-based PID based on 2DOF PID controller. ----------
// ---------- 2-DOF PID controller with optional filter on derivative term. b = 1 and only c can be tuned (amount derivative on measurement or error). ---------- // ---------- 2-DOF PID controller with optional filter on derivative term. b = 1 and only c can be tuned (amount derivative on measurement or error). ----------
// -----calculate error rate // -----calculate error rate
const float errorRate = setpointRate[axis] - PVRate; // r - y const float errorRate = currentPidSetpoint - gyroRate; // r - y
// -----calculate P component and add Dynamic Part based on stick input // -----calculate P component and add Dynamic Part based on stick input
float PTerm = Kp[axis] * errorRate * tpaFactor; float PTerm = Kp[axis] * errorRate * tpaFactor;
@ -227,7 +236,7 @@ void pidController(const pidProfile_t *pidProfile, uint16_t max_angle_inclinatio
// -----calculate I component // -----calculate I component
// Reduce strong Iterm accumulation during higher stick inputs // Reduce strong Iterm accumulation during higher stick inputs
const float accumulationThreshold = (axis == FD_YAW) ? pidProfile->yawItermIgnoreRate : pidProfile->rollPitchItermIgnoreRate; const float accumulationThreshold = (axis == FD_YAW) ? pidProfile->yawItermIgnoreRate : pidProfile->rollPitchItermIgnoreRate;
const float setpointRateScaler = constrainf(1.0f - (ABS(setpointRate[axis]) / accumulationThreshold), 0.0f, 1.0f); const float setpointRateScaler = constrainf(1.0f - (ABS(currentPidSetpoint) / accumulationThreshold), 0.0f, 1.0f);
float ITerm = previousGyroIf[axis]; float ITerm = previousGyroIf[axis];
ITerm += Ki[axis] * errorRate * dT * setpointRateScaler; ITerm += Ki[axis] * errorRate * dT * setpointRateScaler;
@ -240,16 +249,17 @@ void pidController(const pidProfile_t *pidProfile, uint16_t max_angle_inclinatio
if (axis != FD_YAW) { if (axis != FD_YAW) {
float dynC = c[axis]; float dynC = c[axis];
if (pidProfile->setpointRelaxRatio < 100) { if (pidProfile->setpointRelaxRatio < 100) {
const float rcDeflection = getRcDeflection(axis);
dynC = c[axis]; dynC = c[axis];
if (setpointRate[axis] > 0) { if (currentPidSetpoint > 0) {
if ((setpointRate[axis] - previousSetpoint[axis]) < previousSetpoint[axis]) if ((currentPidSetpoint - previousSetpoint[axis]) < previousSetpoint[axis])
dynC = dynC * sq(rcInput[axis]) * relaxFactor[axis] + dynC * (1-relaxFactor[axis]); dynC = dynC * sq(rcDeflection) * relaxFactor[axis] + dynC * (1-relaxFactor[axis]);
} else if (setpointRate[axis] < 0) { } else if (currentPidSetpoint < 0) {
if ((setpointRate[axis] - previousSetpoint[axis]) > previousSetpoint[axis]) if ((currentPidSetpoint - previousSetpoint[axis]) > previousSetpoint[axis])
dynC = dynC * sq(rcInput[axis]) * relaxFactor[axis] + dynC * (1-relaxFactor[axis]); dynC = dynC * sq(rcDeflection) * relaxFactor[axis] + dynC * (1-relaxFactor[axis]);
} }
} }
const float rD = dynC * setpointRate[axis] - PVRate; // cr - y const float rD = dynC * currentPidSetpoint - gyroRate; // cr - y
// Divide rate change by dT to get differential (ie dr/dt) // Divide rate change by dT to get differential (ie dr/dt)
const float delta = (rD - previousRateError[axis]) / dT; const float delta = (rD - previousRateError[axis]) / dT;
previousRateError[axis] = rD; previousRateError[axis] = rD;
@ -264,7 +274,7 @@ void pidController(const pidProfile_t *pidProfile, uint16_t max_angle_inclinatio
} else { } else {
PTerm = ptermYawFilterApplyFn(ptermYawFilter, PTerm); PTerm = ptermYawFilterApplyFn(ptermYawFilter, PTerm);
} }
previousSetpoint[axis] = setpointRate[axis]; previousSetpoint[axis] = currentPidSetpoint;
// -----calculate total PID output // -----calculate total PID output
axisPIDf[axis] = PTerm + ITerm + DTerm; axisPIDf[axis] = PTerm + ITerm + DTerm;

View File

@ -72,23 +72,23 @@ typedef struct pidProfile_s {
uint8_t dterm_average_count; // Configurable delta count for dterm uint8_t dterm_average_count; // Configurable delta count for dterm
uint8_t vbatPidCompensation; // Scale PIDsum to battery voltage uint8_t vbatPidCompensation; // Scale PIDsum to battery voltage
uint8_t pidAtMinThrottle; // Disable/Enable pids on zero throttle. Normally even without airmode P and D would be active. uint8_t pidAtMinThrottle; // Disable/Enable pids on zero throttle. Normally even without airmode P and D would be active.
float max_angle_inclination;
// Betaflight PID controller parameters // Betaflight PID controller parameters
uint16_t itermThrottleThreshold; // max allowed throttle delta before errorGyroReset in ms uint16_t itermThrottleThreshold; // max allowed throttle delta before errorGyroReset in ms
uint8_t setpointRelaxRatio; // Setpoint weight relaxation effect uint8_t setpointRelaxRatio; // Setpoint weight relaxation effect
uint8_t dtermSetpointWeight; // Setpoint weight for Dterm (0= measurement, 1= full error, 1 > agressive derivative) uint8_t dtermSetpointWeight; // Setpoint weight for Dterm (0= measurement, 1= full error, 1 > agressive derivative)
uint16_t yawRateAccelLimit; // yaw accel limiter for deg/sec/ms float yawRateAccelLimit; // yaw accel limiter for deg/sec/ms
uint16_t rateAccelLimit; // accel limiter roll/pitch deg/sec/ms float rateAccelLimit; // accel limiter roll/pitch deg/sec/ms
float levelSensitivity; float levelSensitivity;
} pidProfile_t; } pidProfile_t;
typedef struct pidConfig_s { typedef struct pidConfig_s {
uint8_t pid_process_denom; // Processing denominator for PID controller vs gyro sampling rate uint8_t pid_process_denom; // Processing denominator for PID controller vs gyro sampling rate
uint16_t max_angle_inclination;
} pidConfig_t; } pidConfig_t;
union rollAndPitchTrims_u; union rollAndPitchTrims_u;
void pidController(const pidProfile_t *pidProfile, uint16_t max_angle_inclination, const union rollAndPitchTrims_u *angleTrim, uint16_t midrc); void pidController(const pidProfile_t *pidProfile, const union rollAndPitchTrims_u *angleTrim);
extern float axisPIDf[3]; extern float axisPIDf[3];
extern int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3]; extern int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];

View File

@ -835,7 +835,7 @@ const clivalue_t valueTable[] = {
{ "yaw_motor_direction", VAR_INT8 | MASTER_VALUE, &mixerConfig()->yaw_motor_direction, .config.minmax = { -1, 1 } }, { "yaw_motor_direction", VAR_INT8 | MASTER_VALUE, &mixerConfig()->yaw_motor_direction, .config.minmax = { -1, 1 } },
{ "yaw_p_limit", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yaw_p_limit, .config.minmax = { YAW_P_LIMIT_MIN, YAW_P_LIMIT_MAX } }, { "yaw_p_limit", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yaw_p_limit, .config.minmax = { YAW_P_LIMIT_MIN, YAW_P_LIMIT_MAX } },
{ "pidsum_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.pidSumLimit, .config.minmax = { 0.1, 1.0 } }, { "pidsum_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.pidSumLimit, .config.minmax = { 0.1, 1.0 } },
{ "max_angle_inclination", VAR_UINT16 | MASTER_VALUE, &pidConfig()->max_angle_inclination, .config.minmax = { 100, 900 } }, { "max_angle_inclination", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.max_angle_inclination, .config.minmax = { 10.0f, 120.0f } },
#ifdef USE_SERVOS #ifdef USE_SERVOS
{ "servo_center_pulse", VAR_UINT16 | MASTER_VALUE, &servoConfig()->servoCenterPulse, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } }, { "servo_center_pulse", VAR_UINT16 | MASTER_VALUE, &servoConfig()->servoCenterPulse, .config.minmax = { PWM_RANGE_ZERO, PWM_RANGE_MAX } },
{ "tri_unarmed_servo", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &servoMixerConfig()->tri_unarmed_servo, .config.lookup = { TABLE_OFF_ON } }, { "tri_unarmed_servo", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &servoMixerConfig()->tri_unarmed_servo, .config.lookup = { TABLE_OFF_ON } },
@ -894,11 +894,11 @@ const clivalue_t valueTable[] = {
{ "dterm_notch_cutoff", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_notch_cutoff, .config.minmax = { 1, 500 } }, { "dterm_notch_cutoff", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_notch_cutoff, .config.minmax = { 1, 500 } },
{ "vbat_pid_compensation", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.vbatPidCompensation, .config.lookup = { TABLE_OFF_ON } }, { "vbat_pid_compensation", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.vbatPidCompensation, .config.lookup = { TABLE_OFF_ON } },
{ "pid_at_min_throttle", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.pidAtMinThrottle, .config.lookup = { TABLE_OFF_ON } }, { "pid_at_min_throttle", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.pidAtMinThrottle, .config.lookup = { TABLE_OFF_ON } },
{ "iterm_throttle_reset", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.itermThrottleThreshold, .config.minmax = {20, 1000 } }, { "anti_gravity_threshold", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.itermThrottleThreshold, .config.minmax = {20, 1000 } },
{ "setpoint_relax_ratio", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.setpointRelaxRatio, .config.minmax = {0, 100 } }, { "setpoint_relax_ratio", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.setpointRelaxRatio, .config.minmax = {0, 100 } },
{ "dterm_setpoint_weight", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dtermSetpointWeight, .config.minmax = {0, 255 } }, { "dterm_setpoint_weight", VAR_UINT8 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dtermSetpointWeight, .config.minmax = {0, 255 } },
{ "yaw_rate_accel_limit", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yawRateAccelLimit, .config.minmax = {0, 1000 } }, { "yaw_accel_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yawRateAccelLimit, .config.minmax = {0.1f, 50.0f } },
{ "rate_accel_limit", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.rateAccelLimit, .config.minmax = {0, 1000 } }, { "accel_limit", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.rateAccelLimit, .config.minmax = {0.1f, 50.0f } },
{ "accum_threshold", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.rollPitchItermIgnoreRate, .config.minmax = {15, 1000 } }, { "accum_threshold", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.rollPitchItermIgnoreRate, .config.minmax = {15, 1000 } },
{ "yaw_accum_threshold", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yawItermIgnoreRate, .config.minmax = {15, 1000 } }, { "yaw_accum_threshold", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yawItermIgnoreRate, .config.minmax = {15, 1000 } },