user configurable sample rate, true peak detection
1. User can set sampling rate to suit expected range of frequencies: - HIGH suits 4" or smaller and 6S 5" - MEDIUM suits classic 5" 4S - LOW is for 6" or greater Limits automatically scaled: HIGH : 133/166 to 1000Hz, MEDIUM : 89/111 to 666Hz, LOW : 67/83 to 500Hz 2. Bandpass entirely eliminated, not needed. 3. True peak detection method, favouring first peak to exceed 80% of maximum bin height; ignore or threshold values not required.
This commit is contained in:
parent
3f001295f7
commit
14c90bf10b
|
@ -376,6 +376,9 @@ static const char * const lookupTableRcSmoothingDerivativeType[] = {
|
|||
static const char * const lookupTableDynamicFftLocation[] = {
|
||||
"BEFORE_STATIC_FILTERS", "AFTER_STATIC_FILTERS"
|
||||
};
|
||||
static const char * const lookupTableDynamicFilterRange[] = {
|
||||
"HIGH", "MEDIUM", "LOW"
|
||||
};
|
||||
#endif // USE_GYRO_DATA_ANALYSE
|
||||
|
||||
#define LOOKUP_TABLE_ENTRY(name) { name, ARRAYLEN(name) }
|
||||
|
@ -469,6 +472,7 @@ const lookupTableEntry_t lookupTables[] = {
|
|||
#endif // USE_RC_SMOOTHING_FILTER
|
||||
#ifdef USE_GYRO_DATA_ANALYSE
|
||||
LOOKUP_TABLE_ENTRY(lookupTableDynamicFftLocation),
|
||||
LOOKUP_TABLE_ENTRY(lookupTableDynamicFilterRange),
|
||||
#endif // USE_GYRO_DATA_ANALYSE
|
||||
|
||||
};
|
||||
|
@ -519,9 +523,7 @@ const clivalue_t valueTable[] = {
|
|||
{ "dyn_fft_location", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_DYNAMIC_FFT_LOCATION }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_fft_location) },
|
||||
{ "dyn_filter_type", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_LOWPASS_TYPE }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_filter_type) },
|
||||
{ "dyn_filter_width_percent", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 1, 99 }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_filter_width_percent) },
|
||||
{ "dyn_filter_threshold", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 10, 255 }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_filter_threshold) },
|
||||
{ "dyn_filter_ignore", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 1, 255 }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_filter_ignore) },
|
||||
{ "dyn_notch_quality", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 0, 70 }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_notch_quality) },
|
||||
{ "dyn_filter_range", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_DYNAMIC_FILTER_RANGE }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_filter_range) },
|
||||
#endif
|
||||
|
||||
// PG_ACCELEROMETER_CONFIG
|
||||
|
|
|
@ -114,6 +114,7 @@ typedef enum {
|
|||
#endif // USE_RC_SMOOTHING_FILTER
|
||||
#ifdef USE_GYRO_DATA_ANALYSE
|
||||
TABLE_DYNAMIC_FFT_LOCATION,
|
||||
TABLE_DYNAMIC_FILTER_RANGE,
|
||||
#endif // USE_GYRO_DATA_ANALYSE
|
||||
|
||||
LOOKUP_TABLE_COUNT
|
||||
|
|
|
@ -209,10 +209,8 @@ PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig,
|
|||
.yaw_spin_threshold = 1950,
|
||||
.dyn_filter_type = FILTER_BIQUAD,
|
||||
.dyn_filter_width_percent = 40,
|
||||
.dyn_notch_quality = 20,
|
||||
.dyn_fft_location = DYN_FFT_BEFORE_STATIC_FILTERS,
|
||||
.dyn_filter_threshold = 30,
|
||||
.dyn_filter_ignore = 20,
|
||||
.dyn_fft_location = DYN_FFT_AFTER_STATIC_FILTERS,
|
||||
.dyn_filter_range = DYN_FILTER_RANGE_MEDIUM,
|
||||
);
|
||||
|
||||
|
||||
|
|
|
@ -63,6 +63,12 @@ enum {
|
|||
DYN_FFT_AFTER_STATIC_FILTERS
|
||||
} ;
|
||||
|
||||
enum {
|
||||
DYN_FILTER_RANGE_HIGH = 0,
|
||||
DYN_FILTER_RANGE_MEDIUM,
|
||||
DYN_FILTER_RANGE_LOW
|
||||
} ;
|
||||
|
||||
#define GYRO_CONFIG_USE_GYRO_1 0
|
||||
#define GYRO_CONFIG_USE_GYRO_2 1
|
||||
#define GYRO_CONFIG_USE_GYRO_BOTH 2
|
||||
|
@ -101,12 +107,11 @@ typedef struct gyroConfig_s {
|
|||
int16_t yaw_spin_threshold;
|
||||
|
||||
uint16_t gyroCalibrationDuration; // Gyro calibration duration in 1/100 second
|
||||
|
||||
uint8_t dyn_filter_type;
|
||||
uint8_t dyn_filter_width_percent;
|
||||
uint8_t dyn_notch_quality; // bandpass quality factor, 100 for steep sided bandpass
|
||||
uint8_t dyn_fft_location; // before or after static filters
|
||||
uint8_t dyn_filter_threshold; // divided by 10 then difference needed to detect peak
|
||||
uint8_t dyn_filter_ignore; // ignore any FFT bin below this threshold
|
||||
uint8_t dyn_filter_range; // ignore any FFT bin below this threshold
|
||||
} gyroConfig_t;
|
||||
|
||||
PG_DECLARE(gyroConfig_t, gyroConfig);
|
||||
|
|
|
@ -42,45 +42,36 @@
|
|||
#include "sensors/gyroanalyse.h"
|
||||
|
||||
// The FFT splits the frequency domain into an number of bins
|
||||
// A sampling frequency of 1000 and max frequency of 500 at a window size of 32 gives 16 frequency bins each with a width 31.25Hz
|
||||
// A sampling frequency of 1000 and max frequency of 500 at a window size of 32 gives 16 frequency bins each 31.25Hz wide
|
||||
// Eg [0,31), [31,62), [62, 93) etc
|
||||
|
||||
// for gyro loop >= 4KHz, analyse up to 1000Hz, 16 bins each 62.5 Hz wide
|
||||
#define FFT_SAMPLING_RATE_HZ 2000
|
||||
#define FFT_RESOLUTION ((float)FFT_SAMPLING_RATE_HZ / FFT_WINDOW_SIZE)
|
||||
// following bin must be at least 2 times previous to indicate start of peak
|
||||
// for gyro loop >= 4KHz, sample rate 2000 defines to 1000Hz, 16 bins each 62.5 Hz wide
|
||||
// NB FFT_WINDOW_SIZE is defined as 32 in gyroanalyse.h
|
||||
#define FFT_BIN_COUNT (FFT_WINDOW_SIZE / 2)
|
||||
// the desired approimate lower frequency when calculating bin offset
|
||||
#define FFT_BIN_OFFSET_DESIRED_HZ 90
|
||||
// centre frequency of bandpass that constrains input to FFT
|
||||
#if FFT_SAMPLING_RATE_HZ == 2000
|
||||
#define FFT_BPF_HZ 350
|
||||
#elif FFT_SAMPLING_RATE_HZ < 2000
|
||||
#define FFT_BPF_HZ (FFT_SAMPLING_RATE_HZ / 4)
|
||||
#endif
|
||||
// start to compare 3rd to 2nd bin, ie start comparing from 77Hz, 100Hz, and 150Hz centres
|
||||
#define FFT_BIN_OFFSET 2
|
||||
#define DYN_NOTCH_SMOOTH_FREQ_HZ 50
|
||||
// notch centre point will not go below this, must be greater than cutoff, mid of bottom bin
|
||||
#define DYN_NOTCH_MIN_CENTRE_HZ 140
|
||||
// maximum notch centre frequency limited by Nyquist
|
||||
#define DYN_NOTCH_MAX_CENTRE_HZ (FFT_SAMPLING_RATE_HZ / 2)
|
||||
// lowest allowed notch cutoff frequency
|
||||
#define DYN_NOTCH_MIN_CUTOFF_HZ 110
|
||||
// notch centre point will not go below sample rate divided by these dividers, resulting in range limits:
|
||||
// HIGH : 133/166-1000Hz, MEDIUM -> 89/111-666Hz, LOW -> 67/83-500Hz
|
||||
#define DYN_NOTCH_MIN_CENTRE_DIV 12
|
||||
// lowest allowed notch cutoff frequency 20% below minimum allowed notch
|
||||
#define DYN_NOTCH_MIN_CUTOFF_DIV 15
|
||||
// we need 4 steps for each axis
|
||||
#define DYN_NOTCH_CALC_TICKS (XYZ_AXIS_COUNT * 4)
|
||||
|
||||
static uint16_t FAST_RAM_ZERO_INIT fftSamplingRateHz;
|
||||
// centre frequency of bandpass that constrains input to FFT
|
||||
static uint16_t FAST_RAM_ZERO_INIT fftBpfHz;
|
||||
// Hz per bin
|
||||
static float FAST_RAM_ZERO_INIT fftResolution;
|
||||
static uint8_t FAST_RAM_ZERO_INIT fftBinOffset;
|
||||
static uint16_t FAST_RAM_ZERO_INIT fftSamplingRateHz;
|
||||
static float FAST_RAM_ZERO_INIT fftResolution;
|
||||
static uint8_t FAST_RAM_ZERO_INIT fftBinOffset;
|
||||
static uint16_t FAST_RAM_ZERO_INIT dynamicNotchMinCenterHz;
|
||||
static uint16_t FAST_RAM_ZERO_INIT dynamicNotchMaxCenterHz;
|
||||
static uint16_t FAST_RAM_ZERO_INIT dynamicNotchMinCutoffHz;
|
||||
static float FAST_RAM_ZERO_INIT dynamicFilterWidthFactor;
|
||||
static uint8_t FAST_RAM_ZERO_INIT dynamicFilterType;
|
||||
|
||||
static uint8_t dynamicFilterRange;
|
||||
|
||||
// Hanning window, see https://en.wikipedia.org/wiki/Window_function#Hann_.28Hanning.29_window
|
||||
static FAST_RAM_ZERO_INIT float hanningWindow[FFT_WINDOW_SIZE];
|
||||
static FAST_RAM_ZERO_INIT float dynamicFilterCutoffFactor;
|
||||
static FAST_RAM_ZERO_INIT uint8_t dynamicFilterType;
|
||||
static FAST_RAM_ZERO_INIT float dynamicFilterThreshold;
|
||||
static FAST_RAM_ZERO_INIT float dynamicFilterIgnore;
|
||||
|
||||
void gyroDataAnalyseInit(uint32_t targetLooptimeUs)
|
||||
{
|
||||
|
@ -92,33 +83,40 @@ void gyroDataAnalyseInit(uint32_t targetLooptimeUs)
|
|||
gyroAnalyseInitialized = true;
|
||||
#endif
|
||||
|
||||
const int gyroLoopRateHz = lrintf((1.0f / targetLooptimeUs) * 1e6f);
|
||||
dynamicFilterType = gyroConfig()->dyn_filter_type;
|
||||
dynamicFilterRange = gyroConfig()->dyn_filter_range;
|
||||
|
||||
fftSamplingRateHz = 1000;
|
||||
if (dynamicFilterRange == DYN_FILTER_RANGE_HIGH) {
|
||||
fftSamplingRateHz = 2000;
|
||||
}
|
||||
else if (dynamicFilterRange == DYN_FILTER_RANGE_MEDIUM) {
|
||||
fftSamplingRateHz = 1333;
|
||||
}
|
||||
// If we get at least 3 samples then use the default FFT sample frequency
|
||||
// otherwise we need to calculate a FFT sample frequency to ensure we get 3 samples (gyro loops < 4K)
|
||||
fftSamplingRateHz = MIN((gyroLoopRateHz / 3), FFT_SAMPLING_RATE_HZ);
|
||||
const int gyroLoopRateHz = lrintf((1.0f / targetLooptimeUs) * 1e6f);
|
||||
|
||||
fftSamplingRateHz = MIN((gyroLoopRateHz / 3), fftSamplingRateHz);
|
||||
|
||||
fftBpfHz = fftSamplingRateHz / 4;
|
||||
fftResolution = (float)fftSamplingRateHz / FFT_WINDOW_SIZE;
|
||||
fftBinOffset = FFT_BIN_OFFSET;
|
||||
|
||||
dynamicNotchMaxCenterHz = fftSamplingRateHz / 2; //Nyquist
|
||||
dynamicNotchMinCenterHz = fftSamplingRateHz / DYN_NOTCH_MIN_CENTRE_DIV;
|
||||
dynamicNotchMinCutoffHz = fftSamplingRateHz / DYN_NOTCH_MIN_CUTOFF_DIV;
|
||||
dynamicFilterWidthFactor = (100.0f - gyroConfig()->dyn_filter_width_percent) / 100;
|
||||
|
||||
// Calculate the FFT bin offset to try and get the lowest bin used
|
||||
// in the center calc close to 90hz
|
||||
// > 1333hz = 1, 889hz (2.67K) = 2, 666hz (2K) = 3
|
||||
fftBinOffset = MAX(1, lrintf(FFT_BIN_OFFSET_DESIRED_HZ / fftResolution - 1.5f));
|
||||
|
||||
for (int i = 0; i < FFT_WINDOW_SIZE; i++) {
|
||||
hanningWindow[i] = (0.5f - 0.5f * cos_approx(2 * M_PIf * i / (FFT_WINDOW_SIZE - 1)));
|
||||
}
|
||||
|
||||
dynamicFilterCutoffFactor = (100.0f - gyroConfig()->dyn_filter_width_percent) / 100;
|
||||
dynamicFilterType = gyroConfig()->dyn_filter_type;
|
||||
dynamicFilterThreshold = gyroConfig()->dyn_filter_threshold / 10;
|
||||
dynamicFilterIgnore = gyroConfig()->dyn_filter_ignore / 10;
|
||||
}
|
||||
|
||||
void gyroDataAnalyseStateInit(gyroAnalyseState_t *state, uint32_t targetLooptimeUs)
|
||||
{
|
||||
// initialise even if FEATURE_DYNAMIC_FILTER not set, since it may be set later
|
||||
// *** can this next line be removed ??? ***
|
||||
gyroDataAnalyseInit(targetLooptimeUs);
|
||||
|
||||
const uint16_t samplingFrequency = 1000000 / targetLooptimeUs;
|
||||
|
@ -127,15 +125,14 @@ void gyroDataAnalyseStateInit(gyroAnalyseState_t *state, uint32_t targetLooptime
|
|||
|
||||
arm_rfft_fast_init_f32(&state->fftInstance, FFT_WINDOW_SIZE);
|
||||
|
||||
// recalculation of filters takes 4 calls per axis => each filter gets updated every DYN_NOTCH_CALC_TICKS calls
|
||||
// at 4khz gyro loop rate this means 4khz / 4 / 3 = 333Hz => update every 3ms
|
||||
// for gyro rate > 16kHz, we have update frequency of 1kHz => 1ms
|
||||
// recalculation of filters takes 4 calls per axis => each filter gets updated every DYN_NOTCH_CALC_TICKS calls
|
||||
// at 4khz gyro loop rate this means 4khz / 4 / 3 = 333Hz => update every 3ms
|
||||
// for gyro rate > 16kHz, we have update frequency of 1kHz => 1ms
|
||||
const float looptime = MAX(1000000u / fftSamplingRateHz, targetLooptimeUs * DYN_NOTCH_CALC_TICKS);
|
||||
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
||||
// any init value
|
||||
state->centerFreq[axis] = DYN_NOTCH_MAX_CENTRE_HZ;
|
||||
state->prevCenterFreq[axis] = DYN_NOTCH_MAX_CENTRE_HZ;
|
||||
biquadFilterInit(&state->gyroBandpassFilter[axis], fftBpfHz, 1000000 / fftSamplingRateHz, 0.01f * gyroConfig()->dyn_notch_quality, FILTER_BPF);
|
||||
state->centerFreq[axis] = dynamicNotchMaxCenterHz;
|
||||
state->prevCenterFreq[axis] = dynamicNotchMaxCenterHz;
|
||||
biquadFilterInitLPF(&state->detectedFrequencyFilter[axis], DYN_NOTCH_SMOOTH_FREQ_HZ, looptime);
|
||||
}
|
||||
}
|
||||
|
@ -163,9 +160,6 @@ void gyroDataAnalyse(gyroAnalyseState_t *state, gyroDynamicFilter_t *dynFilter)
|
|||
// calculate mean value of accumulated samples
|
||||
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
||||
float sample = state->oversampledGyroAccumulator[axis] * state->maxSampleCountRcp;
|
||||
if (gyroConfig()->dyn_notch_quality > 4){
|
||||
sample = biquadFilterApply(&state->gyroBandpassFilter[axis], sample);
|
||||
}
|
||||
state->downsampledGyroData[axis][state->circularBufferIdx] = sample;
|
||||
if (axis == 0) {
|
||||
DEBUG_SET(DEBUG_FFT, 2, lrintf(sample));
|
||||
|
@ -268,28 +262,41 @@ static FAST_CODE_NOINLINE void gyroDataAnalyseUpdate(gyroAnalyseState_t *state,
|
|||
float fftSum = 0;
|
||||
float fftWeightedSum = 0;
|
||||
float dataAvg = 0;
|
||||
float dataMax = 0;
|
||||
float dynFiltThreshold = 0;
|
||||
bool fftIncreasing = false;
|
||||
bool fftPeakFinished = false;
|
||||
|
||||
//get simple average of bin amplitudes
|
||||
//get simple average and max of bin amplitudes
|
||||
for (int i = 1 + fftBinOffset; i < FFT_BIN_COUNT; i++) {
|
||||
dataAvg += state->fftData[i];
|
||||
if (state->fftData[i] > dataMax) {
|
||||
dataMax = state->fftData[i];
|
||||
}
|
||||
}
|
||||
// lower Max value to catch first peak close to max
|
||||
dataMax = 0.8f * dataMax;
|
||||
dataAvg = dataAvg / FFT_BIN_COUNT;
|
||||
|
||||
// automatically set peak detection threshold at half difference between peak and average
|
||||
dynFiltThreshold = 0.5f * (dataMax / dataAvg);
|
||||
// iterate over fft data and calculate weighted indices
|
||||
for (int i = 1 + fftBinOffset; i < FFT_BIN_COUNT; i++) {
|
||||
const float data = state->fftData[i];
|
||||
const float prevData = state->fftData[i - 1];
|
||||
// only consider bins above ignore multiple of average size
|
||||
if (data > dynamicFilterIgnore * dataAvg) {
|
||||
// only consider bins after > threshold step up from previous
|
||||
if (fftIncreasing || data > prevData * dynamicFilterThreshold) {
|
||||
// disregard fft bins after first peak
|
||||
if (!fftPeakFinished) {
|
||||
// include bins around the first bin that exceeds 80% max bin height and increased compared to previous bin
|
||||
if (fftIncreasing || ((data > prevData * dynFiltThreshold) && (data > dataMax))) {
|
||||
float cubedData = data * data * data;
|
||||
// add previous bin before first rise
|
||||
// add previous bin
|
||||
if (!fftIncreasing) {
|
||||
cubedData += prevData * prevData * prevData;
|
||||
fftIncreasing = true;
|
||||
}
|
||||
// peak over when incoming bin falls below average
|
||||
if (data < dataAvg) {
|
||||
fftPeakFinished = true;
|
||||
}
|
||||
fftSum += cubedData;
|
||||
// calculate weighted index starting at 1, not 0
|
||||
fftWeightedSum += cubedData * (i + 1);
|
||||
|
@ -299,28 +306,28 @@ static FAST_CODE_NOINLINE void gyroDataAnalyseUpdate(gyroAnalyseState_t *state,
|
|||
|
||||
// get weighted center of relevant frequency range (this way we have a better resolution than 31.25Hz)
|
||||
// if no peak, go to highest point to minimise delay
|
||||
float centerFreq = DYN_NOTCH_MAX_CENTRE_HZ;
|
||||
float centerFreq = dynamicNotchMaxCenterHz;
|
||||
float fftMeanIndex = 0;
|
||||
if (fftSum > 0) {
|
||||
// idx was shifted by 1 to start at 1, not 0
|
||||
fftMeanIndex = (fftWeightedSum / fftSum) - 1;
|
||||
// the index points at the center frequency of each bin so index 0 is actually 16.125Hz
|
||||
centerFreq = fftMeanIndex * FFT_RESOLUTION;
|
||||
centerFreq = fftMeanIndex * fftResolution;
|
||||
} else {
|
||||
centerFreq = state->prevCenterFreq[state->updateAxis];
|
||||
}
|
||||
state->prevCenterFreq[state->updateAxis] = centerFreq;
|
||||
centerFreq = constrain(centerFreq, DYN_NOTCH_MIN_CENTRE_HZ, DYN_NOTCH_MAX_CENTRE_HZ);
|
||||
centerFreq = constrain(centerFreq, dynamicNotchMinCenterHz, dynamicNotchMaxCenterHz);
|
||||
centerFreq = biquadFilterApply(&state->detectedFrequencyFilter[state->updateAxis], centerFreq);
|
||||
centerFreq = constrain(centerFreq, DYN_NOTCH_MIN_CENTRE_HZ, DYN_NOTCH_MAX_CENTRE_HZ);
|
||||
centerFreq = constrain(centerFreq, dynamicNotchMinCenterHz, dynamicNotchMaxCenterHz);
|
||||
state->centerFreq[state->updateAxis] = centerFreq;
|
||||
|
||||
if (state->updateAxis == 0) {
|
||||
DEBUG_SET(DEBUG_FFT, 3, lrintf(fftMeanIndex * 100));
|
||||
DEBUG_SET(DEBUG_FFT_FREQ, 0, state->centerFreq[state->updateAxis]);
|
||||
}
|
||||
|
||||
if (state->updateAxis == 0 || state->updateAxis == 1) {
|
||||
DEBUG_SET(DEBUG_FFT_FREQ, state->updateAxis, state->centerFreq[state->updateAxis]);
|
||||
if (state->updateAxis == 1) {
|
||||
DEBUG_SET(DEBUG_FFT_FREQ, 1, state->centerFreq[state->updateAxis]);
|
||||
}
|
||||
DEBUG_SET(DEBUG_FFT_TIME, 1, micros() - startTime);
|
||||
|
||||
|
@ -331,22 +338,19 @@ static FAST_CODE_NOINLINE void gyroDataAnalyseUpdate(gyroAnalyseState_t *state,
|
|||
// 7us
|
||||
switch (dynamicFilterType) {
|
||||
case FILTER_PT1: {
|
||||
const int cutoffFreq = state->centerFreq[state->updateAxis] * dynamicFilterCutoffFactor;
|
||||
const int cutoffFreq = state->centerFreq[state->updateAxis] * dynamicFilterWidthFactor;
|
||||
const float gyroDt = gyro.targetLooptime * 1e-6f;
|
||||
const float gain = pt1FilterGain(cutoffFreq, gyroDt);
|
||||
|
||||
pt1FilterUpdateCutoff(&dynFilter[state->updateAxis].pt1FilterState, gain);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
case FILTER_BIQUAD: {
|
||||
// calculate cutoffFreq and notch Q, update notch filter
|
||||
const float cutoffFreq = fmax(state->centerFreq[state->updateAxis] * dynamicFilterCutoffFactor, DYN_NOTCH_MIN_CUTOFF_HZ);
|
||||
const float cutoffFreq = fmax(state->centerFreq[state->updateAxis] * dynamicFilterWidthFactor, dynamicNotchMinCutoffHz);
|
||||
const float notchQ = filterGetNotchQ(state->centerFreq[state->updateAxis], cutoffFreq);
|
||||
biquadFilterUpdate(&dynFilter[state->updateAxis].biquadFilterState, state->centerFreq[state->updateAxis], gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
||||
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
DEBUG_SET(DEBUG_FFT_TIME, 1, micros() - startTime);
|
||||
|
|
Loading…
Reference in New Issue