PID3 mw23 implementation

Finish PID3 implementation
This commit is contained in:
borisbstyle 2016-02-16 11:37:23 +01:00
parent 57a3e59a38
commit 33eef46db3
6 changed files with 185 additions and 10 deletions

View File

@ -176,6 +176,7 @@ static void resetPidProfile(pidProfile_t *pidProfile)
pidProfile->I8[PIDVEL] = 45;
pidProfile->D8[PIDVEL] = 1;
pidProfile->yaw_p_limit = YAW_P_LIMIT_MAX;
pidProfile->dterm_lpf_hz = 0; // filtering ON by default
pidProfile->deltaMethod = DELTA_FROM_MEASUREMENT;
pidProfile->airModeInsaneAcrobilityFactor = 0;
@ -719,7 +720,6 @@ void activateConfig(void)
#ifdef TELEMETRY
telemetryUseConfig(&masterConfig.telemetryConfig);
#endif
currentProfile->pidProfile.pidController = constrain(currentProfile->pidProfile.pidController, 1, 2); // This should prevent UNUSED values. CF 1.11 support
pidSetController(currentProfile->pidProfile.pidController);
#ifdef GPS

View File

@ -48,6 +48,7 @@
#include "config/runtime_config.h"
extern uint8_t motorCount;
extern float dT;
extern bool motorLimitReached;
@ -60,18 +61,29 @@ int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];
#define DELTA_TOTAL_SAMPLES 3
// PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction
uint8_t PIDweight[3];
uint8_t dynP8[3], dynI8[3], dynD8[3], PIDweight[3];
static int32_t errorGyroI[3], errorGyroILimit[3];
static float errorGyroIf[3], errorGyroIfLimit[3];
static int32_t errorAngleI[2];
static float errorAngleIf[2];
static void pidRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig);
typedef void (*pidControllerFuncPtr)(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig,
uint16_t max_angle_inclination, rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig); // pid controller function prototype
pidControllerFuncPtr pid_controller = pidRewrite; // which pid controller are we using, defaultMultiWii
pidControllerFuncPtr pid_controller = pidMultiWiiRewrite; // which pid controller are we using, defaultMultiWii
void pidResetErrorAngle(void)
{
errorAngleI[ROLL] = 0;
errorAngleI[PITCH] = 0;
errorAngleIf[ROLL] = 0.0f;
errorAngleIf[PITCH] = 0.0f;
}
void pidResetErrorGyro(void)
{
@ -262,7 +274,157 @@ static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRa
}
}
static void pidRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
static void pidMultiWii23(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{
UNUSED(rxConfig);
int axis, deltaCount, prop = 0;
int32_t rc, error, errorAngle, delta, gyroError;
int32_t PTerm, ITerm, PTermACC, ITermACC, DTerm;
static int16_t lastErrorForDelta[2];
static int32_t previousDelta[3][DELTA_TOTAL_SAMPLES];
if (!deltaStateIsSet && pidProfile->dterm_lpf_hz) {
for (axis = 0; axis < 3; axis++) BiQuadNewLpf(pidProfile->dterm_lpf_hz, &deltaBiQuadState[axis], targetLooptime);
deltaStateIsSet = true;
}
if (FLIGHT_MODE(HORIZON_MODE)) {
prop = MIN(MAX(ABS(rcCommand[PITCH]), ABS(rcCommand[ROLL])), 512);
}
// PITCH & ROLL
for (axis = 0; axis < 2; axis++) {
rc = rcCommand[axis] << 1;
gyroError = gyroADC[axis] / 4;
error = rc - gyroError;
errorGyroI[axis] = constrain(errorGyroI[axis] + error, -16000, +16000); // WindUp 16 bits is ok here
if (ABS(gyroADC[axis]) > (640 * 4)) {
errorGyroI[axis] = 0;
}
// Anti windup protection
if (IS_RC_MODE_ACTIVE(BOXAIRMODE) || IS_RC_MODE_ACTIVE(BOXACROPLUS)) {
errorGyroI[axis] = (int32_t) (errorGyroI[axis] * scaleItermToRcInput(axis));
if (antiWindupProtection || motorLimitReached) {
errorGyroI[axis] = constrain(errorGyroI[axis], -errorGyroILimit[axis], errorGyroILimit[axis]);
} else {
errorGyroILimit[axis] = ABS(errorGyroI[axis]);
}
}
ITerm = (errorGyroI[axis] >> 7) * pidProfile->I8[axis] >> 6; // 16 bits is ok here 16000/125 = 128 ; 128*250 = 32000
PTerm = (int32_t)rc * pidProfile->P8[axis] >> 6;
if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) { // axis relying on ACC
// 50 degrees max inclination
#ifdef GPS
errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#else
errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination),
+max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
#endif
errorAngleI[axis] = constrain(errorAngleI[axis] + errorAngle, -10000, +10000); // WindUp //16 bits is ok here
PTermACC = ((int32_t)errorAngle * pidProfile->P8[PIDLEVEL]) >> 7; // 32 bits is needed for calculation: errorAngle*P8 could exceed 32768 16 bits is ok for result
int16_t limit = pidProfile->D8[PIDLEVEL] * 5;
PTermACC = constrain(PTermACC, -limit, +limit);
ITermACC = ((int32_t)errorAngleI[axis] * pidProfile->I8[PIDLEVEL]) >> 12; // 32 bits is needed for calculation:10000*I8 could exceed 32768 16 bits is ok for result
ITerm = ITermACC + ((ITerm - ITermACC) * prop >> 9);
PTerm = PTermACC + ((PTerm - PTermACC) * prop >> 9);
}
PTerm -= ((int32_t)gyroError * dynP8[axis]) >> 6; // 32 bits is needed for calculation
//-----calculate D-term based on the configured approach (delta from measurement or deltafromError)
if (pidProfile->deltaMethod == DELTA_FROM_ERROR) {
delta = error - lastErrorForDelta[axis];
lastErrorForDelta[axis] = error;
} else { /* Delta from measurement */
delta = -(gyroError - lastErrorForDelta[axis]);
lastErrorForDelta[axis] = gyroError;
}
if (deltaStateIsSet) {
DTerm = lrintf(applyBiQuadFilter((float) delta, &deltaBiQuadState[axis])) * 3; // Keep same scaling as unfiltered delta
} else {
// Apply moving average
DTerm = 0;
for (deltaCount = DELTA_TOTAL_SAMPLES -1; deltaCount > 0; deltaCount--) previousDelta[axis][deltaCount] = previousDelta[axis][deltaCount-1];
previousDelta[axis][0] = delta;
for (deltaCount = 0; deltaCount < DELTA_TOTAL_SAMPLES; deltaCount++) DTerm += previousDelta[axis][deltaCount];
delta = DTerm;
}
DTerm = ((int32_t)DTerm * dynD8[axis]) >> 5; // 32 bits is needed for calculation
axisPID[axis] = PTerm + ITerm + DTerm;
if (IS_RC_MODE_ACTIVE(BOXACROPLUS)) {
acroPlusApply(&acroPlusState[axis], axis, pidProfile);
axisPID[axis] = lrintf(acroPlusState[axis].factor + acroPlusState[axis].wowFactor * axisPID[axis]);
}
#ifdef GTUNE
if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) {
calculate_Gtune(axis);
}
#endif
#ifdef BLACKBOX
axisPID_P[axis] = PTerm;
axisPID_I[axis] = ITerm;
axisPID_D[axis] = DTerm;
#endif
}
//YAW
rc = (int32_t)rcCommand[FD_YAW] * (2 * controlRateConfig->rates[FD_YAW] + 30) >> 5;
#ifdef ALIENWII32
error = rc - gyroADC[FD_YAW];
#else
error = rc - (gyroADC[FD_YAW] / 4);
#endif
errorGyroI[FD_YAW] += (int32_t)error * pidProfile->I8[FD_YAW];
errorGyroI[FD_YAW] = constrain(errorGyroI[FD_YAW], 2 - ((int32_t)1 << 28), -2 + ((int32_t)1 << 28));
if (ABS(rc) > 50) errorGyroI[FD_YAW] = 0;
PTerm = (int32_t)error * pidProfile->P8[FD_YAW] >> 6; // TODO: Bitwise shift on a signed integer is not recommended
// Constrain YAW by D value if not servo driven in that case servolimits apply
if(motorCount >= 4 && pidProfile->yaw_p_limit < YAW_P_LIMIT_MAX) {
PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit);
}
ITerm = constrain((int16_t)(errorGyroI[FD_YAW] >> 13), -GYRO_I_MAX, +GYRO_I_MAX);
axisPID[FD_YAW] = PTerm + ITerm;
#ifdef GTUNE
if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) {
calculate_Gtune(FD_YAW);
}
#endif
#ifdef BLACKBOX
axisPID_P[FD_YAW] = PTerm;
axisPID_I[FD_YAW] = ITerm;
axisPID_D[FD_YAW] = 0;
#endif
}
static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
rollAndPitchTrims_t *angleTrim, rxConfig_t *rxConfig)
{
UNUSED(rxConfig);
@ -411,10 +573,13 @@ void pidSetController(pidControllerType_e type)
switch (type) {
default:
case PID_CONTROLLER_MWREWRITE:
pid_controller = pidRewrite;
pid_controller = pidMultiWiiRewrite;
break;
case PID_CONTROLLER_LUX_FLOAT:
pid_controller = pidLuxFloat;
break;
case PID_CONTROLLER_MW23:
pid_controller = pidMultiWii23;
}
}

View File

@ -37,7 +37,8 @@ typedef enum {
} pidIndex_e;
typedef enum {
PID_CONTROLLER_MWREWRITE = 1,
PID_CONTROLLER_MW23,
PID_CONTROLLER_MWREWRITE,
PID_CONTROLLER_LUX_FLOAT,
PID_COUNT
} pidControllerType_e;
@ -66,6 +67,7 @@ typedef struct pidProfile_s {
uint16_t airModeInsaneAcrobilityFactor; // Air mode acrobility factor
float dterm_lpf_hz; // Delta Filter in hz
uint8_t deltaMethod; // Alternative delta Calculation
uint16_t yaw_p_limit;
#ifdef GTUNE
uint8_t gtune_lolimP[3]; // [0..200] Lower limit of P during G tune
@ -86,5 +88,6 @@ extern int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];
bool antiWindupProtection;
void pidSetController(pidControllerType_e type);
void pidResetErrorAngle(void);
void pidResetErrorGyro(void);

View File

@ -350,7 +350,7 @@ static const char * const lookupTableBlackboxDevice[] = {
static const char * const lookupTablePidController[] = {
"UNUSED", "MWREWRITE", "LUX"
"MW23", "MWREWRITE", "LUX"
};
static const char * const lookupTableSerialRX[] = {
@ -626,6 +626,7 @@ const clivalue_t valueTable[] = {
{ "yaw_motor_direction", VAR_INT8 | MASTER_VALUE, &masterConfig.mixerConfig.yaw_motor_direction, .config.minmax = { -1, 1 } },
{ "airmode_saturation_limit", VAR_UINT8 | MASTER_VALUE, &masterConfig.mixerConfig.airmode_saturation_limit, .config.minmax = { 0, 100 } },
{ "yaw_jump_prevention_limit", VAR_UINT16 | MASTER_VALUE, &masterConfig.mixerConfig.yaw_jump_prevention_limit, .config.minmax = { YAW_JUMP_PREVENTION_LIMIT_LOW, YAW_JUMP_PREVENTION_LIMIT_HIGH } },
{ "yaw_p_limit", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yaw_p_limit, .config.minmax = { YAW_P_LIMIT_MIN, YAW_P_LIMIT_MAX } },
#ifdef USE_SERVOS
{ "tri_unarmed_servo", VAR_INT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.mixerConfig.tri_unarmed_servo, .config.lookup = { TABLE_OFF_ON } },
{ "servo_lowpass_freq", VAR_INT16 | MASTER_VALUE, &masterConfig.mixerConfig.servo_lowpass_freq, .config.minmax = { 10, 400} },

View File

@ -1283,7 +1283,7 @@ static bool processInCommand(void)
setGyroSamplingSpeed(read16());
break;
case MSP_SET_PID_CONTROLLER:
currentProfile->pidProfile.pidController = constrain(read8(), 1, 2);
currentProfile->pidProfile.pidController = read8();
pidSetController(currentProfile->pidProfile.pidController);
break;
case MSP_SET_PID:

View File

@ -116,7 +116,7 @@ int16_t telemTemperature1; // gyro sensor temperature
static uint32_t disarmAt; // Time of automatic disarm when "Don't spin the motors when armed" is enabled and auto_disarm_delay is nonzero
extern uint32_t currentTime;
extern uint8_t PIDweight[3];
extern uint8_t dynP8[3], dynI8[3], dynD8[3], PIDweight[3];
extern bool antiWindupProtection;
static filterStatePt1_t filteredCycleTimeState;
@ -256,6 +256,10 @@ void annexCode(void)
rcCommand[axis] = (lookupYawRC[tmp2] + (tmp - tmp2 * 100) * (lookupYawRC[tmp2 + 1] - lookupYawRC[tmp2]) / 100) * -masterConfig.yaw_control_direction;
prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * ABS(tmp) / 500;
}
// FIXME axis indexes into pids. use something like lookupPidIndex(rc_alias_e alias) to reduce coupling.
dynP8[axis] = (uint16_t)currentProfile->pidProfile.P8[axis] * prop1 / 100;
dynI8[axis] = (uint16_t)currentProfile->pidProfile.I8[axis] * prop1 / 100;
dynD8[axis] = (uint16_t)currentProfile->pidProfile.D8[axis] * prop1 / 100;
// non coupled PID reduction scaler used in PID controller 1 and PID controller 2. YAW TPA disabled. 100 means 100% of the pids
if (axis == YAW) {
@ -292,6 +296,7 @@ void annexCode(void)
scaleRcCommandToFpvCamAngle();
}
if (ARMING_FLAG(ARMED)) {
LED0_ON;
} else {
@ -481,6 +486,7 @@ void processRx(void)
}
} else {
pidResetErrorGyro();
pidResetErrorAngle();
}
} else {
antiWindupProtection = false;