Cleanup MPU9150 support.

This commit is contained in:
Dominic Clifton 2014-12-24 21:36:47 +00:00
parent e9c07675be
commit 36c0b6f106
9 changed files with 79 additions and 432 deletions

View File

@ -414,7 +414,6 @@ STM32F3DISCOVERY_SRC = $(STM32F3DISCOVERY_COMMON_SRC) \
drivers/accgyro_mpu3050.c \
drivers/accgyro_mpu6050.c \
drivers/accgyro_l3g4200d.c \
drivers/accgyro_mpu9150.c \
drivers/barometer_ms5611.c \
drivers/compass_ak8975.c \
$(HIGHEND_SRC) \
@ -430,7 +429,7 @@ MASSIVEF3_SRC = $(STM32F3DISCOVERY_SRC) \
SPARKY_SRC = $(STM32F30x_COMMON_SRC) \
drivers/display_ug2864hsweg01.c \
drivers/accgyro_mpu9150.c \
drivers/accgyro_mpu6050.c \
drivers/barometer_ms5611.c \
drivers/compass_ak8975.c \
$(HIGHEND_SRC) \

View File

@ -1,354 +0,0 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
// NOTE: this file is a copy of the mpu6050 driver with very minimal changes.
// some de-duplication needs to occur...
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "platform.h"
#include "common/maths.h"
#include "system.h"
#include "gpio.h"
#include "bus_i2c.h"
#include "sensor.h"
#include "accgyro.h"
#include "accgyro_mpu9150.h"
#define MPU9150_ADDRESS 0xD0 // (204) 1101000 // See http://www.invensense.com/mems/gyro/documents/PS-MPU-9150A-00v4_3.pdf, section 6.5.
#define DMP_MEM_START_ADDR 0x6E
#define DMP_MEM_R_W 0x6F
#define MPU_RA_XG_OFFS_TC 0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU_RA_YG_OFFS_TC 0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU_RA_ZG_OFFS_TC 0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU_RA_X_FINE_GAIN 0x03 //[7:0] X_FINE_GAIN
#define MPU_RA_Y_FINE_GAIN 0x04 //[7:0] Y_FINE_GAIN
#define MPU_RA_Z_FINE_GAIN 0x05 //[7:0] Z_FINE_GAIN
#define MPU_RA_XA_OFFS_H 0x06 //[15:0] XA_OFFS
#define MPU_RA_XA_OFFS_L_TC 0x07
#define MPU_RA_YA_OFFS_H 0x08 //[15:0] YA_OFFS
#define MPU_RA_YA_OFFS_L_TC 0x09
#define MPU_RA_ZA_OFFS_H 0x0A //[15:0] ZA_OFFS
#define MPU_RA_ZA_OFFS_L_TC 0x0B
#define MPU_RA_PRODUCT_ID 0x0C // Product ID Register
#define MPU_RA_XG_OFFS_USRH 0x13 //[15:0] XG_OFFS_USR
#define MPU_RA_XG_OFFS_USRL 0x14
#define MPU_RA_YG_OFFS_USRH 0x15 //[15:0] YG_OFFS_USR
#define MPU_RA_YG_OFFS_USRL 0x16
#define MPU_RA_ZG_OFFS_USRH 0x17 //[15:0] ZG_OFFS_USR
#define MPU_RA_ZG_OFFS_USRL 0x18
#define MPU_RA_SMPLRT_DIV 0x19
#define MPU_RA_CONFIG 0x1A
#define MPU_RA_GYRO_CONFIG 0x1B
#define MPU_RA_ACCEL_CONFIG 0x1C
#define MPU_RA_FF_THR 0x1D
#define MPU_RA_FF_DUR 0x1E
#define MPU_RA_MOT_THR 0x1F
#define MPU_RA_MOT_DUR 0x20
#define MPU_RA_ZRMOT_THR 0x21
#define MPU_RA_ZRMOT_DUR 0x22
#define MPU_RA_FIFO_EN 0x23
#define MPU_RA_I2C_MST_CTRL 0x24
#define MPU_RA_I2C_SLV0_ADDR 0x25
#define MPU_RA_I2C_SLV0_REG 0x26
#define MPU_RA_I2C_SLV0_CTRL 0x27
#define MPU_RA_I2C_SLV1_ADDR 0x28
#define MPU_RA_I2C_SLV1_REG 0x29
#define MPU_RA_I2C_SLV1_CTRL 0x2A
#define MPU_RA_I2C_SLV2_ADDR 0x2B
#define MPU_RA_I2C_SLV2_REG 0x2C
#define MPU_RA_I2C_SLV2_CTRL 0x2D
#define MPU_RA_I2C_SLV3_ADDR 0x2E
#define MPU_RA_I2C_SLV3_REG 0x2F
#define MPU_RA_I2C_SLV3_CTRL 0x30
#define MPU_RA_I2C_SLV4_ADDR 0x31
#define MPU_RA_I2C_SLV4_REG 0x32
#define MPU_RA_I2C_SLV4_DO 0x33
#define MPU_RA_I2C_SLV4_CTRL 0x34
#define MPU_RA_I2C_SLV4_DI 0x35
#define MPU_RA_I2C_MST_STATUS 0x36
#define MPU_RA_INT_PIN_CFG 0x37
#define MPU_RA_INT_ENABLE 0x38
#define MPU_RA_DMP_INT_STATUS 0x39
#define MPU_RA_INT_STATUS 0x3A
#define MPU_RA_ACCEL_XOUT_H 0x3B
#define MPU_RA_ACCEL_XOUT_L 0x3C
#define MPU_RA_ACCEL_YOUT_H 0x3D
#define MPU_RA_ACCEL_YOUT_L 0x3E
#define MPU_RA_ACCEL_ZOUT_H 0x3F
#define MPU_RA_ACCEL_ZOUT_L 0x40
#define MPU_RA_TEMP_OUT_H 0x41
#define MPU_RA_TEMP_OUT_L 0x42
#define MPU_RA_GYRO_XOUT_H 0x43
#define MPU_RA_GYRO_XOUT_L 0x44
#define MPU_RA_GYRO_YOUT_H 0x45
#define MPU_RA_GYRO_YOUT_L 0x46
#define MPU_RA_GYRO_ZOUT_H 0x47
#define MPU_RA_GYRO_ZOUT_L 0x48
#define MPU_RA_EXT_SENS_DATA_00 0x49
#define MPU_RA_MOT_DETECT_STATUS 0x61
#define MPU_RA_I2C_SLV0_DO 0x63
#define MPU_RA_I2C_SLV1_DO 0x64
#define MPU_RA_I2C_SLV2_DO 0x65
#define MPU_RA_I2C_SLV3_DO 0x66
#define MPU_RA_I2C_MST_DELAY_CTRL 0x67
#define MPU_RA_SIGNAL_PATH_RESET 0x68
#define MPU_RA_MOT_DETECT_CTRL 0x69
#define MPU_RA_USER_CTRL 0x6A
#define MPU_RA_PWR_MGMT_1 0x6B
#define MPU_RA_PWR_MGMT_2 0x6C
#define MPU_RA_BANK_SEL 0x6D
#define MPU_RA_MEM_START_ADDR 0x6E
#define MPU_RA_MEM_R_W 0x6F
#define MPU_RA_DMP_CFG_1 0x70
#define MPU_RA_DMP_CFG_2 0x71
#define MPU_RA_FIFO_COUNTH 0x72
#define MPU_RA_FIFO_COUNTL 0x73
#define MPU_RA_FIFO_R_W 0x74
#define MPU_RA_WHO_AM_I 0x75
#define MPU9150_SMPLRT_DIV 0 // 8000Hz
enum lpf_e {
INV_FILTER_256HZ_NOLPF2 = 0,
INV_FILTER_188HZ,
INV_FILTER_98HZ,
INV_FILTER_42HZ,
INV_FILTER_20HZ,
INV_FILTER_10HZ,
INV_FILTER_5HZ,
INV_FILTER_2100HZ_NOLPF,
NUM_FILTER
};
enum gyro_fsr_e {
INV_FSR_250DPS = 0,
INV_FSR_500DPS,
INV_FSR_1000DPS,
INV_FSR_2000DPS,
NUM_GYRO_FSR
};
enum clock_sel_e {
INV_CLK_INTERNAL = 0,
INV_CLK_PLL,
NUM_CLK
};
enum accel_fsr_e {
INV_FSR_2G = 0,
INV_FSR_4G,
INV_FSR_8G,
INV_FSR_16G,
NUM_ACCEL_FSR
};
static uint8_t mpuLowPassFilter = INV_FILTER_42HZ;
static void mpu9150AccInit(void);
static void mpu9150AccRead(int16_t *accData);
static void mpu9150GyroInit(void);
static void mpu9150GyroRead(int16_t *gyroData);
typedef enum {
MPU_9150_HALF_RESOLUTION,
MPU_9150_FULL_RESOLUTION
} mpu9150Resolution_e;
static mpu9150Resolution_e mpuAccelTrim;
static const mpu9150Config_t *mpu9150Config = NULL;
void mpu9150GpioInit(void) {
gpio_config_t gpio;
if (mpu9150Config->gpioAPB2Peripherals) {
RCC_APB2PeriphClockCmd(mpu9150Config->gpioAPB2Peripherals, ENABLE);
}
gpio.pin = mpu9150Config->gpioPin;
gpio.speed = Speed_2MHz;
gpio.mode = Mode_IN_FLOATING;
gpioInit(mpu9150Config->gpioPort, &gpio);
}
static bool mpu9150Detect(void)
{
bool ack;
uint8_t sig;
ack = i2cRead(MPU9150_ADDRESS, MPU_RA_WHO_AM_I, 1, &sig);
if (!ack) {
return false;
}
// So like, MPU6xxx has a "WHO_AM_I" register, that is used to verify the identity of the device.
// The contents of WHO_AM_I are the upper 6 bits of the MPU-60X0<58>s 7-bit I2C address.
// The least significant bit of the MPU-60X0<58>s I2C address is determined by the value of the AD0 pin. (we know that already).
// But here's the best part: The value of the AD0 pin is not reflected in this register.
return true;
if (sig != (MPU9150_ADDRESS & 0x7e))
return false;
return true;
}
bool mpu9150AccDetect(const mpu9150Config_t *configToUse, acc_t *acc)
{
uint8_t readBuffer[6];
uint8_t revision;
uint8_t productId;
mpu9150Config = configToUse;
if (!mpu9150Detect()) {
return false;
}
// There is a map of revision contained in the android source tree which is quite comprehensive and may help to understand this code
// See https://android.googlesource.com/kernel/msm.git/+/eaf36994a3992b8f918c18e4f7411e8b2320a35f/drivers/misc/mpu6050/mldl_cfg.c
// determine product ID and accel revision
i2cRead(MPU9150_ADDRESS, MPU_RA_XA_OFFS_H, 6, readBuffer);
revision = ((readBuffer[5] & 0x01) << 2) | ((readBuffer[3] & 0x01) << 1) | (readBuffer[1] & 0x01);
if (revision) {
/* Congrats, these parts are better. */
if (revision == 1) {
mpuAccelTrim = MPU_9150_HALF_RESOLUTION;
} else if (revision == 2) {
mpuAccelTrim = MPU_9150_FULL_RESOLUTION;
} else {
failureMode(5);
}
} else {
i2cRead(MPU9150_ADDRESS, MPU_RA_PRODUCT_ID, 1, &productId);
revision = productId & 0x0F;
if (!revision) {
failureMode(5);
} else if (revision == 4) {
mpuAccelTrim = MPU_9150_HALF_RESOLUTION;
} else {
mpuAccelTrim = MPU_9150_FULL_RESOLUTION;
}
}
acc->init = mpu9150AccInit;
acc->read = mpu9150AccRead;
acc->revisionCode = (mpuAccelTrim == MPU_9150_HALF_RESOLUTION ? 'o' : 'n');
return true;
}
bool mpu9150GyroDetect(const mpu9150Config_t *configToUse, gyro_t *gyro, uint16_t lpf)
{
mpu9150Config = configToUse;
if (!mpu9150Detect()) {
return false;
}
gyro->init = mpu9150GyroInit;
gyro->read = mpu9150GyroRead;
// 16.4 dps/lsb scalefactor
gyro->scale = 1.0f / 16.4f;
if (lpf >= 188)
mpuLowPassFilter = INV_FILTER_188HZ;
else if (lpf >= 98)
mpuLowPassFilter = INV_FILTER_98HZ;
else if (lpf >= 42)
mpuLowPassFilter = INV_FILTER_42HZ;
else if (lpf >= 20)
mpuLowPassFilter = INV_FILTER_20HZ;
else if (lpf >= 10)
mpuLowPassFilter = INV_FILTER_10HZ;
else
mpuLowPassFilter = INV_FILTER_5HZ;
return true;
}
static void mpu9150AccInit(void)
{
if (mpu9150Config) {
mpu9150GpioInit();
mpu9150Config = NULL; // avoid re-initialisation of GPIO;
}
switch (mpuAccelTrim) {
case MPU_9150_HALF_RESOLUTION:
acc_1G = 256 * 8;
break;
case MPU_9150_FULL_RESOLUTION:
acc_1G = 512 * 8;
break;
}
}
static void mpu9150AccRead(int16_t *accData)
{
uint8_t buf[6];
if (!i2cRead(MPU9150_ADDRESS, MPU_RA_ACCEL_XOUT_H, 6, buf)) {
return;
}
accData[0] = (int16_t)((buf[0] << 8) | buf[1]);
accData[1] = (int16_t)((buf[2] << 8) | buf[3]);
accData[2] = (int16_t)((buf[4] << 8) | buf[5]);
}
static void mpu9150GyroInit(void)
{
if (mpu9150Config) {
mpu9150GpioInit();
mpu9150Config = NULL; // avoid re-initialisation of GPIO;
}
i2cWrite(MPU9150_ADDRESS, MPU_RA_PWR_MGMT_1, 0x80); //PWR_MGMT_1 -- DEVICE_RESET 1
delay(100);
i2cWrite(MPU9150_ADDRESS, MPU_RA_SMPLRT_DIV, 0x00); //SMPLRT_DIV -- SMPLRT_DIV = 0 Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
i2cWrite(MPU9150_ADDRESS, MPU_RA_PWR_MGMT_1, 0x03); //PWR_MGMT_1 -- SLEEP 0; CYCLE 0; TEMP_DIS 0; CLKSEL 3 (PLL with Z Gyro reference)
i2cWrite(MPU9150_ADDRESS, MPU_RA_INT_PIN_CFG,
0 << 7 | 0 << 6 | 0 << 5 | 0 << 4 | 0 << 3 | 0 << 2 | 1 << 1 | 0 << 0); // INT_PIN_CFG -- INT_LEVEL_HIGH, INT_OPEN_DIS, LATCH_INT_DIS, INT_RD_CLEAR_DIS, FSYNC_INT_LEVEL_HIGH, FSYNC_INT_DIS, I2C_BYPASS_EN, CLOCK_DIS
i2cWrite(MPU9150_ADDRESS, MPU_RA_CONFIG, mpuLowPassFilter); //CONFIG -- EXT_SYNC_SET 0 (disable input pin for data sync) ; default DLPF_CFG = 0 => ACC bandwidth = 260Hz GYRO bandwidth = 256Hz)
i2cWrite(MPU9150_ADDRESS, MPU_RA_GYRO_CONFIG, INV_FSR_2000DPS << 3); //GYRO_CONFIG -- FS_SEL = 3: Full scale set to 2000 deg/sec
// ACC Init stuff. Moved into gyro init because the reset above would screw up accel config. Oops.
// Accel scale 8g (4096 LSB/g)
i2cWrite(MPU9150_ADDRESS, MPU_RA_ACCEL_CONFIG, INV_FSR_8G << 3);
}
static void mpu9150GyroRead(int16_t *gyroData)
{
uint8_t buf[6];
if (!i2cRead(MPU9150_ADDRESS, MPU_RA_GYRO_XOUT_H, 6, buf)) {
return;
}
gyroData[0] = (int16_t)((buf[0] << 8) | buf[1]);
gyroData[1] = (int16_t)((buf[2] << 8) | buf[3]);
gyroData[2] = (int16_t)((buf[4] << 8) | buf[5]);
}

View File

@ -1,29 +0,0 @@
/*
* This file is part of Cleanflight.
*
* Cleanflight is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Cleanflight is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
typedef struct mpu9150Config_s {
uint32_t gpioAPB2Peripherals;
uint16_t gpioPin;
GPIO_TypeDef *gpioPort;
} mpu9150Config_t;
bool mpu9150AccDetect(const mpu9150Config_t *config,acc_t *acc);
bool mpu9150GyroDetect(const mpu9150Config_t *config, gyro_t *gyro, uint16_t lpf);
void mpu9150DmpLoop(void);
void mpu9150DmpResetFifo(void);

View File

@ -20,6 +20,8 @@
#include <math.h>
#include "build_config.h"
#include "platform.h"
#include "common/axis.h"
@ -40,26 +42,30 @@
// This sensor is available in MPU-9150.
// AK8975, mag sensor address
#define AK8975_MAG_I2C_ADDRESS 0x0C
#define AK8975_MAG_ID_ADDRESS 0x00
#define AK8975_MAG_DATA_ADDRESS 0x03
#define AK8975_MAG_CONTROL_ADDRESS 0x0A
#define AK8975_MAG_I2C_ADDRESS 0x0C
// Registers
#define AK8975_MAG_REG_WHO_AM_I 0x00
#define AK8975_MAG_REG_INFO 0x01
#define AK8975_MAG_REG_STATUS1 0x02
#define AK8975_MAG_REG_HXL 0x03
#define AK8975_MAG_REG_HXH 0x04
#define AK8975_MAG_REG_HYL 0x05
#define AK8975_MAG_REG_HYH 0x06
#define AK8975_MAG_REG_HZL 0x07
#define AK8975_MAG_REG_HZH 0x08
#define AK8975_MAG_REG_STATUS2 0x09
#define AK8975_MAG_REG_CNTL 0x0a
#define AK8975_MAG_REG_ASCT 0x0c // self test
bool ak8975detect(mag_t *mag)
{
bool ack = false;
uint8_t sig = 0;
uint8_t ackCount = 0;
for (uint8_t address = 0; address < 0xff; address++) {
ack = i2cRead(address, AK8975_MAG_ID_ADDRESS, 1, &sig);
if (ack) {
ackCount++;
}
}
// device ID is in register 0 and is equal to 'H'
ack = i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_ID_ADDRESS, 1, &sig);
if (!ack || sig != 'H')
ack = i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_WHO_AM_I, 1, &sig);
if (!ack || sig != 'H') // 0x48 / 01001000 / 'H'
return false;
mag->init = ak8975Init;
@ -70,14 +76,54 @@ bool ak8975detect(mag_t *mag)
void ak8975Init()
{
i2cWrite(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_CONTROL_ADDRESS, 0x01); // start reading
bool ack;
UNUSED(ack);
ack = i2cWrite(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x00);
delay(20);
uint8_t status;
// Clear status registers
ack = i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS1, 1, &status);
ack = i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS2, 1, &status);
// Trigger first measurement
ack = i2cWrite(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x01);
}
#define BIT_STATUS1_REG_DATA_READY (1 << 0)
#define BIT_STATUS2_REG_DATA_ERROR (1 << 2)
#define BIT_STATUS2_REG_MAG_SENSOR_OVERFLOW (1 << 3)
void ak8975Read(int16_t *magData)
{
bool ack;
UNUSED(ack);
uint8_t status;
uint8_t buf[6];
i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_DATA_ADDRESS, 6, buf);
ack = i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS1, 1, &status);
if (!ack || (status & BIT_STATUS1_REG_DATA_READY) == 0) {
return;
}
ack = i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_HXL, 6, buf); // read from AK8975_MAG_REG_HXL to AK8975_MAG_REG_HZH
ack = i2cRead(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_STATUS2, 1, &status);
if (!ack) {
return;
}
if (status & BIT_STATUS2_REG_DATA_ERROR) {
return;
}
if (status & BIT_STATUS2_REG_MAG_SENSOR_OVERFLOW) {
return;
}
// align sensors to match MPU6050:
// x -> y
// y -> x
@ -86,5 +132,6 @@ void ak8975Read(int16_t *magData)
magData[Y] = -(int16_t)(buf[1] << 8 | buf[0]) * 4;
magData[Z] = -(int16_t)(buf[5] << 8 | buf[4]) * 4;
i2cWrite(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_CONTROL_ADDRESS, 0x01); // start reading again
ack = i2cWrite(AK8975_MAG_I2C_ADDRESS, AK8975_MAG_REG_CNTL, 0x01); // start reading again
}

View File

@ -144,7 +144,7 @@ static const char * const sensorNames[] = {
};
static const char * const accNames[] = {
"", "ADXL345", "MPU6050", "MMA845x", "BMA280", "LSM303DLHC", "MPU6000", "MPU6500", "MPU9150", "FAKE", "None", NULL
"", "ADXL345", "MPU6050", "MMA845x", "BMA280", "LSM303DLHC", "MPU6000", "MPU6500", "FAKE", "None", NULL
};
typedef struct {

View File

@ -27,9 +27,8 @@ typedef enum AccelSensors {
ACC_LSM303DLHC = 5,
ACC_SPI_MPU6000 = 6,
ACC_SPI_MPU6500 = 7,
ACC_MPU9150 = 8,
ACC_FAKE = 9,
ACC_NONE = 10
ACC_FAKE = 8,
ACC_NONE = 9
} accelSensor_e;
extern uint8_t accHardware;

View File

@ -33,8 +33,6 @@
#include "drivers/accgyro_mma845x.h"
#include "drivers/accgyro_mpu3050.h"
#include "drivers/accgyro_mpu6050.h"
#include "drivers/accgyro_mpu9150.h"
#include "drivers/accgyro_l3gd20.h"
#include "drivers/accgyro_lsm303dlhc.h"
@ -146,12 +144,6 @@ bool detectGyro(uint16_t gyroLpf)
}
#endif
#ifdef USE_GYRO_MPU9150
if (mpu9150GyroDetect(NULL, &gyro, gyroLpf)) {
return true;
}
#endif
#ifdef USE_GYRO_L3G4200D
if (l3g4200dDetect(&gyro, gyroLpf)) {
#ifdef NAZE
@ -258,15 +250,6 @@ retry:
}
; // fallthrough
#endif
#ifdef USE_ACC_MPU9150
case ACC_MPU9150: // MPU9150
if (mpu9150AccDetect(NULL, &acc)) {
accHardware = ACC_MPU9150;
if (accHardwareToUse == ACC_MPU9150)
break;
}
; // fallthrough
#endif
#ifdef USE_ACC_MMA8452
case ACC_MMA8452: // MMA8452
#ifdef NAZE
@ -486,9 +469,7 @@ bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint16_t
sensorsSet(SENSOR_GYRO);
detectAcc(accHardwareToUse);
detectBaro();
detectMag(magHardwareToUse);
reconfigureAlignment(sensorAlignmentConfig);
// Now time to init things, acc first
if (sensors(SENSOR_ACC))
@ -496,6 +477,10 @@ bool sensorsAutodetect(sensorAlignmentConfig_t *sensorAlignmentConfig, uint16_t
// this is safe because either mpu6050 or mpu3050 or lg3d20 sets it, and in case of fail, we never get here.
gyro.init();
detectMag(magHardwareToUse);
reconfigureAlignment(sensorAlignmentConfig);
// FIXME extract to a method to reduce dependencies, maybe move to sensors_compass.c
if (sensors(SENSOR_MAG)) {
// calculate magnetic declination

View File

@ -35,10 +35,10 @@
#define GYRO
#define USE_GYRO_L3GD20
#define USE_GYRO_MPU9150
#define USE_GYRO_MPU6050
#define ACC
#define USE_ACC_MPU9150
#define USE_ACC_MPU6050
#define USE_ACC_LSM303DLHC
#define BARO

View File

@ -26,15 +26,15 @@
#define LED1_PIN Pin_5 // Green LEDs - PB5
#define LED1_PERIPHERAL RCC_AHBPeriph_GPIOB
// MPU 9150 INT connected to PA15, pulled up to VCC by 10K Resistor
// MPU 9150 INT connected to PA15, pulled up to VCC by 10K Resistor, contains MPU6050 and AK8975 in single component.
#define GYRO
#define USE_GYRO_MPU9150
#define USE_GYRO_MPU6050
#define ACC
#define USE_ACC_MPU9150
#define USE_ACC_MPU6050
#define BARO
#define USE_BARO_MS5611
//#define BARO
//#define USE_BARO_MS5611
#define MAG
#define USE_MAG_AK8975