Remove FY90Q support. Dead hardware, not even available anymore, and doesn't offer anything over already cheap acroafro.

This commit is contained in:
dongie 2014-05-29 11:38:20 +09:00
parent 8b6ff25bdb
commit 3d39ece50f
9 changed files with 7 additions and 2291 deletions

View File

@ -14,7 +14,7 @@
# Things that the user might override on the commandline # Things that the user might override on the commandline
# #
# The target to build, must be one of NAZE, FY90Q OR OLIMEXINO # The target to build, must be one of NAZE OR OLIMEXINO
TARGET ?= NAZE TARGET ?= NAZE
# Compile-time options # Compile-time options
@ -30,7 +30,7 @@ SERIAL_DEVICE ?= /dev/ttyUSB0
# Things that need to be maintained as the source changes # Things that need to be maintained as the source changes
# #
VALID_TARGETS = NAZE FY90Q OLIMEXINO VALID_TARGETS = NAZE OLIMEXINO
# Working directories # Working directories
ROOT = $(dir $(lastword $(MAKEFILE_LIST))) ROOT = $(dir $(lastword $(MAKEFILE_LIST)))
@ -89,11 +89,6 @@ NAZE_SRC = drv_adc.c \
drv_timer.c \ drv_timer.c \
$(COMMON_SRC) $(COMMON_SRC)
# Source files for the FY90Q target
FY90Q_SRC = drv_adc_fy90q.c \
drv_pwm_fy90q.c \
$(COMMON_SRC)
# Source files for the OLIMEXINO target # Source files for the OLIMEXINO target
OLIMEXINO_SRC = drv_spi.c \ OLIMEXINO_SRC = drv_spi.c \
drv_adc.c \ drv_adc.c \

File diff suppressed because it is too large Load Diff

View File

@ -1,359 +0,0 @@
;******************** (C) COPYRIGHT 2011 STMicroelectronics ********************
;* File Name : startup_stm32f10x_md.s
;* Author : MCD Application Team
;* Version : V3.5.0
;* Date : 11-March-2011
;* Description : STM32F10x Medium Density Devices vector table for MDK-ARM
;* toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR address
;* - Configure the clock system
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the CortexM3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
; THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00001000
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_IRQHandler ; Tamper
DCD RTC_IRQHandler ; RTC
DCD FLASH_IRQHandler ; Flash
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_2_IRQHandler ; ADC1_2
DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX
DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0
DCD CAN1_RX1_IRQHandler ; CAN1 RX1
DCD CAN1_SCE_IRQHandler ; CAN1 SCE
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD TIM1_BRK_IRQHandler ; TIM1 Break
DCD TIM1_UP_IRQHandler ; TIM1 Update
DCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and Commutation
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
IMPORT SystemInit
LDR R0, =0x20004FF0
LDR R1, =0xDEADBEEF
LDR R2, [R0, #0]
STR R0, [R0, #0] ; Invalidate
CMP R2, R1
BEQ Reboot_Loader
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
RCC_APB2ENR EQU 0x40021018
GPIO_AFIO_MASK EQU 0x00000015
GPIOA_CRH EQU 0x40010804
GPIOA_BRR EQU 0x40010814
GPIOC_CRH EQU 0x40011004
GPIOC_BRR EQU 0x40011014
AFIO_MAPR EQU 0x40010004
Reboot_Loader PROC
EXPORT Reboot_Loader
; RCC Enable GPIOA+C+AFIO
LDR R6, =RCC_APB2ENR
LDR R0, =GPIO_AFIO_MASK
STR R0, [R6]
; MAPR pt1
LDR R0, =AFIO_MAPR
LDR R1, [R0]
BIC R1, R1, #0xF000000
STR R1, [R0]
; MAPR pt2
LSLS R1, R0, #9
STR R1, [R0]
; GPIO A BRR
LDR R4, =GPIOA_BRR
MOVS R0, #0x8000
STR R0, [R4]
; GPIO A CRL
LDR R1, =GPIOA_CRH
LDR R0, =0x34444444
STR R0, [R1]
; GPIO C BRR
LDR R4, =GPIOC_BRR
MOVS R0, #0x1000
STR R0, [R4]
; GPIO C CRL
LDR R1, =GPIOC_CRH
LDR R0, =0x44434444
STR R0, [R1]
; Reboot to ROM
LDR R0, =0x1FFFF000
LDR SP,[R0, #0]
LDR R0,[R0, #4]
BX R0
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_2_IRQHandler [WEAK]
EXPORT USB_HP_CAN1_TX_IRQHandler [WEAK]
EXPORT USB_LP_CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_SCE_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT TIM1_BRK_IRQHandler [WEAK]
EXPORT TIM1_UP_IRQHandler [WEAK]
EXPORT TIM1_TRG_COM_IRQHandler [WEAK]
EXPORT TIM1_CC_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTCAlarm_IRQHandler [WEAK]
EXPORT USBWakeUp_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_2_IRQHandler
USB_HP_CAN1_TX_IRQHandler
USB_LP_CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_SCE_IRQHandler
EXTI9_5_IRQHandler
TIM1_BRK_IRQHandler
TIM1_UP_IRQHandler
TIM1_TRG_COM_IRQHandler
TIM1_CC_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTCAlarm_IRQHandler
USBWakeUp_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END
;******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE*****

View File

@ -176,22 +176,6 @@ typedef struct baro_t {
} baro_t; } baro_t;
// Hardware definitions and GPIO // Hardware definitions and GPIO
#ifdef FY90Q
// FY90Q
#define LED0_GPIO GPIOC
#define LED0_PIN Pin_12
#define LED1_GPIO GPIOA
#define LED1_PIN Pin_15
#define GYRO
#define ACC
#define LED0
#define LED1
#define SENSORS_SET (SENSOR_ACC)
#else
#ifdef OLIMEXINO #ifdef OLIMEXINO
// OLIMEXINO // OLIMEXINO
@ -238,7 +222,6 @@ typedef struct baro_t {
#define SENSORS_SET (SENSOR_ACC | SENSOR_BARO | SENSOR_MAG) #define SENSORS_SET (SENSOR_ACC | SENSOR_BARO | SENSOR_MAG)
// #define PROD_DEBUG // #define PROD_DEBUG
#endif
#endif #endif
// Helpful macros // Helpful macros
@ -276,14 +259,6 @@ typedef struct baro_t {
#include "utils.h" #include "utils.h"
#ifdef FY90Q
// FY90Q
#include "drv_adc.h"
#include "drv_i2c.h"
#include "drv_pwm.h"
#include "drv_uart.h"
#else
#ifdef OLIMEXINO #ifdef OLIMEXINO
// OLIMEXINO // OLIMEXINO
#include "drv_adc.h" #include "drv_adc.h"
@ -322,4 +297,3 @@ typedef struct baro_t {
#include "drv_hcsr04.h" #include "drv_hcsr04.h"
#endif #endif
#endif

View File

@ -13,6 +13,3 @@ typedef struct drv_adc_config_t {
void adcInit(drv_adc_config_t *init); void adcInit(drv_adc_config_t *init);
uint16_t adcGetChannel(uint8_t channel); uint16_t adcGetChannel(uint8_t channel);
#ifdef FY90Q
void adcSensorInit(sensor_t *acc, sensor_t *gyro);
#endif

View File

@ -1,145 +0,0 @@
#ifdef FY90Q
#include "board.h"
#define ADC_CHANNELS 9
volatile uint16_t adcData[ADC_CHANNELS] = { 0, };
extern uint16_t acc_1G;
static void adcAccRead(int16_t *accelData);
static void adcAccAlign(int16_t *accelData);
static void adcGyroRead(int16_t *gyroData);
static void adcGyroAlign(int16_t *gyroData);
static void adcDummyInit(void);
void adcSensorInit(sensor_t *acc, sensor_t *gyro)
{
acc->init = adcDummyInit;
acc->read = adcAccRead;
acc->align = adcAccAlign;
gyro->init = adcDummyInit;
gyro->read = adcGyroRead;
gyro->align = adcGyroAlign;
gyro->scale = 1.0f;
acc_1G = 376;
}
void adcCalibrateADC(ADC_TypeDef *ADCx, int n)
{
while (n > 0) {
delay(5);
// Enable ADC reset calibration register
ADC_ResetCalibration(ADCx);
// Check the end of ADC reset calibration register
while(ADC_GetResetCalibrationStatus(ADCx));
// Start ADC calibration
ADC_StartCalibration(ADCx);
// Check the end of ADC calibration
while(ADC_GetCalibrationStatus(ADCx));
n--;
}
}
void adcInit(void)
{
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
// ADC assumes all the GPIO was already placed in 'AIN' mode
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&adcData;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = ADC_CHANNELS;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
/* Enable DMA1 channel1 */
DMA_Cmd(DMA1_Channel1, ENABLE);
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = ADC_CHANNELS;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_28Cycles5); // GY_X
ADC_RegularChannelConfig(ADC1, ADC_Channel_11, 2, ADC_SampleTime_28Cycles5); // GY_Y
ADC_RegularChannelConfig(ADC1, ADC_Channel_12, 3, ADC_SampleTime_28Cycles5); // GY_Z
ADC_RegularChannelConfig(ADC1, ADC_Channel_13, 4, ADC_SampleTime_28Cycles5); // ACC_X
ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 5, ADC_SampleTime_28Cycles5); // ACC_Y
ADC_RegularChannelConfig(ADC1, ADC_Channel_15, 6, ADC_SampleTime_28Cycles5); // ACC_Z
ADC_RegularChannelConfig(ADC1, ADC_Channel_5, 7, ADC_SampleTime_28Cycles5); // POT_ELE
ADC_RegularChannelConfig(ADC1, ADC_Channel_6, 8, ADC_SampleTime_28Cycles5); // POT_AIL
ADC_RegularChannelConfig(ADC1, ADC_Channel_7, 9, ADC_SampleTime_28Cycles5); // POT_RUD
ADC_DMACmd(ADC1, ENABLE);
ADC_Cmd(ADC1, ENABLE);
// Calibrate ADC
adcCalibrateADC(ADC1, 2);
// Fire off ADC
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
static void adcAccRead(int16_t *accelData)
{
// ADXL335
// 300mV/g
// Vcc 3.0V
accelData[0] = adcData[3];
accelData[1] = adcData[4];
accelData[2] = adcData[5];
}
static void adcAccAlign(int16_t *accelData)
{
// align OK
}
static void adcGyroRead(int16_t *gyroData)
{
// Vcc: 3.0V
// Pitch/Roll: LPR550AL, 2000dps mode.
// 0.5mV/dps
// Zero-rate: 1.23V
// Yaw: LPY550AL, 2000dps mode.
// 0.5mV/dps
// Zero-rate: 1.23V
// Need to match with: 14.375lsb per dps
// 12-bit ADC
gyroData[0] = adcData[0] * 2;
gyroData[1] = adcData[1] * 2;
gyroData[2] = adcData[2] * 2;
}
static void adcGyroAlign(int16_t *gyroData)
{
// align OK
}
static void adcDummyInit(void)
{
// nothing to init here
}
uint16_t adcGetBattery(void)
{
return 0;
}
#endif

View File

@ -1,344 +0,0 @@
#ifdef FY90Q
#include "board.h"
#define PULSE_1MS (1000) // 1ms pulse width
// #define PULSE_PERIOD (2500) // pulse period (400Hz)
// #define PULSE_PERIOD_SERVO_DIGITAL (5000) // pulse period for digital servo (200Hz)
// #define PULSE_PERIOD_SERVO_ANALOG (20000) // pulse period for analog servo (50Hz)
// Forward declaration
static void pwmIRQHandler(TIM_TypeDef *tim);
static void ppmIRQHandler(TIM_TypeDef *tim);
// external vars (ugh)
extern int16_t failsafeCnt;
// local vars
static struct TIM_Channel {
TIM_TypeDef *tim;
uint16_t channel;
uint16_t cc;
} Channels[] = {
{ TIM2, TIM_Channel_1, TIM_IT_CC1 },
{ TIM2, TIM_Channel_2, TIM_IT_CC2 },
{ TIM2, TIM_Channel_3, TIM_IT_CC3 },
{ TIM2, TIM_Channel_4, TIM_IT_CC4 },
{ TIM3, TIM_Channel_1, TIM_IT_CC1 },
{ TIM3, TIM_Channel_2, TIM_IT_CC2 },
{ TIM3, TIM_Channel_3, TIM_IT_CC3 },
{ TIM3, TIM_Channel_4, TIM_IT_CC4 },
};
static volatile uint16_t *OutputChannels[] = {
&(TIM4->CCR1),
&(TIM4->CCR2),
&(TIM4->CCR3),
&(TIM4->CCR4),
// Extended use during CPPM input (TODO)
&(TIM3->CCR1),
&(TIM3->CCR2),
&(TIM3->CCR3),
&(TIM3->CCR4),
};
static struct PWM_State {
uint8_t state;
uint16_t rise;
uint16_t fall;
uint16_t capture;
} Inputs[8] = { { 0, } };
static TIM_ICInitTypeDef TIM_ICInitStructure = { 0, };
static bool usePPMFlag = false;
static uint8_t numOutputChannels = 0;
void TIM2_IRQHandler(void)
{
if (usePPMFlag)
ppmIRQHandler(TIM2);
else
pwmIRQHandler(TIM2);
}
static void ppmIRQHandler(TIM_TypeDef *tim)
{
uint16_t diff;
static uint16_t now;
static uint16_t last = 0;
static uint8_t chan = 0;
static uint8_t GoodPulses;
if (TIM_GetITStatus(tim, TIM_IT_CC1) == SET) {
last = now;
now = TIM_GetCapture1(tim);
rcActive = true;
}
TIM_ClearITPendingBit(tim, TIM_IT_CC1);
if (now > last) {
diff = (now - last);
} else {
diff = ((0xFFFF - last) + now);
}
if (diff > 4000) {
chan = 0;
} else {
if (diff > PULSE_MIN && diff < PULSE_MAX && chan < 8) { // 750 to 2250 ms is our 'valid' channel range
Inputs[chan].capture = diff;
if (chan < 4 && diff > FAILSAFE_DETECT_TRESHOLD)
GoodPulses |= (1 << chan); // if signal is valid - mark channel as OK
if (GoodPulses == 0x0F) { // If first four chanells have good pulses, clear FailSafe counter
GoodPulses = 0;
if (failsafeCnt > 20)
failsafeCnt -= 20;
else
failsafeCnt = 0;
}
}
chan++;
failsafeCnt = 0;
}
}
static void pwmIRQHandler(TIM_TypeDef *tim)
{
uint8_t i;
uint16_t val = 0;
for (i = 0; i < 8; i++) {
struct TIM_Channel channel = Channels[i];
struct PWM_State *state = &Inputs[i];
if (channel.tim == tim && (TIM_GetITStatus(tim, channel.cc) == SET)) {
TIM_ClearITPendingBit(channel.tim, channel.cc);
switch (channel.channel) {
case TIM_Channel_1:
val = TIM_GetCapture1(channel.tim);
break;
case TIM_Channel_2:
val = TIM_GetCapture2(channel.tim);
break;
case TIM_Channel_3:
val = TIM_GetCapture3(channel.tim);
break;
case TIM_Channel_4:
val = TIM_GetCapture4(channel.tim);
break;
}
if (state->state == 0)
state->rise = val;
else
state->fall = val;
if (state->state == 0) {
// switch states
state->state = 1;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
TIM_ICInitStructure.TIM_Channel = channel.channel;
TIM_ICInit(channel.tim, &TIM_ICInitStructure);
} else {
// compute capture
if (state->fall > state->rise)
state->capture = (state->fall - state->rise);
else
state->capture = ((0xffff - state->rise) + state->fall);
// switch state
state->state = 0;
// ping failsafe
failsafeCnt = 0;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_Channel = channel.channel;
TIM_ICInit(channel.tim, &TIM_ICInitStructure);
}
}
}
}
static void pwmInitializeInput(bool usePPM)
{
GPIO_InitTypeDef GPIO_InitStructure = { 0, };
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = { 0, };
NVIC_InitTypeDef NVIC_InitStructure = { 0, };
uint8_t i;
// Input pins
if (usePPM) {
// Configure TIM2_CH1 for PPM input
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Input timer on TIM2 only for PPM
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// TIM2 timebase
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Prescaler = (72 - 1);
TIM_TimeBaseStructure.TIM_Period = 0xffff;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
// Input capture on TIM2_CH1 for PPM
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;
TIM_ICInit(TIM2, &TIM_ICInitStructure);
// TIM2_CH1 capture compare interrupt enable
TIM_ITConfig(TIM2, TIM_IT_CC1, ENABLE);
TIM_Cmd(TIM2, ENABLE);
// configure number of PWM outputs, in PPM mode, we use bottom 4 channels more more motors
numOutputChannels = 10;
} else {
// Configure TIM2 all 4 channels
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// TODO Configure EXTI4 1 channel
// Input timers on TIM2 for PWM
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// TIM2 timebase
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Prescaler = (72 - 1);
TIM_TimeBaseStructure.TIM_Period = 0xffff;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
// PWM Input capture
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0;
for (i = 0; i < 4; i++) {
TIM_ICInitStructure.TIM_Channel = Channels[i].channel;
TIM_ICInit(Channels[i].tim, &TIM_ICInitStructure);
}
// TODO EXTI4
TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);
// TODO EXTI4
TIM_Cmd(TIM2, ENABLE);
// In PWM input mode, all 4 channels are wasted
numOutputChannels = 4;
}
}
bool pwmInit(drv_pwm_config_t *init)
{
GPIO_InitTypeDef GPIO_InitStructure = { 0, };
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure = { 0, };
TIM_OCInitTypeDef TIM_OCInitStructure = { 0, };
uint8_t i;
// Inputs
// RX1 TIM2_CH1 PA0 [also PPM] [also used for throttle calibration]
// RX2 TIM2_CH2 PA1
// RX3 TIM2_CH3 PA2 [also UART2_TX]
// RX4 TIM2_CH4 PA3 [also UART2_RX]
// RX5 TIM3_CH1 PA6 [also ADC_IN6]
// RX6 TIM3_CH2 PA7 [also ADC_IN7]
// RX7 TIM3_CH3 PB0 [also ADC_IN8]
// RX8 TIM3_CH4 PB1 [also ADC_IN9]
// Outputs
// PWM1 TIM1_CH1 PA8
// PWM2 TIM1_CH4 PA11
// PWM3 TIM4_CH1 PB6 [also I2C1_SCL]
// PWM4 TIM4_CH2 PB7 [also I2C1_SDA]
// PWM5 TIM4_CH3 PB8
// PWM6 TIM4_CH4 PB9
// use PPM or PWM input
usePPMFlag = init->usePPM;
// preset channels to center
for (i = 0; i < 8; i++)
Inputs[i].capture = 1500;
// Timers run at 1mhz.
// TODO: clean this shit up. Make it all dynamic etc.
if (init->enableInput)
pwmInitializeInput(usePPMFlag);
// Output pins (4x)
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// Output timer
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Prescaler = (72 - 1);
TIM_TimeBaseStructure.TIM_Period = (1000000 / init->motorPwmRate) - 1;
TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;
TIM_OCInitStructure.TIM_Pulse = PULSE_1MS;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
// PWM1,2,3,4
TIM_OC1Init(TIM4, &TIM_OCInitStructure);
TIM_OC2Init(TIM4, &TIM_OCInitStructure);
TIM_OC3Init(TIM4, &TIM_OCInitStructure);
TIM_OC4Init(TIM4, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM4, TIM_OCPreload_Enable);
TIM_OC2PreloadConfig(TIM4, TIM_OCPreload_Enable);
TIM_OC3PreloadConfig(TIM4, TIM_OCPreload_Enable);
TIM_OC4PreloadConfig(TIM4, TIM_OCPreload_Enable);
TIM_Cmd(TIM4, ENABLE);
TIM_CtrlPWMOutputs(TIM4, ENABLE);
TIM_OC1PreloadConfig (TIM4, TIM_OCPreload_Enable);
// turn on more motor outputs if we're using ppm / not using pwm input
if (!init->enableInput || init->usePPM) {
// TODO
}
return false;
}
void pwmWrite(uint8_t channel, uint16_t value)
{
if (channel < numOutputChannels)
*OutputChannels[channel] = value;
}
uint16_t pwmRead(uint8_t channel)
{
return Inputs[channel].capture;
}
#endif

View File

@ -121,9 +121,7 @@ void systemInit(bool overclock)
SysTick_Config(SystemCoreClock / 1000); SysTick_Config(SystemCoreClock / 1000);
// Configure the rest of the stuff // Configure the rest of the stuff
#ifndef FY90Q
i2cInit(I2C2); i2cInit(I2C2);
#endif
spiInit(); spiInit();
// sleep for 100ms // sleep for 100ms

View File

@ -20,15 +20,6 @@ sensor_t gyro; // gyro access functions
baro_t baro; // barometer access functions baro_t baro; // barometer access functions
uint8_t accHardware = ACC_DEFAULT; // which accel chip is used/detected uint8_t accHardware = ACC_DEFAULT; // which accel chip is used/detected
#ifdef FY90Q
// FY90Q analog gyro/acc
bool sensorsAutodetect(void)
{
adcSensorInit(&acc, &gyro);
return true;
}
#else
// AfroFlight32 i2c sensors
bool sensorsAutodetect(void) bool sensorsAutodetect(void)
{ {
int16_t deg, min; int16_t deg, min;
@ -133,7 +124,6 @@ retry:
return true; return true;
} }
#endif
uint16_t batteryAdcToVoltage(uint16_t src) uint16_t batteryAdcToVoltage(uint16_t src)
{ {