Merge pull request #6517 from ctzsnooze/DynFiltV5
Dynamic Filter Update
This commit is contained in:
commit
43e6ea31da
|
@ -372,6 +372,15 @@ static const char * const lookupTableRcSmoothingDerivativeType[] = {
|
|||
};
|
||||
#endif // USE_RC_SMOOTHING_FILTER
|
||||
|
||||
#ifdef USE_GYRO_DATA_ANALYSE
|
||||
static const char * const lookupTableDynamicFftLocation[] = {
|
||||
"BEFORE_STATIC_FILTERS", "AFTER_STATIC_FILTERS"
|
||||
};
|
||||
static const char * const lookupTableDynamicFilterRange[] = {
|
||||
"HIGH", "MEDIUM", "LOW"
|
||||
};
|
||||
#endif // USE_GYRO_DATA_ANALYSE
|
||||
|
||||
#define LOOKUP_TABLE_ENTRY(name) { name, ARRAYLEN(name) }
|
||||
|
||||
const lookupTableEntry_t lookupTables[] = {
|
||||
|
@ -461,6 +470,11 @@ const lookupTableEntry_t lookupTables[] = {
|
|||
LOOKUP_TABLE_ENTRY(lookupTableRcSmoothingInputType),
|
||||
LOOKUP_TABLE_ENTRY(lookupTableRcSmoothingDerivativeType),
|
||||
#endif // USE_RC_SMOOTHING_FILTER
|
||||
#ifdef USE_GYRO_DATA_ANALYSE
|
||||
LOOKUP_TABLE_ENTRY(lookupTableDynamicFftLocation),
|
||||
LOOKUP_TABLE_ENTRY(lookupTableDynamicFilterRange),
|
||||
#endif // USE_GYRO_DATA_ANALYSE
|
||||
|
||||
};
|
||||
|
||||
#undef LOOKUP_TABLE_ENTRY
|
||||
|
@ -506,8 +520,9 @@ const clivalue_t valueTable[] = {
|
|||
{ "gyro_to_use", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_GYRO }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, gyro_to_use) },
|
||||
#endif
|
||||
#if defined(USE_GYRO_DATA_ANALYSE)
|
||||
{ "dyn_notch_quality", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 1, 70 }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_notch_quality) },
|
||||
{ "dyn_notch_width_percent", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 1, 99 }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_notch_width_percent) },
|
||||
{ "dyn_fft_location", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_DYNAMIC_FFT_LOCATION }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_fft_location) },
|
||||
{ "dyn_filter_width_percent", VAR_UINT8 | MASTER_VALUE, .config.minmax = { 1, 99 }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_filter_width_percent) },
|
||||
{ "dyn_filter_range", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, .config.lookup = { TABLE_DYNAMIC_FILTER_RANGE }, PG_GYRO_CONFIG, offsetof(gyroConfig_t, dyn_filter_range) },
|
||||
#endif
|
||||
|
||||
// PG_ACCELEROMETER_CONFIG
|
||||
|
|
|
@ -112,6 +112,11 @@ typedef enum {
|
|||
TABLE_RC_SMOOTHING_INPUT_TYPE,
|
||||
TABLE_RC_SMOOTHING_DERIVATIVE_TYPE,
|
||||
#endif // USE_RC_SMOOTHING_FILTER
|
||||
#ifdef USE_GYRO_DATA_ANALYSE
|
||||
TABLE_DYNAMIC_FFT_LOCATION,
|
||||
TABLE_DYNAMIC_FILTER_RANGE,
|
||||
#endif // USE_GYRO_DATA_ANALYSE
|
||||
|
||||
LOOKUP_TABLE_COUNT
|
||||
} lookupTableIndex_e;
|
||||
|
||||
|
|
|
@ -144,8 +144,11 @@ typedef struct gyroSensor_s {
|
|||
#endif // USE_YAW_SPIN_RECOVERY
|
||||
|
||||
#ifdef USE_GYRO_DATA_ANALYSE
|
||||
#define DYNAMIC_NOTCH_DEFAULT_CENTER_HZ 350
|
||||
#define DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ 300
|
||||
gyroAnalyseState_t gyroAnalyseState;
|
||||
#endif
|
||||
|
||||
} gyroSensor_t;
|
||||
|
||||
STATIC_UNIT_TESTED FAST_RAM_ZERO_INIT gyroSensor_t gyroSensor1;
|
||||
|
@ -203,8 +206,9 @@ PG_RESET_TEMPLATE(gyroConfig_t, gyroConfig,
|
|||
.gyro_offset_yaw = 0,
|
||||
.yaw_spin_recovery = true,
|
||||
.yaw_spin_threshold = 1950,
|
||||
.dyn_notch_quality = 70,
|
||||
.dyn_notch_width_percent = 50,
|
||||
.dyn_filter_width_percent = 40,
|
||||
.dyn_fft_location = DYN_FFT_AFTER_STATIC_FILTERS,
|
||||
.dyn_filter_range = DYN_FILTER_RANGE_MEDIUM,
|
||||
);
|
||||
|
||||
|
||||
|
@ -510,6 +514,7 @@ static bool gyroInitSensor(gyroSensor_t *gyroSensor)
|
|||
|
||||
#ifdef USE_GYRO_DATA_ANALYSE
|
||||
gyroDataAnalyseStateInit(&gyroSensor->gyroAnalyseState, gyro.targetLooptime);
|
||||
|
||||
#endif
|
||||
|
||||
return true;
|
||||
|
@ -662,7 +667,7 @@ void gyroInitLowpassFilterLpf(gyroSensor_t *gyroSensor, int slot, int type, uint
|
|||
|
||||
// Dereference the pointer to null before checking valid cutoff and filter
|
||||
// type. It will be overridden for positive cases.
|
||||
*lowpassFilterApplyFn = &nullFilterApply;
|
||||
*lowpassFilterApplyFn = nullFilterApply;
|
||||
|
||||
// If lowpass cutoff has been specified and is less than the Nyquist frequency
|
||||
if (lpfHz && lpfHz <= gyroFrequencyNyquist) {
|
||||
|
@ -748,9 +753,9 @@ static void gyroInitFilterDynamicNotch(gyroSensor_t *gyroSensor)
|
|||
|
||||
if (isDynamicFilterActive()) {
|
||||
gyroSensor->notchFilterDynApplyFn = (filterApplyFnPtr)biquadFilterApplyDF1; // must be this function, not DF2
|
||||
const float notchQ = filterGetNotchQ(400, 390); //just any init value
|
||||
const float notchQ = filterGetNotchQ(DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, DYNAMIC_NOTCH_DEFAULT_CUTOFF_HZ); // any defaults OK here
|
||||
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
||||
biquadFilterInit(&gyroSensor->notchFilterDyn[axis], 400, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
||||
biquadFilterInit(&gyroSensor->notchFilterDyn[axis], DYNAMIC_NOTCH_DEFAULT_CENTER_HZ, gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1013,7 +1018,7 @@ static FAST_CODE void checkForYawSpin(gyroSensor_t *gyroSensor, timeUs_t current
|
|||
#endif // USE_YAW_SPIN_RECOVERY
|
||||
|
||||
#define GYRO_FILTER_FUNCTION_NAME filterGyro
|
||||
#define GYRO_FILTER_DEBUG_SET(...)
|
||||
#define GYRO_FILTER_DEBUG_SET(mode, index, value) { UNUSED(mode); UNUSED(index); UNUSED(value); }
|
||||
#include "gyro_filter_impl.h"
|
||||
#undef GYRO_FILTER_FUNCTION_NAME
|
||||
#undef GYRO_FILTER_DEBUG_SET
|
||||
|
|
|
@ -21,11 +21,14 @@
|
|||
#pragma once
|
||||
|
||||
#include "common/axis.h"
|
||||
#include "common/filter.h"
|
||||
#include "common/time.h"
|
||||
#include "pg/pg.h"
|
||||
|
||||
#include "drivers/bus.h"
|
||||
#include "drivers/sensor.h"
|
||||
|
||||
#include "pg/pg.h"
|
||||
|
||||
typedef enum {
|
||||
GYRO_NONE = 0,
|
||||
GYRO_DEFAULT,
|
||||
|
@ -58,6 +61,17 @@ typedef enum {
|
|||
GYRO_OVERFLOW_CHECK_ALL_AXES
|
||||
} gyroOverflowCheck_e;
|
||||
|
||||
enum {
|
||||
DYN_FFT_BEFORE_STATIC_FILTERS = 0,
|
||||
DYN_FFT_AFTER_STATIC_FILTERS
|
||||
} ;
|
||||
|
||||
enum {
|
||||
DYN_FILTER_RANGE_HIGH = 0,
|
||||
DYN_FILTER_RANGE_MEDIUM,
|
||||
DYN_FILTER_RANGE_LOW
|
||||
} ;
|
||||
|
||||
#define GYRO_CONFIG_USE_GYRO_1 0
|
||||
#define GYRO_CONFIG_USE_GYRO_2 1
|
||||
#define GYRO_CONFIG_USE_GYRO_BOTH 2
|
||||
|
@ -96,8 +110,10 @@ typedef struct gyroConfig_s {
|
|||
int16_t yaw_spin_threshold;
|
||||
|
||||
uint16_t gyroCalibrationDuration; // Gyro calibration duration in 1/100 second
|
||||
uint8_t dyn_notch_quality; // bandpass quality factor, 100 for steep sided bandpass
|
||||
uint8_t dyn_notch_width_percent;
|
||||
|
||||
uint8_t dyn_filter_width_percent;
|
||||
uint8_t dyn_fft_location; // before or after static filters
|
||||
uint8_t dyn_filter_range; // ignore any FFT bin below this threshold
|
||||
} gyroConfig_t;
|
||||
|
||||
PG_DECLARE(gyroConfig_t, gyroConfig);
|
||||
|
|
|
@ -10,10 +10,12 @@ static FAST_CODE void GYRO_FILTER_FUNCTION_NAME(gyroSensor_t *gyroSensor, timeDe
|
|||
#ifdef USE_GYRO_DATA_ANALYSE
|
||||
if (isDynamicFilterActive()) {
|
||||
if (axis == X) {
|
||||
GYRO_FILTER_DEBUG_SET(DEBUG_FFT, 0, lrintf(gyroADCf)); // store raw data
|
||||
GYRO_FILTER_DEBUG_SET(DEBUG_FFT_FREQ, 3, lrintf(gyroADCf)); // store raw data
|
||||
GYRO_FILTER_DEBUG_SET(DEBUG_FFT, 0, lrintf(gyroADCf));
|
||||
GYRO_FILTER_DEBUG_SET(DEBUG_FFT_FREQ, 3, lrintf(gyroADCf));
|
||||
}
|
||||
}
|
||||
|
||||
float gyroDataForAnalysis = gyroADCf;
|
||||
#endif
|
||||
|
||||
// apply static notch filters and software lowpass filters
|
||||
|
@ -24,11 +26,17 @@ static FAST_CODE void GYRO_FILTER_FUNCTION_NAME(gyroSensor_t *gyroSensor, timeDe
|
|||
|
||||
#ifdef USE_GYRO_DATA_ANALYSE
|
||||
if (isDynamicFilterActive()) {
|
||||
if (gyroConfig()->dyn_fft_location == DYN_FFT_AFTER_STATIC_FILTERS) {
|
||||
gyroDataForAnalysis = gyroADCf;
|
||||
}
|
||||
|
||||
if (axis == X) {
|
||||
GYRO_FILTER_DEBUG_SET(DEBUG_FFT, 1, lrintf(gyroDataForAnalysis));
|
||||
GYRO_FILTER_DEBUG_SET(DEBUG_FFT_FREQ, 2, lrintf(gyroDataForAnalysis));
|
||||
}
|
||||
|
||||
gyroDataAnalysePush(&gyroSensor->gyroAnalyseState, axis, gyroADCf);
|
||||
gyroADCf = gyroSensor->notchFilterDynApplyFn((filter_t *)&gyroSensor->notchFilterDyn[axis], gyroADCf);
|
||||
if (axis == X) {
|
||||
GYRO_FILTER_DEBUG_SET(DEBUG_FFT, 1, lrintf(gyroADCf)); // store data after dynamic notch
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -42,37 +42,35 @@
|
|||
#include "sensors/gyroanalyse.h"
|
||||
|
||||
// The FFT splits the frequency domain into an number of bins
|
||||
// A sampling frequency of 1000 and max frequency of 500 at a window size of 32 gives 16 frequency bins each with a width 31.25Hz
|
||||
// A sampling frequency of 1000 and max frequency of 500 at a window size of 32 gives 16 frequency bins each 31.25Hz wide
|
||||
// Eg [0,31), [31,62), [62, 93) etc
|
||||
|
||||
// for gyro loop >= 4KHz, sample rate 2000 defines FFT range to 1000Hz, 16 bins each 62.5 Hz wide
|
||||
// NB FFT_WINDOW_SIZE is set to 32 in gyroanalyse.h
|
||||
#define FFT_BIN_COUNT (FFT_WINDOW_SIZE / 2)
|
||||
// for gyro loop >= 4KHz, analyse up to 666Hz, 16 bins each 41.625 Hz wide
|
||||
#define FFT_SAMPLING_RATE_HZ 1333
|
||||
// following bin must be at least 2 times previous to indicate start of peak
|
||||
#define FFT_MIN_BIN_RISE 2
|
||||
// the desired approimate lower frequency when calculating bin offset
|
||||
#define FFT_BIN_OFFSET_DESIRED_HZ 90
|
||||
// lowpass frequency for smoothing notch centre point
|
||||
#define DYN_NOTCH_SMOOTH_FREQ_HZ 60
|
||||
// notch centre point will not go below this, must be greater than cutoff, mid of bottom bin
|
||||
#define DYN_NOTCH_MIN_CENTRE_HZ 125
|
||||
// lowest allowed notch cutoff frequency
|
||||
#define DYN_NOTCH_MIN_CUTOFF_HZ 105
|
||||
// start to compare 3rd bin to 2nd bin, ie start comparing from 77Hz, 100Hz, or 150Hz centres
|
||||
#define FFT_BIN_OFFSET 2
|
||||
// smoothing frequency for FFT centre frequency
|
||||
#define DYN_NOTCH_SMOOTH_FREQ_HZ 50
|
||||
// notch centre point will not go below sample rate divided by these dividers, resulting in range limits:
|
||||
// HIGH : 133/166-1000Hz, MEDIUM -> 89/111-666Hz, LOW -> 67/83-500Hz
|
||||
#define DYN_NOTCH_MIN_CENTRE_DIV 12
|
||||
// divider to get lowest allowed notch cutoff frequency
|
||||
// otherwise cutoff is user configured percentage below centre frequency
|
||||
#define DYN_NOTCH_MIN_CUTOFF_DIV 15
|
||||
// we need 4 steps for each axis
|
||||
#define DYN_NOTCH_CALC_TICKS (XYZ_AXIS_COUNT * 4)
|
||||
|
||||
static uint16_t FAST_RAM_ZERO_INIT fftSamplingRateHz;
|
||||
// centre frequency of bandpass that constrains input to FFT
|
||||
static uint16_t FAST_RAM_ZERO_INIT fftBpfHz;
|
||||
// Hz per bin
|
||||
static float FAST_RAM_ZERO_INIT fftResolution;
|
||||
// maximum notch centre frequency limited by Nyquist
|
||||
static uint16_t FAST_RAM_ZERO_INIT dynNotchMaxCentreHz;
|
||||
static uint8_t FAST_RAM_ZERO_INIT fftBinOffset;
|
||||
static uint16_t FAST_RAM_ZERO_INIT fftSamplingRateHz;
|
||||
static float FAST_RAM_ZERO_INIT fftResolution;
|
||||
static uint8_t FAST_RAM_ZERO_INIT fftBinOffset;
|
||||
static uint16_t FAST_RAM_ZERO_INIT dynamicNotchMinCenterHz;
|
||||
static uint16_t FAST_RAM_ZERO_INIT dynamicNotchMaxCenterHz;
|
||||
static uint16_t FAST_RAM_ZERO_INIT dynamicNotchMinCutoffHz;
|
||||
static float FAST_RAM_ZERO_INIT dynamicFilterWidthFactor;
|
||||
static uint8_t dynamicFilterRange;
|
||||
|
||||
// Hanning window, see https://en.wikipedia.org/wiki/Window_function#Hann_.28Hanning.29_window
|
||||
static FAST_RAM_ZERO_INIT float hanningWindow[FFT_WINDOW_SIZE];
|
||||
static FAST_RAM_ZERO_INIT float dynamicNotchCutoff;
|
||||
|
||||
void gyroDataAnalyseInit(uint32_t targetLooptimeUs)
|
||||
{
|
||||
|
@ -84,31 +82,39 @@ void gyroDataAnalyseInit(uint32_t targetLooptimeUs)
|
|||
gyroAnalyseInitialized = true;
|
||||
#endif
|
||||
|
||||
const int gyroLoopRateHz = lrintf((1.0f / targetLooptimeUs) * 1e6f);
|
||||
|
||||
dynamicFilterRange = gyroConfig()->dyn_filter_range;
|
||||
|
||||
fftSamplingRateHz = 1000;
|
||||
if (dynamicFilterRange == DYN_FILTER_RANGE_HIGH) {
|
||||
fftSamplingRateHz = 2000;
|
||||
}
|
||||
else if (dynamicFilterRange == DYN_FILTER_RANGE_MEDIUM) {
|
||||
fftSamplingRateHz = 1333;
|
||||
}
|
||||
// If we get at least 3 samples then use the default FFT sample frequency
|
||||
// otherwise we need to calculate a FFT sample frequency to ensure we get 3 samples (gyro loops < 4K)
|
||||
fftSamplingRateHz = MIN((gyroLoopRateHz / 3), FFT_SAMPLING_RATE_HZ);
|
||||
const int gyroLoopRateHz = lrintf((1.0f / targetLooptimeUs) * 1e6f);
|
||||
|
||||
fftSamplingRateHz = MIN((gyroLoopRateHz / 3), fftSamplingRateHz);
|
||||
|
||||
fftBpfHz = fftSamplingRateHz / 4;
|
||||
fftResolution = (float)fftSamplingRateHz / FFT_WINDOW_SIZE;
|
||||
dynNotchMaxCentreHz = fftSamplingRateHz / 2;
|
||||
fftBinOffset = FFT_BIN_OFFSET;
|
||||
|
||||
dynamicNotchMaxCenterHz = fftSamplingRateHz / 2; //Nyquist
|
||||
dynamicNotchMinCenterHz = fftSamplingRateHz / DYN_NOTCH_MIN_CENTRE_DIV;
|
||||
dynamicNotchMinCutoffHz = fftSamplingRateHz / DYN_NOTCH_MIN_CUTOFF_DIV;
|
||||
dynamicFilterWidthFactor = (100.0f - gyroConfig()->dyn_filter_width_percent) / 100;
|
||||
|
||||
// Calculate the FFT bin offset to try and get the lowest bin used
|
||||
// in the center calc close to 90hz
|
||||
// > 1333hz = 1, 889hz (2.67K) = 2, 666hz (2K) = 3
|
||||
fftBinOffset = MAX(1, lrintf(FFT_BIN_OFFSET_DESIRED_HZ / fftResolution - 1.5f));
|
||||
|
||||
for (int i = 0; i < FFT_WINDOW_SIZE; i++) {
|
||||
hanningWindow[i] = (0.5f - 0.5f * cos_approx(2 * M_PIf * i / (FFT_WINDOW_SIZE - 1)));
|
||||
}
|
||||
|
||||
dynamicNotchCutoff = (100.0f - gyroConfig()->dyn_notch_width_percent) / 100;
|
||||
}
|
||||
|
||||
void gyroDataAnalyseStateInit(gyroAnalyseState_t *state, uint32_t targetLooptimeUs)
|
||||
{
|
||||
// initialise even if FEATURE_DYNAMIC_FILTER not set, since it may be set later
|
||||
// *** can this next line be removed ??? ***
|
||||
gyroDataAnalyseInit(targetLooptimeUs);
|
||||
|
||||
const uint16_t samplingFrequency = 1000000 / targetLooptimeUs;
|
||||
|
@ -117,14 +123,14 @@ void gyroDataAnalyseStateInit(gyroAnalyseState_t *state, uint32_t targetLooptime
|
|||
|
||||
arm_rfft_fast_init_f32(&state->fftInstance, FFT_WINDOW_SIZE);
|
||||
|
||||
// recalculation of filters takes 4 calls per axis => each filter gets updated every DYN_NOTCH_CALC_TICKS calls
|
||||
// at 4khz gyro loop rate this means 4khz / 4 / 3 = 333Hz => update every 3ms
|
||||
// for gyro rate > 16kHz, we have update frequency of 1kHz => 1ms
|
||||
// recalculation of filters takes 4 calls per axis => each filter gets updated every DYN_NOTCH_CALC_TICKS calls
|
||||
// at 4khz gyro loop rate this means 4khz / 4 / 3 = 333Hz => update every 3ms
|
||||
// for gyro rate > 16kHz, we have update frequency of 1kHz => 1ms
|
||||
const float looptime = MAX(1000000u / fftSamplingRateHz, targetLooptimeUs * DYN_NOTCH_CALC_TICKS);
|
||||
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
||||
// any init value
|
||||
state->centerFreq[axis] = 200;
|
||||
biquadFilterInit(&state->gyroBandpassFilter[axis], fftBpfHz, 1000000 / fftSamplingRateHz, 0.01f * gyroConfig()->dyn_notch_quality, FILTER_BPF);
|
||||
state->centerFreq[axis] = dynamicNotchMaxCenterHz;
|
||||
state->prevCenterFreq[axis] = dynamicNotchMaxCenterHz;
|
||||
biquadFilterInitLPF(&state->detectedFrequencyFilter[axis], DYN_NOTCH_SMOOTH_FREQ_HZ, looptime);
|
||||
}
|
||||
}
|
||||
|
@ -152,8 +158,6 @@ void gyroDataAnalyse(gyroAnalyseState_t *state, biquadFilter_t *notchFilterDyn)
|
|||
// calculate mean value of accumulated samples
|
||||
for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
|
||||
float sample = state->oversampledGyroAccumulator[axis] * state->maxSampleCountRcp;
|
||||
sample = biquadFilterApply(&state->gyroBandpassFilter[axis], sample);
|
||||
|
||||
state->downsampledGyroData[axis][state->circularBufferIdx] = sample;
|
||||
if (axis == 0) {
|
||||
DEBUG_SET(DEBUG_FFT, 2, lrintf(sample));
|
||||
|
@ -251,53 +255,72 @@ static FAST_CODE_NOINLINE void gyroDataAnalyseUpdate(gyroAnalyseState_t *state,
|
|||
}
|
||||
case STEP_CALC_FREQUENCIES:
|
||||
{
|
||||
// 13us
|
||||
// calculate FFT centreFreq
|
||||
float fftSum = 0;
|
||||
float fftWeightedSum = 0;
|
||||
bool fftIncreasing = false;
|
||||
|
||||
// iterate over fft data and calculate weighted indices
|
||||
bool fftIncreased = false;
|
||||
float dataMax = 0;
|
||||
uint8_t binStart = 0;
|
||||
uint8_t binMax = 0;
|
||||
//for bins after initial decline, identify start bin and max bin
|
||||
for (int i = 1 + fftBinOffset; i < FFT_BIN_COUNT; i++) {
|
||||
const float data = state->fftData[i];
|
||||
const float prevData = state->fftData[i - 1];
|
||||
|
||||
if (fftIncreasing || data > prevData * FFT_MIN_BIN_RISE) {
|
||||
float cubedData = data * data * data;
|
||||
|
||||
// add previous bin before first rise
|
||||
if (!fftIncreasing) {
|
||||
cubedData += prevData * prevData * prevData;
|
||||
|
||||
fftIncreasing = true;
|
||||
if (fftIncreased || (state->fftData[i] > state->fftData[i - 1])) {
|
||||
if (!fftIncreased) {
|
||||
binStart = i; // first up-step bin
|
||||
fftIncreased = true;
|
||||
}
|
||||
if (state->fftData[i] > dataMax) {
|
||||
dataMax = state->fftData[i];
|
||||
binMax = i; // tallest bin
|
||||
}
|
||||
|
||||
fftSum += cubedData;
|
||||
// calculate weighted index starting at 1, not 0
|
||||
fftWeightedSum += cubedData * (i + 1);
|
||||
}
|
||||
}
|
||||
|
||||
// accumulate fftSum and fftWeightedSum from peak bin, and shoulder bins either side of peak
|
||||
float cubedData = state->fftData[binMax] * state->fftData[binMax] * state->fftData[binMax];
|
||||
float fftSum = cubedData;
|
||||
float fftWeightedSum = cubedData * (binMax + 1);
|
||||
// accumulate upper shoulder
|
||||
for (int i = binMax; i < FFT_BIN_COUNT - 1; i++) {
|
||||
if (state->fftData[i] > state->fftData[i + 1]) {
|
||||
cubedData = state->fftData[i] * state->fftData[i] * state->fftData[i];
|
||||
fftSum += cubedData;
|
||||
fftWeightedSum += cubedData * (i + 1);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// accumulate lower shoulder
|
||||
for (int i = binMax; i > binStart + 1; i--) {
|
||||
if (state->fftData[i] > state->fftData[i - 1]) {
|
||||
cubedData = state->fftData[i] * state->fftData[i] * state->fftData[i];
|
||||
fftSum += cubedData;
|
||||
fftWeightedSum += cubedData * (i + 1);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// get weighted center of relevant frequency range (this way we have a better resolution than 31.25Hz)
|
||||
// if no peak, go to highest point to minimise delay
|
||||
float centerFreq = dynNotchMaxCentreHz;
|
||||
float centerFreq = dynamicNotchMaxCenterHz;
|
||||
float fftMeanIndex = 0;
|
||||
|
||||
// idx was shifted by 1 to start at 1, not 0
|
||||
if (fftSum > 0) {
|
||||
// idx was shifted by 1 to start at 1, not 0
|
||||
fftMeanIndex = (fftWeightedSum / fftSum) - 1;
|
||||
// the index points at the center frequency of each bin so index 0 is actually 16.125Hz
|
||||
centerFreq = constrain(fftMeanIndex * fftResolution, DYN_NOTCH_MIN_CENTRE_HZ, dynNotchMaxCentreHz);
|
||||
centerFreq = fftMeanIndex * fftResolution;
|
||||
} else {
|
||||
centerFreq = state->prevCenterFreq[state->updateAxis];
|
||||
}
|
||||
|
||||
// constrain and low-pass smooth centre frequency
|
||||
centerFreq = constrain(centerFreq, dynamicNotchMinCenterHz, dynamicNotchMaxCenterHz);
|
||||
centerFreq = biquadFilterApply(&state->detectedFrequencyFilter[state->updateAxis], centerFreq);
|
||||
centerFreq = constrain(centerFreq, DYN_NOTCH_MIN_CENTRE_HZ, dynNotchMaxCentreHz);
|
||||
centerFreq = constrain(centerFreq, dynamicNotchMinCenterHz, dynamicNotchMaxCenterHz);
|
||||
state->centerFreq[state->updateAxis] = centerFreq;
|
||||
|
||||
if (state->updateAxis == 0) {
|
||||
DEBUG_SET(DEBUG_FFT, 3, lrintf(fftMeanIndex * 100));
|
||||
DEBUG_SET(DEBUG_FFT_FREQ, 0, state->centerFreq[state->updateAxis]);
|
||||
}
|
||||
DEBUG_SET(DEBUG_FFT_FREQ, state->updateAxis, state->centerFreq[state->updateAxis]);
|
||||
if (state->updateAxis == 1) {
|
||||
DEBUG_SET(DEBUG_FFT_FREQ, 1, state->centerFreq[state->updateAxis]);
|
||||
}
|
||||
// Debug FFT_Freq carries raw gyro, gyro after first filter set, FFT centre for roll and for pitch
|
||||
DEBUG_SET(DEBUG_FFT_TIME, 1, micros() - startTime);
|
||||
break;
|
||||
}
|
||||
|
@ -305,9 +328,10 @@ static FAST_CODE_NOINLINE void gyroDataAnalyseUpdate(gyroAnalyseState_t *state,
|
|||
{
|
||||
// 7us
|
||||
// calculate cutoffFreq and notch Q, update notch filter
|
||||
const float cutoffFreq = fmax(state->centerFreq[state->updateAxis] * dynamicNotchCutoff, DYN_NOTCH_MIN_CUTOFF_HZ);
|
||||
const float cutoffFreq = fmax(state->centerFreq[state->updateAxis] * dynamicFilterWidthFactor, dynamicNotchMinCutoffHz);
|
||||
const float notchQ = filterGetNotchQ(state->centerFreq[state->updateAxis], cutoffFreq);
|
||||
biquadFilterUpdate(¬chFilterDyn[state->updateAxis], state->centerFreq[state->updateAxis], gyro.targetLooptime, notchQ, FILTER_NOTCH);
|
||||
|
||||
DEBUG_SET(DEBUG_FFT_TIME, 1, micros() - startTime);
|
||||
|
||||
state->updateAxis = (state->updateAxis + 1) % XYZ_AXIS_COUNT;
|
||||
|
|
|
@ -22,9 +22,10 @@
|
|||
|
||||
#include "arm_math.h"
|
||||
|
||||
#include "common/time.h"
|
||||
#include "common/filter.h"
|
||||
|
||||
#include "sensors/gyro.h"
|
||||
|
||||
// max for F3 targets
|
||||
#define FFT_WINDOW_SIZE 32
|
||||
|
||||
|
@ -35,9 +36,6 @@ typedef struct gyroAnalyseState_s {
|
|||
float maxSampleCountRcp;
|
||||
float oversampledGyroAccumulator[XYZ_AXIS_COUNT];
|
||||
|
||||
// filter for downsampled accumulated gyro
|
||||
biquadFilter_t gyroBandpassFilter[XYZ_AXIS_COUNT];
|
||||
|
||||
// downsampled gyro data circular buffer for frequency analysis
|
||||
uint8_t circularBufferIdx;
|
||||
float downsampledGyroData[XYZ_AXIS_COUNT][FFT_WINDOW_SIZE];
|
||||
|
@ -53,6 +51,7 @@ typedef struct gyroAnalyseState_s {
|
|||
|
||||
biquadFilter_t detectedFrequencyFilter[XYZ_AXIS_COUNT];
|
||||
uint16_t centerFreq[XYZ_AXIS_COUNT];
|
||||
uint16_t prevCenterFreq[XYZ_AXIS_COUNT];
|
||||
} gyroAnalyseState_t;
|
||||
|
||||
STATIC_ASSERT(FFT_WINDOW_SIZE <= (uint8_t) -1, window_size_greater_than_underlying_type);
|
||||
|
|
Loading…
Reference in New Issue