Merge pull request #3438 from martinbudden/bf_whitespace_tidy

Whitespace tidy
This commit is contained in:
Martin Budden 2017-07-05 07:00:37 +01:00 committed by GitHub
commit 5eefa4e73f
97 changed files with 555 additions and 555 deletions

View File

@ -906,7 +906,7 @@ bool startedLoggingInTestMode = false;
void startInTestMode(void)
{
if(!startedLoggingInTestMode) {
if (!startedLoggingInTestMode) {
if (blackboxConfig()->device == BLACKBOX_DEVICE_SERIAL) {
serialPort_t *sharedBlackboxAndMspPort = findSharedSerialPort(FUNCTION_BLACKBOX, FUNCTION_MSP);
if (sharedBlackboxAndMspPort) {
@ -919,7 +919,7 @@ void startInTestMode(void)
}
void stopInTestMode(void)
{
if(startedLoggingInTestMode) {
if (startedLoggingInTestMode) {
blackboxFinish();
startedLoggingInTestMode = false;
}
@ -954,7 +954,7 @@ bool inMotorTestMode(void) {
for (i = 0; i < MAX_SUPPORTED_MOTORS; i++)
atLeastOneMotorActivated |= (motor_disarmed[i] != inactiveMotorCommand);
if(atLeastOneMotorActivated) {
if (atLeastOneMotorActivated) {
resetTime = millis() + 5000; // add 5 seconds
return true;
} else {
@ -1638,7 +1638,7 @@ void blackboxUpdate(timeUs_t currentTimeUs)
blackboxSetState(BLACKBOX_STATE_ERASED);
beeper(BEEPER_BLACKBOX_ERASE);
}
break;
break;
case BLACKBOX_STATE_ERASED:
if (!IS_RC_MODE_ACTIVE(BOXBLACKBOXERASE)) {
blackboxSetState(BLACKBOX_STATE_STOPPED);
@ -1663,13 +1663,13 @@ void blackboxUpdate(timeUs_t currentTimeUs)
}
#endif
} else { // Only log in test mode if there is room!
if(blackboxConfig()->on_motor_test) {
if (blackboxConfig()->on_motor_test) {
// Handle Motor Test Mode
if(inMotorTestMode()) {
if(blackboxState==BLACKBOX_STATE_STOPPED)
if (inMotorTestMode()) {
if (blackboxState==BLACKBOX_STATE_STOPPED)
startInTestMode();
} else {
if(blackboxState!=BLACKBOX_STATE_STOPPED)
if (blackboxState!=BLACKBOX_STATE_STOPPED)
stopInTestMode();
}
}

View File

@ -221,7 +221,7 @@ bool blackboxDeviceOpen(void)
*/
switch(baudRateIndex) {
switch (baudRateIndex) {
case BAUD_1000000:
case BAUD_1500000:
case BAUD_2000000:

View File

@ -606,7 +606,7 @@ static void cmsTraverseGlobalExit(const CMS_Menu *pMenu)
}
long cmsMenuExit(displayPort_t *pDisplay, const void *ptr)
{
{
int exitType = (int)ptr;
switch (exitType) {
case CMS_EXIT_SAVE:

View File

@ -154,11 +154,11 @@ float biquadFilterApplyDF1(biquadFilter_t *filter, float input)
{
/* compute result */
const float result = filter->b0 * input + filter->b1 * filter->x1 + filter->b2 * filter->x2 - filter->a1 * filter->y1 - filter->a2 * filter->y2;
/* shift x1 to x2, input to x1 */
filter->x2 = filter->x1;
filter->x1 = input;
/* shift y1 to y2, result to y1 */
filter->y2 = filter->y1;
filter->y1 = result;

View File

@ -235,7 +235,7 @@ static int write_word(config_streamer_t *c, uint32_t value)
EraseInitStruct.Sector = getFLASHSectorForEEPROM();
uint32_t SECTORError;
const HAL_StatusTypeDef status = HAL_FLASHEx_Erase(&EraseInitStruct, &SECTORError);
if (status != HAL_OK){
if (status != HAL_OK) {
return -1;
}
}

View File

@ -87,7 +87,7 @@ extern const uint8_t __pg_resetdata_end[];
do { \
extern const pgRegistry_t _name ##_Registry; \
pgReset(&_name ## _Registry); \
} while(0) \
} while (0) \
/**/
// Declare system config

View File

@ -85,7 +85,7 @@ static inline void mma8451ConfigureInterrupt(void)
#ifdef MMA8451_INT_PIN
IOInit(IOGetByTag(IO_TAG(MMA8451_INT_PIN)), OWNER_MPU_EXTI, 0);
// TODO - maybe pullup / pulldown ?
IOConfigGPIO(IOGetByTag(IO_TAG(MMA8451_INT_PIN)), IOCFG_IN_FLOATING);
IOConfigGPIO(IOGetByTag(IO_TAG(MMA8451_INT_PIN)), IOCFG_IN_FLOATING);
#endif
i2cWrite(MPU_I2C_INSTANCE, MMA8452_ADDRESS, MMA8452_CTRL_REG3, MMA8452_CTRL_REG3_IPOL); // Interrupt polarity (active HIGH)

View File

@ -110,7 +110,7 @@ bool bmi160Detect(const busDevice_t *bus)
delay(10); // Give SPI some time to start up
/* Check the chip ID */
if (spiReadRegister(bus, BMI160_REG_CHIPID) != 0xd1){
if (spiReadRegister(bus, BMI160_REG_CHIPID) != 0xd1) {
return false;
}
@ -130,7 +130,7 @@ static void BMI160_Init(const busDevice_t *bus)
}
/* Configure the BMI160 Sensor */
if (BMI160_Config(bus) != 0){
if (BMI160_Config(bus) != 0) {
return;
}
@ -152,12 +152,12 @@ static int32_t BMI160_Config(const busDevice_t *bus)
{
// Set normal power mode for gyro and accelerometer
if (BMI160_WriteReg(bus, BMI160_REG_CMD, BMI160_PMU_CMD_PMU_GYR_NORMAL) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_CMD, BMI160_PMU_CMD_PMU_GYR_NORMAL) != 0) {
return -1;
}
delay(100); // can take up to 80ms
if (BMI160_WriteReg(bus, BMI160_REG_CMD, BMI160_PMU_CMD_PMU_ACC_NORMAL) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_CMD, BMI160_PMU_CMD_PMU_ACC_NORMAL) != 0) {
return -2;
}
delay(5); // can take up to 3.8ms
@ -170,47 +170,47 @@ static int32_t BMI160_Config(const busDevice_t *bus)
// Set odr and ranges
// Set acc_us = 0 acc_bwp = 0b010 so only the first filter stage is used
if (BMI160_WriteReg(bus, BMI160_REG_ACC_CONF, 0x20 | BMI160_ODR_800_Hz) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_ACC_CONF, 0x20 | BMI160_ODR_800_Hz) != 0) {
return -3;
}
delay(1);
// Set gyr_bwp = 0b010 so only the first filter stage is used
if (BMI160_WriteReg(bus, BMI160_REG_GYR_CONF, 0x20 | BMI160_ODR_3200_Hz) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_GYR_CONF, 0x20 | BMI160_ODR_3200_Hz) != 0) {
return -4;
}
delay(1);
if (BMI160_WriteReg(bus, BMI160_REG_ACC_RANGE, BMI160_RANGE_8G) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_ACC_RANGE, BMI160_RANGE_8G) != 0) {
return -5;
}
delay(1);
if (BMI160_WriteReg(bus, BMI160_REG_GYR_RANGE, BMI160_RANGE_2000DPS) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_GYR_RANGE, BMI160_RANGE_2000DPS) != 0) {
return -6;
}
delay(1);
// Enable offset compensation
uint8_t val = spiReadRegister(bus, BMI160_REG_OFFSET_0);
if (BMI160_WriteReg(bus, BMI160_REG_OFFSET_0, val | 0xC0) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_OFFSET_0, val | 0xC0) != 0) {
return -7;
}
// Enable data ready interrupt
if (BMI160_WriteReg(bus, BMI160_REG_INT_EN1, BMI160_INT_EN1_DRDY) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_INT_EN1, BMI160_INT_EN1_DRDY) != 0) {
return -8;
}
delay(1);
// Enable INT1 pin
if (BMI160_WriteReg(bus, BMI160_REG_INT_OUT_CTRL, BMI160_INT_OUT_CTRL_INT1_CONFIG) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_INT_OUT_CTRL, BMI160_INT_OUT_CTRL_INT1_CONFIG) != 0) {
return -9;
}
delay(1);
// Map data ready interrupt to INT1 pin
if (BMI160_WriteReg(bus, BMI160_REG_INT_MAP1, BMI160_REG_INT_MAP1_INT1_DRDY) != 0){
if (BMI160_WriteReg(bus, BMI160_REG_INT_MAP1, BMI160_REG_INT_MAP1_INT1_DRDY) != 0) {
return -10;
}
delay(1);

View File

@ -200,7 +200,7 @@ void adcInit(const adcConfig_t *config)
//HAL_CLEANINVALIDATECACHE((uint32_t*)&adcValues, configuredAdcChannels);
/*##-4- Start the conversion process #######################################*/
if(HAL_ADC_Start_DMA(&adc.ADCHandle, (uint32_t*)&adcValues, configuredAdcChannels) != HAL_OK)
if (HAL_ADC_Start_DMA(&adc.ADCHandle, (uint32_t*)&adcValues, configuredAdcChannels) != HAL_OK)
{
/* Start Conversation Error */
}

View File

@ -65,7 +65,7 @@ const i2cHardware_t i2cHardware[I2CDEV_COUNT] = {
},
#endif
#ifdef USE_I2C_DEVICE_3
{
{
.device = I2CDEV_3,
.reg = I2C3,
.sclPins = { DEFIO_TAG_E(PA8) },
@ -163,12 +163,12 @@ bool i2cWriteBuffer(I2CDevice device, uint8_t addr_, uint8_t reg_, uint8_t len_,
HAL_StatusTypeDef status;
if(reg_ == 0xFF)
if (reg_ == 0xFF)
status = HAL_I2C_Master_Transmit(pHandle ,addr_ << 1, data, len_, I2C_DEFAULT_TIMEOUT);
else
status = HAL_I2C_Mem_Write(pHandle ,addr_ << 1, reg_, I2C_MEMADD_SIZE_8BIT,data, len_, I2C_DEFAULT_TIMEOUT);
if(status != HAL_OK)
if (status != HAL_OK)
return i2cHandleHardwareFailure(device);
return true;
@ -193,12 +193,12 @@ bool i2cRead(I2CDevice device, uint8_t addr_, uint8_t reg_, uint8_t len, uint8_t
HAL_StatusTypeDef status;
if(reg_ == 0xFF)
if (reg_ == 0xFF)
status = HAL_I2C_Master_Receive(pHandle ,addr_ << 1, buf, len, I2C_DEFAULT_TIMEOUT);
else
status = HAL_I2C_Mem_Read(pHandle, addr_ << 1, reg_, I2C_MEMADD_SIZE_8BIT,buf, len, I2C_DEFAULT_TIMEOUT);
if(status != HAL_OK)
if (status != HAL_OK)
return i2cHandleHardwareFailure(device);
return true;

View File

@ -144,7 +144,7 @@ void spiInitDevice(SPIDevice device)
spi->leadingEdge = true;
}
#endif
// Enable SPI clock
RCC_ClockCmd(spi->rcc, ENABLE);
RCC_ResetCmd(spi->rcc, ENABLE);
@ -154,7 +154,7 @@ void spiInitDevice(SPIDevice device)
IOInit(IOGetByTag(spi->mosi), OWNER_SPI_MOSI, RESOURCE_INDEX(device));
#if defined(STM32F7)
if(spi->leadingEdge == true)
if (spi->leadingEdge == true)
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG_LOW, spi->sckAF);
else
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG_HIGH, spi->sckAF);
@ -162,7 +162,7 @@ void spiInitDevice(SPIDevice device)
IOConfigGPIOAF(IOGetByTag(spi->mosi), SPI_IO_AF_CFG, spi->mosiAF);
#endif
#if defined(STM32F3) || defined(STM32F4)
if(spi->leadingEdge == true)
if (spi->leadingEdge == true)
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG_LOW, spi->af);
else
IOConfigGPIOAF(IOGetByTag(spi->sck), SPI_IO_AF_SCK_CFG_HIGH, spi->af);
@ -255,7 +255,7 @@ uint32_t spiTimeoutUserCallback(SPI_TypeDef *instance)
bool spiIsBusBusy(SPI_TypeDef *instance)
{
SPIDevice device = spiDeviceByInstance(instance);
if(spiDevice[device].hspi.State == HAL_SPI_STATE_BUSY)
if (spiDevice[device].hspi.State == HAL_SPI_STATE_BUSY)
return true;
else
return false;
@ -266,11 +266,11 @@ bool spiTransfer(SPI_TypeDef *instance, uint8_t *out, const uint8_t *in, int len
SPIDevice device = spiDeviceByInstance(instance);
HAL_StatusTypeDef status;
if(!out) // Tx only
if (!out) // Tx only
{
status = HAL_SPI_Transmit(&spiDevice[device].hspi, (uint8_t *)in, len, SPI_DEFAULT_TIMEOUT);
}
else if(!in) // Rx only
else if (!in) // Rx only
{
status = HAL_SPI_Receive(&spiDevice[device].hspi, out, len, SPI_DEFAULT_TIMEOUT);
}
@ -279,7 +279,7 @@ bool spiTransfer(SPI_TypeDef *instance, uint8_t *out, const uint8_t *in, int len
status = HAL_SPI_TransmitReceive(&spiDevice[device].hspi, in, out, len, SPI_DEFAULT_TIMEOUT);
}
if( status != HAL_OK)
if ( status != HAL_OK)
spiTimeoutUserCallback(instance);
return true;

View File

@ -70,7 +70,7 @@ void softSpiInit(const softSPIDevice_t *dev)
uint8_t softSpiTransferByte(const softSPIDevice_t *dev, uint8_t byte)
{
for(int ii = 0; ii < 8; ++ii) {
for (int ii = 0; ii < 8; ++ii) {
if (byte & 0x80) {
IOHi(IOGetByTag(dev->mosiTag));
} else {

View File

@ -196,7 +196,7 @@ void i2c_OLED_clear_display(busDevice_t *bus)
i2c_OLED_send_cmd(bus, 0x40); // Display start line register to 0
i2c_OLED_send_cmd(bus, 0); // Set low col address to 0
i2c_OLED_send_cmd(bus, 0x10); // Set high col address to 0
for(uint16_t i = 0; i < 1024; i++) { // fill the display's RAM with graphic... 128*64 pixel picture
for (uint16_t i = 0; i < 1024; i++) { // fill the display's RAM with graphic... 128*64 pixel picture
i2c_OLED_send_byte(bus, 0x00); // clear
}
i2c_OLED_send_cmd(bus, 0x81); // Setup CONTRAST CONTROL, following byte is the contrast Value... always a 2 byte instruction
@ -210,7 +210,7 @@ void i2c_OLED_clear_display_quick(busDevice_t *bus)
i2c_OLED_send_cmd(bus, 0x40); // Display start line register to 0
i2c_OLED_send_cmd(bus, 0); // Set low col address to 0
i2c_OLED_send_cmd(bus, 0x10); // Set high col address to 0
for(uint16_t i = 0; i < 1024; i++) { // fill the display's RAM with graphic... 128*64 pixel picture
for (uint16_t i = 0; i < 1024; i++) { // fill the display's RAM with graphic... 128*64 pixel picture
i2c_OLED_send_byte(bus, 0x00); // clear
}
}

View File

@ -77,7 +77,7 @@ typedef enum {
dmaDescriptors[i].irqHandlerCallback(&dmaDescriptors[i]);\
}
#define DMA_CLEAR_FLAG(d, flag) if(d->flagsShift > 31) d->dma->HIFCR = (flag << (d->flagsShift - 32)); else d->dma->LIFCR = (flag << d->flagsShift)
#define DMA_CLEAR_FLAG(d, flag) if (d->flagsShift > 31) d->dma->HIFCR = (flag << (d->flagsShift - 32)); else d->dma->LIFCR = (flag << d->flagsShift)
#define DMA_GET_FLAG_STATUS(d, flag) (d->flagsShift > 31 ? d->dma->HISR & (flag << (d->flagsShift - 32)): d->dma->LISR & (flag << d->flagsShift))

View File

@ -77,7 +77,7 @@ static void enableDmaClock(uint32_t rcc)
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, rcc);
UNUSED(tmpreg);
} while(0);
} while (0);
}
void dmaInit(dmaIdentifier_e identifier, resourceOwner_e owner, uint8_t resourceIndex)

View File

@ -78,7 +78,7 @@ void EXTIConfig(IO_t io, extiCallbackRec_t *cb, int irqPriority, ioConfig_t conf
(void)config;
int chIdx;
chIdx = IO_GPIOPinIdx(io);
if(chIdx < 0)
if (chIdx < 0)
return;
extiChannelRec_t *rec = &extiChannelRecs[chIdx];
int group = extiGroups[chIdx];
@ -96,7 +96,7 @@ void EXTIConfig(IO_t io, extiCallbackRec_t *cb, int irqPriority, ioConfig_t conf
//EXTI_ClearITPendingBit(extiLine);
if(extiGroupPriority[group] > irqPriority) {
if (extiGroupPriority[group] > irqPriority) {
extiGroupPriority[group] = irqPriority;
HAL_NVIC_SetPriority(extiGroupIRQn[group], NVIC_PRIORITY_BASE(irqPriority), NVIC_PRIORITY_SUB(irqPriority));
HAL_NVIC_EnableIRQ(extiGroupIRQn[group]);
@ -108,7 +108,7 @@ void EXTIConfig(IO_t io, extiCallbackRec_t *cb, int irqPriority, EXTITrigger_Typ
{
int chIdx;
chIdx = IO_GPIOPinIdx(io);
if(chIdx < 0)
if (chIdx < 0)
return;
extiChannelRec_t *rec = &extiChannelRecs[chIdx];
int group = extiGroups[chIdx];
@ -134,7 +134,7 @@ void EXTIConfig(IO_t io, extiCallbackRec_t *cb, int irqPriority, EXTITrigger_Typ
EXTIInit.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTIInit);
if(extiGroupPriority[group] > irqPriority) {
if (extiGroupPriority[group] > irqPriority) {
extiGroupPriority[group] = irqPriority;
NVIC_InitTypeDef NVIC_InitStructure;
@ -154,7 +154,7 @@ void EXTIRelease(IO_t io)
int chIdx;
chIdx = IO_GPIOPinIdx(io);
if(chIdx < 0)
if (chIdx < 0)
return;
extiChannelRec_t *rec = &extiChannelRecs[chIdx];
rec->handler = NULL;
@ -164,18 +164,18 @@ void EXTIEnable(IO_t io, bool enable)
{
#if defined(STM32F1) || defined(STM32F4) || defined(STM32F7)
uint32_t extiLine = IO_EXTI_Line(io);
if(!extiLine)
if (!extiLine)
return;
if(enable)
if (enable)
EXTI->IMR |= extiLine;
else
EXTI->IMR &= ~extiLine;
#elif defined(STM32F303xC)
int extiLine = IO_EXTI_Line(io);
if(extiLine < 0)
if (extiLine < 0)
return;
// assume extiLine < 32 (valid for all EXTI pins)
if(enable)
if (enable)
EXTI->IMR |= 1 << extiLine;
else
EXTI->IMR &= ~(1 << extiLine);
@ -188,7 +188,7 @@ void EXTI_IRQHandler(void)
{
uint32_t exti_active = EXTI->IMR & EXTI->PR;
while(exti_active) {
while (exti_active) {
unsigned idx = 31 - __builtin_clz(exti_active);
uint32_t mask = 1 << idx;
extiChannelRecs[idx].handler->fn(extiChannelRecs[idx].handler);

View File

@ -40,7 +40,7 @@ static bool timerNChannel = false;
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TimHandle.Instance) {
if (htim->Instance == TimHandle.Instance) {
//HAL_TIM_PWM_Stop_DMA(&TimHandle,WS2811_TIMER_CHANNEL);
ws2811LedDataTransferInProgress = 0;
}
@ -77,7 +77,7 @@ void ws2811LedStripHardwareInit(ioTag_t ioTag)
TimHandle.Init.Period = period; // 800kHz
TimHandle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
if(HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
/* Initialization Error */
return;
}
@ -116,7 +116,7 @@ void ws2811LedStripHardwareInit(ioTag_t ioTag)
dmaSetHandler(timerHardware->dmaIrqHandler, WS2811_DMA_IRQHandler, NVIC_PRIO_WS2811_DMA, dmaSource);
/* Initialize TIMx DMA handle */
if(HAL_DMA_Init(TimHandle.hdma[dmaSource]) != HAL_OK) {
if (HAL_DMA_Init(TimHandle.hdma[dmaSource]) != HAL_OK) {
/* Initialization Error */
return;
}
@ -139,7 +139,7 @@ void ws2811LedStripHardwareInit(ioTag_t ioTag)
}
TIM_OCInitStructure.Pulse = 0;
TIM_OCInitStructure.OCFastMode = TIM_OCFAST_DISABLE;
if(HAL_TIM_PWM_ConfigChannel(&TimHandle, &TIM_OCInitStructure, timerChannel) != HAL_OK) {
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &TIM_OCInitStructure, timerChannel) != HAL_OK) {
/* Configuration Error */
return;
}
@ -154,8 +154,8 @@ void ws2811LedStripDMAEnable(void)
return;
}
if(timerNChannel) {
if(HAL_TIMEx_PWMN_Start_DMA(&TimHandle, timerChannel, ledStripDMABuffer, WS2811_DMA_BUFFER_SIZE) != HAL_OK) {
if (timerNChannel) {
if (HAL_TIMEx_PWMN_Start_DMA(&TimHandle, timerChannel, ledStripDMABuffer, WS2811_DMA_BUFFER_SIZE) != HAL_OK) {
/* Starting PWM generation Error */
ws2811LedDataTransferInProgress = 0;
return;

View File

@ -120,7 +120,7 @@ void ws2811LedStripHardwareInit(ioTag_t ioTag)
dmaInit(timerHardware->dmaIrqHandler, OWNER_LED_STRIP, 0);
dmaSetHandler(timerHardware->dmaIrqHandler, WS2811_DMA_IRQHandler, NVIC_PRIO_WS2811_DMA, 0);
dmaRef = timerHardware->dmaRef;
DMA_DeInit(dmaRef);

View File

@ -330,7 +330,7 @@ void max7456ReInit(void)
ENABLE_MAX7456;
switch(videoSignalCfg) {
switch (videoSignalCfg) {
case VIDEO_SYSTEM_PAL:
videoSignalReg = VIDEO_MODE_PAL | OSD_ENABLE;
break;
@ -363,7 +363,7 @@ void max7456ReInit(void)
// Set all rows to same charactor black/white level.
for(x = 0; x < maxScreenRows; x++) {
for (x = 0; x < maxScreenRows; x++) {
max7456Send(MAX7456ADD_RB0 + x, BWBRIGHTNESS);
}
@ -627,7 +627,7 @@ void max7456WriteNvm(uint8_t char_address, const uint8_t *font_data)
max7456Send(MAX7456ADD_CMAH, char_address); // set start address high
for(x = 0; x < 54; x++) {
for (x = 0; x < 54; x++) {
max7456Send(MAX7456ADD_CMAL, x); //set start address low
max7456Send(MAX7456ADD_CMDI, font_data[x]);
#ifdef LED0_TOGGLE

View File

@ -52,7 +52,7 @@ static void pwmOCConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t value, uint8
{
#if defined(USE_HAL_DRIVER)
TIM_HandleTypeDef* Handle = timerFindTimerHandle(tim);
if(Handle == NULL) return;
if (Handle == NULL) return;
TIM_OC_InitTypeDef TIM_OCInitStructure;
@ -100,7 +100,7 @@ static void pwmOutConfig(pwmOutputPort_t *port, const timerHardware_t *timerHard
{
#if defined(USE_HAL_DRIVER)
TIM_HandleTypeDef* Handle = timerFindTimerHandle(timerHardware->tim);
if(Handle == NULL) return;
if (Handle == NULL) return;
#endif
configTimeBase(timerHardware->tim, period, hz);
@ -111,7 +111,7 @@ static void pwmOutConfig(pwmOutputPort_t *port, const timerHardware_t *timerHard
);
#if defined(USE_HAL_DRIVER)
if(timerHardware->output & TIMER_OUTPUT_N_CHANNEL)
if (timerHardware->output & TIMER_OUTPUT_N_CHANNEL)
HAL_TIMEx_PWMN_Start(Handle, timerHardware->channel);
else
HAL_TIM_PWM_Start(Handle, timerHardware->channel);
@ -171,7 +171,7 @@ void pwmWriteMotor(uint8_t index, float value)
{
if (pwmMotorsEnabled) {
pwmWrite(index, value);
}
}
}
void pwmShutdownPulsesForAllMotors(uint8_t motorCount)
@ -203,7 +203,7 @@ bool pwmAreMotorsEnabled(void)
static void pwmCompleteWriteUnused(uint8_t motorCount)
{
UNUSED(motorCount);
UNUSED(motorCount);
}
static void pwmCompleteOneshotMotorUpdate(uint8_t motorCount)
@ -226,7 +226,7 @@ void pwmCompleteMotorUpdate(uint8_t motorCount)
void motorDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8_t motorCount)
{
memset(motors, 0, sizeof(motors));
bool useUnsyncedPwm = motorConfig->useUnsyncedPwm;
float sMin = 0;
@ -328,7 +328,7 @@ void motorDevInit(const motorDevConfig_t *motorConfig, uint16_t idlePulse, uint8
*/
motors[motorIndex].pulseScale = ((motorConfig->motorPwmProtocol == PWM_TYPE_BRUSHED) ? period : (sLen * hz)) / 1000.0f;
motors[motorIndex].pulseOffset = (sMin * hz) - (motors[motorIndex].pulseScale * 1000);
pwmOutConfig(&motors[motorIndex], timerHardware, hz, period, idlePulse, motorConfig->motorPwmInversion);
bool timerAlreadyUsed = false;
@ -466,9 +466,9 @@ void servoDevInit(const servoDevConfig_t *servoConfig)
#ifdef BEEPER
void pwmWriteBeeper(bool onoffBeep)
{
if(!beeperPwm.io)
if (!beeperPwm.io)
return;
if(onoffBeep == true) {
if (onoffBeep == true) {
*beeperPwm.ccr = (PWM_TIMER_1MHZ / freqBeep) / 2;
beeperPwm.enabled = true;
} else {

View File

@ -169,7 +169,7 @@ void pwmDshotMotorHardwareConfig(const timerHardware_t *timerHardware, uint8_t m
DMA_Cmd(dmaRef, DISABLE);
DMA_DeInit(dmaRef);
DMA_StructInit(&DMA_InitStructure);
#if defined(STM32F3)
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)motor->dmaBuffer;

View File

@ -322,7 +322,7 @@ static void pwmEdgeCallback(timerCCHandlerRec_t *cbRec, captureCompare_t capture
void pwmICConfig(TIM_TypeDef *tim, uint8_t channel, uint16_t polarity)
{
TIM_HandleTypeDef* Handle = timerFindTimerHandle(tim);
if(Handle == NULL) return;
if (Handle == NULL) return;
TIM_IC_InitTypeDef TIM_ICInitStructure;

View File

@ -126,11 +126,11 @@ static void TIM_DeInit(TIM_TypeDef *tim)
void setTxSignalEsc(escSerial_t *escSerial, uint8_t state)
{
if(escSerial->mode == PROTOCOL_KISSALL)
if (escSerial->mode == PROTOCOL_KISSALL)
{
for (volatile uint8_t i = 0; i < escSerial->outputCount; i++) {
uint8_t state_temp = state;
if(escOutputs[i].inverted) {
if (escOutputs[i].inverted) {
state_temp ^= ENABLE;
}
@ -143,7 +143,7 @@ void setTxSignalEsc(escSerial_t *escSerial, uint8_t state)
}
else
{
if(escSerial->rxTimerHardware->output & TIMER_OUTPUT_INVERTED) {
if (escSerial->rxTimerHardware->output & TIMER_OUTPUT_INVERTED) {
state ^= ENABLE;
}
@ -262,7 +262,7 @@ serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbac
{
escSerial_t *escSerial = &(escSerialPorts[portIndex]);
if(mode != PROTOCOL_KISSALL){
if (mode != PROTOCOL_KISSALL) {
escSerial->rxTimerHardware = &(timerHardware[output]);
#ifdef USE_HAL_DRIVER
escSerial->rxTimerHandle = timerFindTimerHandle(escSerial->rxTimerHardware->tim);
@ -295,7 +295,7 @@ serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbac
escSerial->escSerialPortIndex = portIndex;
if(mode != PROTOCOL_KISSALL)
if (mode != PROTOCOL_KISSALL)
{
escSerial->txIO = IOGetByTag(escSerial->rxTimerHardware->tag);
escSerialInputPortConfig(escSerial->rxTimerHardware);
@ -303,19 +303,19 @@ serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbac
}
delay(50);
if(mode==PROTOCOL_SIMONK){
if (mode==PROTOCOL_SIMONK) {
escSerialTimerTxConfig(escSerial->txTimerHardware, portIndex);
escSerialTimerRxConfig(escSerial->rxTimerHardware, portIndex);
}
else if(mode==PROTOCOL_BLHELI){
else if (mode==PROTOCOL_BLHELI) {
serialTimerTxConfigBL(escSerial->txTimerHardware, portIndex, baud);
serialTimerRxConfigBL(escSerial->rxTimerHardware, portIndex, options);
}
else if(mode==PROTOCOL_KISS) {
else if (mode==PROTOCOL_KISS) {
escSerialOutputPortConfig(escSerial->rxTimerHardware); // rx is the pin used
serialTimerTxConfigBL(escSerial->txTimerHardware, portIndex, baud);
}
else if(mode==PROTOCOL_KISSALL) {
else if (mode==PROTOCOL_KISSALL) {
escSerial->outputCount = 0;
memset(&escOutputs, 0, sizeof(escOutputs));
pwmOutputPort_t *pwmMotors = pwmGetMotors();
@ -323,10 +323,10 @@ serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbac
if (pwmMotors[i].enabled) {
if (pwmMotors[i].io != IO_NONE) {
for (volatile uint8_t j = 0; j < USABLE_TIMER_CHANNEL_COUNT; j++) {
if(pwmMotors[i].io == IOGetByTag(timerHardware[j].tag))
if (pwmMotors[i].io == IOGetByTag(timerHardware[j].tag))
{
escSerialOutputPortConfig(&timerHardware[j]);
if(timerHardware[j].output & TIMER_OUTPUT_INVERTED) {
if (timerHardware[j].output & TIMER_OUTPUT_INVERTED) {
escOutputs[escSerial->outputCount].inverted = 1;
}
break;
@ -340,7 +340,7 @@ serialPort_t *openEscSerial(escSerialPortIndex_e portIndex, serialReceiveCallbac
setTxSignalEsc(escSerial, ENABLE);
serialTimerTxConfigBL(escSerial->txTimerHardware, portIndex, baud);
}
else if(mode == PROTOCOL_CASTLE){
else if (mode == PROTOCOL_CASTLE){
escSerialOutputPortConfig(escSerial->rxTimerHardware);
serialTimerTxConfigBL(escSerial->txTimerHardware, portIndex, baud);
serialTimerRxConfigBL(escSerial->rxTimerHardware, portIndex, options);
@ -361,7 +361,7 @@ void closeEscSerial(escSerialPortIndex_e portIndex, uint8_t mode)
{
escSerial_t *escSerial = &(escSerialPorts[portIndex]);
if(mode != PROTOCOL_KISSALL){
if (mode != PROTOCOL_KISSALL) {
escSerialInputPortDeConfig(escSerial->rxTimerHardware);
timerChConfigCallbacks(escSerial->rxTimerHardware,NULL,NULL);
TIM_DeInit(escSerial->rxTimerHardware->tim);
@ -381,7 +381,7 @@ void processTxStateEsc(escSerial_t *escSerial)
return;
}
if(transmitStart==0)
if (transmitStart==0)
{
setTxSignalEsc(escSerial, 1);
}
@ -394,13 +394,13 @@ reload:
return;
}
if(transmitStart<3)
if (transmitStart<3)
{
if(transmitStart==0)
if (transmitStart==0)
byteToSend = 0xff;
if(transmitStart==1)
if (transmitStart==1)
byteToSend = 0xff;
if(transmitStart==2)
if (transmitStart==2)
byteToSend = 0x7f;
transmitStart++;
}
@ -425,35 +425,35 @@ reload:
if (escSerial->bitsLeftToTransmit) {
mask = escSerial->internalTxBuffer & 1;
if(mask)
if (mask)
{
if(bitq==0 || bitq==1)
if (bitq==0 || bitq==1)
{
setTxSignalEsc(escSerial, 1);
}
if(bitq==2 || bitq==3)
if (bitq==2 || bitq==3)
{
setTxSignalEsc(escSerial, 0);
}
}
else
{
if(bitq==0 || bitq==2)
if (bitq==0 || bitq==2)
{
setTxSignalEsc(escSerial, 1);
}
if(bitq==1 ||bitq==3)
if (bitq==1 ||bitq==3)
{
setTxSignalEsc(escSerial, 0);
}
}
bitq++;
if(bitq>3)
if (bitq>3)
{
escSerial->internalTxBuffer >>= 1;
escSerial->bitsLeftToTransmit--;
bitq=0;
if(escSerial->bitsLeftToTransmit==0)
if (escSerial->bitsLeftToTransmit==0)
{
goto reload;
}
@ -497,7 +497,7 @@ void processTxStateBL(escSerial_t *escSerial)
//set output
if(escSerial->mode==PROTOCOL_BLHELI || escSerial->mode==PROTOCOL_CASTLE) {
if (escSerial->mode==PROTOCOL_BLHELI || escSerial->mode==PROTOCOL_CASTLE) {
escSerialOutputPortConfig(escSerial->rxTimerHardware);
}
return;
@ -514,7 +514,7 @@ void processTxStateBL(escSerial_t *escSerial)
escSerial->isTransmittingData = false;
if (isEscSerialTransmitBufferEmpty((serialPort_t *)escSerial)) {
if(escSerial->mode==PROTOCOL_BLHELI || escSerial->mode==PROTOCOL_CASTLE)
if (escSerial->mode==PROTOCOL_BLHELI || escSerial->mode==PROTOCOL_CASTLE)
{
escSerialInputPortConfig(escSerial->rxTimerHardware);
}
@ -683,10 +683,10 @@ void onSerialTimerEsc(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
UNUSED(capture);
escSerial_t *escSerial = container_of(cbRec, escSerial_t, timerCb);
if(escSerial->isReceivingData)
if (escSerial->isReceivingData)
{
escSerial->receiveTimeout++;
if(escSerial->receiveTimeout>8)
if (escSerial->receiveTimeout>8)
{
escSerial->isReceivingData=0;
escSerial->receiveTimeout=0;
@ -714,17 +714,17 @@ void onSerialRxPinChangeEsc(timerCCHandlerRec_t *cbRec, captureCompare_t capture
TIM_SetCounter(escSerial->rxTimerHardware->tim,0);
#endif
if(capture > 40 && capture < 90)
if (capture > 40 && capture < 90)
{
zerofirst++;
if(zerofirst>1)
if (zerofirst>1)
{
zerofirst=0;
escSerial->internalRxBuffer = escSerial->internalRxBuffer>>1;
bits++;
}
}
else if(capture>90 && capture < 200)
else if (capture>90 && capture < 200)
{
zerofirst=0;
escSerial->internalRxBuffer = escSerial->internalRxBuffer>>1;
@ -733,7 +733,7 @@ void onSerialRxPinChangeEsc(timerCCHandlerRec_t *cbRec, captureCompare_t capture
}
else
{
if(!escSerial->isReceivingData)
if (!escSerial->isReceivingData)
{
//start
//lets reset
@ -749,11 +749,11 @@ void onSerialRxPinChangeEsc(timerCCHandlerRec_t *cbRec, captureCompare_t capture
}
escSerial->receiveTimeout = 0;
if(bits==8)
if (bits==8)
{
bits=0;
bytes++;
if(bytes>3)
if (bytes>3)
{
extractAndStoreRxByteEsc(escSerial);
}
@ -852,7 +852,7 @@ void escSerialInitialize()
for (volatile uint8_t i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
// set outputs to pullup
if(timerHardware[i].output & TIMER_OUTPUT_ENABLED)
if (timerHardware[i].output & TIMER_OUTPUT_ENABLED)
{
escSerialGPIOConfig(&timerHardware[i], IOCFG_IPU); //GPIO_Mode_IPU
}
@ -916,7 +916,7 @@ static bool ProcessExitCommand(uint8_t c)
if (currentPort.checksum == c) {
currentPort.c_state = COMMAND_RECEIVED;
if((currentPort.cmdMSP == 0xF4) && (currentPort.dataSize==0))
if ((currentPort.cmdMSP == 0xF4) && (currentPort.dataSize==0))
{
currentPort.c_state = IDLE;
return true;
@ -953,14 +953,14 @@ void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uin
break;
}
if((mode == PROTOCOL_KISS) && (output == 255)){
if ((mode == PROTOCOL_KISS) && (output == 255)) {
motor_output = 255;
mode = PROTOCOL_KISSALL;
}
else {
uint8_t first_output = 0;
for (volatile uint8_t i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
if(timerHardware[i].output & TIMER_OUTPUT_ENABLED)
if (timerHardware[i].output & TIMER_OUTPUT_ENABLED)
{
first_output=i;
break;
@ -969,18 +969,18 @@ void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uin
//doesn't work with messy timertable
motor_output=first_output+output-1;
if(motor_output >=USABLE_TIMER_CHANNEL_COUNT)
if (motor_output >=USABLE_TIMER_CHANNEL_COUNT)
return;
}
escPort = openEscSerial(ESCSERIAL1, NULL, motor_output, escBaudrate, 0, mode);
uint8_t ch;
while(1) {
if(mode!=2)
while (1) {
if (mode!=2)
{
if (serialRxBytesWaiting(escPort)) {
LED0_ON;
while(serialRxBytesWaiting(escPort))
while (serialRxBytesWaiting(escPort))
{
ch = serialRead(escPort);
serialWrite(escPassthroughPort, ch);
@ -990,11 +990,11 @@ void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uin
}
if (serialRxBytesWaiting(escPassthroughPort)) {
LED1_ON;
while(serialRxBytesWaiting(escPassthroughPort))
while (serialRxBytesWaiting(escPassthroughPort))
{
ch = serialRead(escPassthroughPort);
exitEsc = ProcessExitCommand(ch);
if(exitEsc)
if (exitEsc)
{
serialWrite(escPassthroughPort, 0x24);
serialWrite(escPassthroughPort, 0x4D);
@ -1005,14 +1005,14 @@ void escEnablePassthrough(serialPort_t *escPassthroughPort, uint16_t output, uin
closeEscSerial(ESCSERIAL1, mode);
return;
}
if(mode==PROTOCOL_BLHELI){
if (mode==PROTOCOL_BLHELI) {
serialWrite(escPassthroughPort, ch); // blheli loopback
}
serialWrite(escPort, ch);
}
LED1_OFF;
}
if(mode != PROTOCOL_CASTLE){
if (mode != PROTOCOL_CASTLE) {
delay(5);
}
}

View File

@ -53,7 +53,7 @@ static void onClose(dyad_Event *e) {
s->clientCount--;
s->conn = NULL;
fprintf(stderr, "[CLS]UART%u: %d,%d\n", s->id + 1, s->connected, s->clientCount);
if(s->clientCount == 0) {
if (s->clientCount == 0) {
s->connected = false;
}
}
@ -62,7 +62,7 @@ static void onAccept(dyad_Event *e) {
fprintf(stderr, "New connection on UART%u, %d\n", s->id + 1, s->clientCount);
s->connected = true;
if(s->clientCount > 0) {
if (s->clientCount > 0) {
dyad_close(e->remote);
return;
}
@ -76,7 +76,7 @@ static void onAccept(dyad_Event *e) {
}
static tcpPort_t* tcpReconfigure(tcpPort_t *s, int id)
{
if(tcpPortInitialized[id]) {
if (tcpPortInitialized[id]) {
fprintf(stderr, "port is already initialized!\n");
return s;
}
@ -103,7 +103,7 @@ static tcpPort_t* tcpReconfigure(tcpPort_t *s, int id)
dyad_setNoDelay(s->serv, 1);
dyad_addListener(s->serv, DYAD_EVENT_ACCEPT, onAccept, s);
if(dyad_listenEx(s->serv, NULL, BASE_PORT + id + 1, 10) == 0) {
if (dyad_listenEx(s->serv, NULL, BASE_PORT + id + 1, 10) == 0) {
fprintf(stderr, "bind port %u for UART%u\n", (unsigned)BASE_PORT + id + 1, (unsigned)id + 1);
} else {
fprintf(stderr, "bind port %u for UART%u failed!!\n", (unsigned)BASE_PORT + id + 1, (unsigned)id + 1);
@ -116,11 +116,11 @@ serialPort_t *serTcpOpen(int id, serialReceiveCallbackPtr rxCallback, uint32_t b
tcpPort_t *s = NULL;
#if defined(USE_UART1) || defined(USE_UART2) || defined(USE_UART3) || defined(USE_UART4) || defined(USE_UART5) || defined(USE_UART6) || defined(USE_UART7) || defined(USE_UART8)
if(id >= 0 && id < SERIAL_PORT_COUNT) {
if (id >= 0 && id < SERIAL_PORT_COUNT) {
s = tcpReconfigure(&tcpSerialPorts[id], id);
}
#endif
if(!s)
if (!s)
return NULL;
s->port.vTable = &tcpVTable;
@ -219,7 +219,7 @@ void tcpWrite(serialPort_t *instance, uint8_t ch)
void tcpDataOut(tcpPort_t *instance)
{
tcpPort_t *s = (tcpPort_t *)instance;
if(s->conn == NULL) return;
if (s->conn == NULL) return;
pthread_mutex_lock(&s->txLock);
if (s->port.txBufferHead < s->port.txBufferTail) {
@ -229,7 +229,7 @@ void tcpDataOut(tcpPort_t *instance)
s->port.txBufferTail = 0;
}
int chunk = s->port.txBufferHead - s->port.txBufferTail;
if(chunk)
if (chunk)
dyad_write(s->conn, (const void*)&s->port.txBuffer[s->port.txBufferTail], chunk);
s->port.txBufferTail = s->port.txBufferHead;
@ -241,7 +241,7 @@ void tcpDataIn(tcpPort_t *instance, uint8_t* ch, int size)
tcpPort_t *s = (tcpPort_t *)instance;
pthread_mutex_lock(&s->rxLock);
while(size--) {
while (size--) {
// printf("%c", *ch);
s->port.rxBuffer[s->port.rxBufferHead] = *(ch++);
if (s->port.rxBufferHead + 1 >= s->port.rxBufferSize) {

View File

@ -43,7 +43,7 @@
static void usartConfigurePinInversion(uartPort_t *uartPort) {
bool inverted = uartPort->port.options & SERIAL_INVERTED;
if(inverted)
if (inverted)
{
if (uartPort->port.mode & MODE_RX)
{
@ -94,7 +94,7 @@ void uartReconfigure(uartPort_t *uartPort)
usartConfigurePinInversion(uartPort);
if(uartPort->port.options & SERIAL_BIDIR)
if (uartPort->port.options & SERIAL_BIDIR)
{
HAL_HalfDuplex_Init(&uartPort->Handle);
}
@ -167,9 +167,9 @@ void uartReconfigure(uartPort_t *uartPort)
HAL_DMA_DeInit(&uartPort->txDMAHandle);
HAL_StatusTypeDef status = HAL_DMA_Init(&uartPort->txDMAHandle);
if(status != HAL_OK)
if (status != HAL_OK)
{
while(1);
while (1);
}
/* Associate the initialized DMA handle to the UART handle */
__HAL_LINKDMA(&uartPort->Handle, hdmatx, uartPort->txDMAHandle);
@ -225,7 +225,7 @@ void uartStartTxDMA(uartPort_t *s)
uint16_t size = 0;
uint32_t fromwhere=0;
HAL_UART_StateTypeDef state = HAL_UART_GetState(&s->Handle);
if((state & HAL_UART_STATE_BUSY_TX) == HAL_UART_STATE_BUSY_TX)
if ((state & HAL_UART_STATE_BUSY_TX) == HAL_UART_STATE_BUSY_TX)
return;
if (s->port.txBufferHead > s->port.txBufferTail) {

View File

@ -104,7 +104,7 @@ void uartReconfigure(uartPort_t *uartPort)
usartConfigurePinInversion(uartPort);
if(uartPort->port.options & SERIAL_BIDIR)
if (uartPort->port.options & SERIAL_BIDIR)
USART_HalfDuplexCmd(uartPort->USARTx, ENABLE);
else
USART_HalfDuplexCmd(uartPort->USARTx, DISABLE);

View File

@ -74,7 +74,7 @@ const uartHardware_t uartHardware[UARTDEV_COUNT] = {
},
#endif
#ifdef USE_UART2
{
{
.device = UARTDEV_2,
.reg = USART2,
.rxDMAChannel = UART2_RX_DMA_CHANNEL,
@ -101,8 +101,8 @@ const uartHardware_t uartHardware[UARTDEV_COUNT] = {
.irqn = USART3_IRQn,
.txPriority = NVIC_PRIO_SERIALUART3,
.rxPriority = NVIC_PRIO_SERIALUART3
},
#endif
},
#endif
};
void uart_tx_dma_IRQHandler(dmaChannelDescriptor_t* descriptor)

View File

@ -228,7 +228,7 @@ void uartIrqHandler(uartPort_t *s)
{
UART_HandleTypeDef *huart = &s->Handle;
/* UART in mode Receiver ---------------------------------------------------*/
if((__HAL_UART_GET_IT(huart, UART_IT_RXNE) != RESET))
if ((__HAL_UART_GET_IT(huart, UART_IT_RXNE) != RESET))
{
uint8_t rbyte = (uint8_t)(huart->Instance->RDR & (uint8_t)0xff);
@ -247,37 +247,37 @@ void uartIrqHandler(uartPort_t *s)
}
/* UART parity error interrupt occurred -------------------------------------*/
if((__HAL_UART_GET_IT(huart, UART_IT_PE) != RESET))
if ((__HAL_UART_GET_IT(huart, UART_IT_PE) != RESET))
{
__HAL_UART_CLEAR_IT(huart, UART_CLEAR_PEF);
}
/* UART frame error interrupt occurred --------------------------------------*/
if((__HAL_UART_GET_IT(huart, UART_IT_FE) != RESET))
if ((__HAL_UART_GET_IT(huart, UART_IT_FE) != RESET))
{
__HAL_UART_CLEAR_IT(huart, UART_CLEAR_FEF);
}
/* UART noise error interrupt occurred --------------------------------------*/
if((__HAL_UART_GET_IT(huart, UART_IT_NE) != RESET))
if ((__HAL_UART_GET_IT(huart, UART_IT_NE) != RESET))
{
__HAL_UART_CLEAR_IT(huart, UART_CLEAR_NEF);
}
/* UART Over-Run interrupt occurred -----------------------------------------*/
if((__HAL_UART_GET_IT(huart, UART_IT_ORE) != RESET))
if ((__HAL_UART_GET_IT(huart, UART_IT_ORE) != RESET))
{
__HAL_UART_CLEAR_IT(huart, UART_CLEAR_OREF);
}
/* UART in mode Transmitter ------------------------------------------------*/
if((__HAL_UART_GET_IT(huart, UART_IT_TXE) != RESET))
if ((__HAL_UART_GET_IT(huart, UART_IT_TXE) != RESET))
{
HAL_UART_IRQHandler(huart);
}
/* UART in mode Transmitter (transmission end) -----------------------------*/
if((__HAL_UART_GET_IT(huart, UART_IT_TC) != RESET))
if ((__HAL_UART_GET_IT(huart, UART_IT_TC) != RESET))
{
HAL_UART_IRQHandler(huart);
handleUsartTxDma(s);
@ -308,7 +308,7 @@ uartPort_t *serialUART(UARTDevice device, uint32_t baudRate, portMode_t mode, po
uartDevice_t *uartdev = uartDevmap[device];
if (!uartdev) {
return NULL;
}
}
uartPort_t *s = &(uartdev->port);
@ -370,7 +370,7 @@ uartPort_t *serialUART(UARTDevice device, uint32_t baudRate, portMode_t mode, po
//HAL_NVIC_SetPriority(hardware->txIrq, NVIC_PRIORITY_BASE(hardware->txPriority), NVIC_PRIORITY_SUB(hardware->txPriority));
//HAL_NVIC_EnableIRQ(hardware->txIrq);
if(!s->rxDMAChannel)
if (!s->rxDMAChannel)
{
HAL_NVIC_SetPriority(hardware->rxIrq, NVIC_PRIORITY_BASE(hardware->rxPriority), NVIC_PRIORITY_SUB(hardware->rxPriority));
HAL_NVIC_EnableIRQ(hardware->rxIrq);

View File

@ -35,7 +35,7 @@ static uint16_t beeperFrequency = 0;
void systemBeep(bool onoff)
{
#ifdef BEEPER
if(beeperFrequency == 0) {
if (beeperFrequency == 0) {
IOWrite(beeperIO, beeperInverted ? onoff : !onoff);
} else {
pwmWriteBeeper(onoff);
@ -48,7 +48,7 @@ void systemBeep(bool onoff)
void systemBeepToggle(void)
{
#ifdef BEEPER
if(beeperFrequency == 0) {
if (beeperFrequency == 0) {
IOToggle(beeperIO);
} else {
pwmToggleBeeper();
@ -60,7 +60,7 @@ void beeperInit(const beeperDevConfig_t *config)
{
#ifdef BEEPER
beeperFrequency = config->frequency;
if(beeperFrequency == 0) {
if (beeperFrequency == 0) {
beeperIO = IOGetByTag(config->ioTag);
beeperInverted = config->isInverted;
if (beeperIO) {

View File

@ -24,9 +24,9 @@
#define BEEP_OFF systemBeep(false)
#define BEEP_ON systemBeep(true)
#else
#define BEEP_TOGGLE do {} while(0)
#define BEEP_OFF do {} while(0)
#define BEEP_ON do {} while(0)
#define BEEP_TOGGLE do {} while (0)
#define BEEP_OFF do {} while (0)
#define BEEP_ON do {} while (0)
#endif
typedef struct beeperDevConfig_s {

View File

@ -78,7 +78,7 @@ static uint8_t lookupTimerIndex(const TIM_TypeDef *tim)
#define _CASE(i) _CASE_(TIM##i##_BASE, TIMER_INDEX(i))
// let gcc do the work, switch should be quite optimized
switch((unsigned)tim >> _CASE_SHF) {
switch ((unsigned)tim >> _CASE_SHF) {
#if USED_TIMERS & TIM_N(1)
_CASE(1);
#endif
@ -254,7 +254,7 @@ void timerConfigure(const timerHardware_t *timerHardwarePtr, uint16_t period, ui
uint8_t irq = timerInputIrq(timerHardwarePtr->tim);
timerNVICConfigure(irq);
// HACK - enable second IRQ on timers that need it
switch(irq) {
switch (irq) {
#if defined(STM32F10X)
case TIM1_CC_IRQn:
timerNVICConfigure(TIM1_UP_IRQn);
@ -287,14 +287,14 @@ void timerConfigure(const timerHardware_t *timerHardwarePtr, uint16_t period, ui
void timerChInit(const timerHardware_t *timHw, channelType_t type, int irqPriority, uint8_t irq)
{
unsigned channel = timHw - timerHardware;
if(channel >= USABLE_TIMER_CHANNEL_COUNT)
if (channel >= USABLE_TIMER_CHANNEL_COUNT)
return;
timerChannelInfo[channel].type = type;
unsigned timer = lookupTimerIndex(timHw->tim);
if(timer >= USED_TIMER_COUNT)
if (timer >= USED_TIMER_COUNT)
return;
if(irqPriority < timerInfo[timer].priority) {
if (irqPriority < timerInfo[timer].priority) {
// it would be better to set priority in the end, but current startup sequence is not ready
configTimeBase(usedTimers[timer], 0, 1);
TIM_Cmd(usedTimers[timer], ENABLE);
@ -327,8 +327,8 @@ void timerChOvrHandlerInit(timerOvrHandlerRec_t *self, timerOvrHandlerCallback *
static void timerChConfig_UpdateOverflow(timerConfig_t *cfg, TIM_TypeDef *tim) {
timerOvrHandlerRec_t **chain = &cfg->overflowCallbackActive;
ATOMIC_BLOCK(NVIC_PRIO_TIMER) {
for(int i = 0; i < CC_CHANNELS_PER_TIMER; i++)
if(cfg->overflowCallback[i]) {
for (int i = 0; i < CC_CHANNELS_PER_TIMER; i++)
if (cfg->overflowCallback[i]) {
*chain = cfg->overflowCallback[i];
chain = &cfg->overflowCallback[i]->next;
}
@ -346,13 +346,13 @@ void timerChConfigCallbacks(const timerHardware_t *timHw, timerCCHandlerRec_t *e
return;
}
uint8_t channelIndex = lookupChannelIndex(timHw->channel);
if(edgeCallback == NULL) // disable irq before changing callback to NULL
if (edgeCallback == NULL) // disable irq before changing callback to NULL
TIM_ITConfig(timHw->tim, TIM_IT_CCx(timHw->channel), DISABLE);
// setup callback info
timerConfig[timerIndex].edgeCallback[channelIndex] = edgeCallback;
timerConfig[timerIndex].overflowCallback[channelIndex] = overflowCallback;
// enable channel IRQ
if(edgeCallback)
if (edgeCallback)
TIM_ITConfig(timHw->tim, TIM_IT_CCx(timHw->channel), ENABLE);
timerChConfig_UpdateOverflow(&timerConfig[timerIndex], timHw->tim);
@ -371,9 +371,9 @@ void timerChConfigCallbacksDual(const timerHardware_t *timHw, timerCCHandlerRec_
uint16_t chHi = timHw->channel | TIM_Channel_2; // upper channel
uint8_t channelIndex = lookupChannelIndex(chLo); // get index of lower channel
if(edgeCallbackLo == NULL) // disable irq before changing setting callback to NULL
if (edgeCallbackLo == NULL) // disable irq before changing setting callback to NULL
TIM_ITConfig(timHw->tim, TIM_IT_CCx(chLo), DISABLE);
if(edgeCallbackHi == NULL) // disable irq before changing setting callback to NULL
if (edgeCallbackHi == NULL) // disable irq before changing setting callback to NULL
TIM_ITConfig(timHw->tim, TIM_IT_CCx(chHi), DISABLE);
// setup callback info
@ -383,11 +383,11 @@ void timerChConfigCallbacksDual(const timerHardware_t *timHw, timerCCHandlerRec_
timerConfig[timerIndex].overflowCallback[channelIndex + 1] = NULL;
// enable channel IRQs
if(edgeCallbackLo) {
if (edgeCallbackLo) {
TIM_ClearFlag(timHw->tim, TIM_IT_CCx(chLo));
TIM_ITConfig(timHw->tim, TIM_IT_CCx(chLo), ENABLE);
}
if(edgeCallbackHi) {
if (edgeCallbackHi) {
TIM_ClearFlag(timHw->tim, TIM_IT_CCx(chHi));
TIM_ITConfig(timHw->tim, TIM_IT_CCx(chHi), ENABLE);
}
@ -433,8 +433,8 @@ static unsigned getFilter(unsigned ticks)
16*5, 16*6, 16*8,
32*5, 32*6, 32*8
};
for(unsigned i = 1; i < ARRAYLEN(ftab); i++)
if(ftab[i] > ticks)
for (unsigned i = 1; i < ARRAYLEN(ftab); i++)
if (ftab[i] > ticks)
return i - 1;
return 0x0f;
}
@ -504,7 +504,7 @@ void timerChConfigOC(const timerHardware_t* timHw, bool outEnable, bool stateHig
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCStructInit(&TIM_OCInitStructure);
if(outEnable) {
if (outEnable) {
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Inactive;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
if (timHw->output & TIMER_OUTPUT_INVERTED) {
@ -541,17 +541,17 @@ static void timCCxHandler(TIM_TypeDef *tim, timerConfig_t *timerConfig)
unsigned tim_status;
tim_status = tim->SR & tim->DIER;
#if 1
while(tim_status) {
while (tim_status) {
// flags will be cleared by reading CCR in dual capture, make sure we call handler correctly
// currrent order is highest bit first. Code should not rely on specific order (it will introduce race conditions anyway)
unsigned bit = __builtin_clz(tim_status);
unsigned mask = ~(0x80000000 >> bit);
tim->SR = mask;
tim_status &= mask;
switch(bit) {
switch (bit) {
case __builtin_clz(TIM_IT_Update): {
if(timerConfig->forcedOverflowTimerValue != 0){
if (timerConfig->forcedOverflowTimerValue != 0) {
capture = timerConfig->forcedOverflowTimerValue - 1;
timerConfig->forcedOverflowTimerValue = 0;
} else {
@ -559,7 +559,7 @@ static void timCCxHandler(TIM_TypeDef *tim, timerConfig_t *timerConfig)
}
timerOvrHandlerRec_t *cb = timerConfig->overflowCallbackActive;
while(cb) {
while (cb) {
cb->fn(cb, capture);
cb = cb->next;
}
@ -584,7 +584,7 @@ static void timCCxHandler(TIM_TypeDef *tim, timerConfig_t *timerConfig)
tim->SR = ~TIM_IT_Update;
capture = tim->ARR;
timerOvrHandlerRec_t *cb = timerConfig->overflowCallbackActive;
while(cb) {
while (cb) {
cb->fn(cb, capture);
cb = cb->next;
}
@ -714,10 +714,10 @@ void timerInit(void)
#endif
// initialize timer channel structures
for(int i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
for (int i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
timerChannelInfo[i].type = TYPE_FREE;
}
for(int i = 0; i < USED_TIMER_COUNT; i++) {
for (int i = 0; i < USED_TIMER_COUNT; i++) {
timerInfo[i].priority = ~0;
}
}
@ -728,18 +728,18 @@ void timerInit(void)
void timerStart(void)
{
#if 0
for(unsigned timer = 0; timer < USED_TIMER_COUNT; timer++) {
for (unsigned timer = 0; timer < USED_TIMER_COUNT; timer++) {
int priority = -1;
int irq = -1;
for(unsigned hwc = 0; hwc < USABLE_TIMER_CHANNEL_COUNT; hwc++)
if((timerChannelInfo[hwc].type != TYPE_FREE) && (timerHardware[hwc].tim == usedTimers[timer])) {
for (unsigned hwc = 0; hwc < USABLE_TIMER_CHANNEL_COUNT; hwc++)
if ((timerChannelInfo[hwc].type != TYPE_FREE) && (timerHardware[hwc].tim == usedTimers[timer])) {
// TODO - move IRQ to timer info
irq = timerHardware[hwc].irq;
}
// TODO - aggregate required timer paramaters
configTimeBase(usedTimers[timer], 0, 1);
TIM_Cmd(usedTimers[timer], ENABLE);
if(priority >= 0) { // maybe none of the channels was configured
if (priority >= 0) { // maybe none of the channels was configured
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = irq;

View File

@ -86,7 +86,7 @@ static uint8_t lookupTimerIndex(const TIM_TypeDef *tim)
#define _CASE(i) _CASE_(TIM##i##_BASE, TIMER_INDEX(i))
// let gcc do the work, switch should be quite optimized
switch((unsigned)tim >> _CASE_SHF) {
switch ((unsigned)tim >> _CASE_SHF) {
#if USED_TIMERS & TIM_N(1)
_CASE(1);
#endif
@ -247,7 +247,7 @@ void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint32_t hz)
if (timerIndex >= USED_TIMER_COUNT) {
return;
}
if(timerHandle[timerIndex].Handle.Instance == tim)
if (timerHandle[timerIndex].Handle.Instance == tim)
{
// already configured
return;
@ -263,7 +263,7 @@ void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint32_t hz)
timerHandle[timerIndex].Handle.Init.RepetitionCounter = 0x0000;
HAL_TIM_Base_Init(&timerHandle[timerIndex].Handle);
if(tim == TIM1 || tim == TIM2 || tim == TIM3 || tim == TIM4 || tim == TIM5 || tim == TIM8 || tim == TIM9)
if (tim == TIM1 || tim == TIM2 || tim == TIM3 || tim == TIM4 || tim == TIM5 || tim == TIM8 || tim == TIM9)
{
TIM_ClockConfigTypeDef sClockSourceConfig;
memset(&sClockSourceConfig, 0, sizeof(sClockSourceConfig));
@ -273,7 +273,7 @@ void configTimeBase(TIM_TypeDef *tim, uint16_t period, uint32_t hz)
return;
}
}
if(tim == TIM1 || tim == TIM2 || tim == TIM3 || tim == TIM4 || tim == TIM5 || tim == TIM8 )
if (tim == TIM1 || tim == TIM2 || tim == TIM3 || tim == TIM4 || tim == TIM5 || tim == TIM8 )
{
TIM_MasterConfigTypeDef sMasterConfig;
memset(&sMasterConfig, 0, sizeof(sMasterConfig));
@ -300,7 +300,7 @@ void timerConfigure(const timerHardware_t *timerHardwarePtr, uint16_t period, ui
uint8_t irq = timerInputIrq(timerHardwarePtr->tim);
timerNVICConfigure(irq);
// HACK - enable second IRQ on timers that need it
switch(irq) {
switch (irq) {
case TIM1_CC_IRQn:
timerNVICConfigure(TIM1_UP_TIM10_IRQn);
@ -320,14 +320,14 @@ void timerChInit(const timerHardware_t *timHw, channelType_t type, int irqPriori
return;
}
unsigned channel = timHw - timerHardware;
if(channel >= USABLE_TIMER_CHANNEL_COUNT)
if (channel >= USABLE_TIMER_CHANNEL_COUNT)
return;
timerChannelInfo[channel].type = type;
unsigned timer = lookupTimerIndex(timHw->tim);
if(timer >= USED_TIMER_COUNT)
if (timer >= USED_TIMER_COUNT)
return;
if(irqPriority < timerInfo[timer].priority) {
if (irqPriority < timerInfo[timer].priority) {
// it would be better to set priority in the end, but current startup sequence is not ready
configTimeBase(usedTimers[timer], 0, 1);
HAL_TIM_Base_Start(&timerHandle[timerIndex].Handle);
@ -361,15 +361,15 @@ static void timerChConfig_UpdateOverflow(timerConfig_t *cfg, TIM_TypeDef *tim) {
timerOvrHandlerRec_t **chain = &cfg->overflowCallbackActive;
ATOMIC_BLOCK(NVIC_PRIO_TIMER) {
for(int i = 0; i < CC_CHANNELS_PER_TIMER; i++)
if(cfg->overflowCallback[i]) {
for (int i = 0; i < CC_CHANNELS_PER_TIMER; i++)
if (cfg->overflowCallback[i]) {
*chain = cfg->overflowCallback[i];
chain = &cfg->overflowCallback[i]->next;
}
*chain = NULL;
}
// enable or disable IRQ
if(cfg->overflowCallbackActive)
if (cfg->overflowCallbackActive)
__HAL_TIM_ENABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_UPDATE);
else
__HAL_TIM_DISABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_UPDATE);
@ -383,13 +383,13 @@ void timerChConfigCallbacks(const timerHardware_t *timHw, timerCCHandlerRec_t *e
return;
}
uint8_t channelIndex = lookupChannelIndex(timHw->channel);
if(edgeCallback == NULL) // disable irq before changing callback to NULL
if (edgeCallback == NULL) // disable irq before changing callback to NULL
__HAL_TIM_DISABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(timHw->channel));
// setup callback info
timerConfig[timerIndex].edgeCallback[channelIndex] = edgeCallback;
timerConfig[timerIndex].overflowCallback[channelIndex] = overflowCallback;
// enable channel IRQ
if(edgeCallback)
if (edgeCallback)
__HAL_TIM_ENABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(timHw->channel));
timerChConfig_UpdateOverflow(&timerConfig[timerIndex], timHw->tim);
@ -408,9 +408,9 @@ void timerChConfigCallbacksDual(const timerHardware_t *timHw, timerCCHandlerRec_
uint16_t chHi = timHw->channel | TIM_CHANNEL_2; // upper channel
uint8_t channelIndex = lookupChannelIndex(chLo); // get index of lower channel
if(edgeCallbackLo == NULL) // disable irq before changing setting callback to NULL
if (edgeCallbackLo == NULL) // disable irq before changing setting callback to NULL
__HAL_TIM_DISABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(chLo));
if(edgeCallbackHi == NULL) // disable irq before changing setting callback to NULL
if (edgeCallbackHi == NULL) // disable irq before changing setting callback to NULL
__HAL_TIM_DISABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(chHi));
// setup callback info
@ -420,11 +420,11 @@ void timerChConfigCallbacksDual(const timerHardware_t *timHw, timerCCHandlerRec_
timerConfig[timerIndex].overflowCallback[channelIndex + 1] = NULL;
// enable channel IRQs
if(edgeCallbackLo) {
if (edgeCallbackLo) {
__HAL_TIM_CLEAR_FLAG(&timerHandle[timerIndex].Handle, TIM_IT_CCx(chLo));
__HAL_TIM_ENABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(chLo));
}
if(edgeCallbackHi) {
if (edgeCallbackHi) {
__HAL_TIM_CLEAR_FLAG(&timerHandle[timerIndex].Handle, TIM_IT_CCx(chHi));
__HAL_TIM_ENABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(chHi));
}
@ -443,7 +443,7 @@ void timerChITConfigDualLo(const timerHardware_t *timHw, FunctionalState newStat
return;
}
if(newState)
if (newState)
__HAL_TIM_ENABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(timHw->channel&~TIM_CHANNEL_2));
else
__HAL_TIM_DISABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(timHw->channel&~TIM_CHANNEL_2));
@ -462,7 +462,7 @@ void timerChITConfig(const timerHardware_t *timHw, FunctionalState newState)
return;
}
if(newState)
if (newState)
__HAL_TIM_ENABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(timHw->channel));
else
__HAL_TIM_DISABLE_IT(&timerHandle[timerIndex].Handle, TIM_IT_CCx(timHw->channel));
@ -505,8 +505,8 @@ static unsigned getFilter(unsigned ticks)
16*5, 16*6, 16*8,
32*5, 32*6, 32*8
};
for(unsigned i = 1; i < ARRAYLEN(ftab); i++)
if(ftab[i] > ticks)
for (unsigned i = 1; i < ARRAYLEN(ftab); i++)
if (ftab[i] > ticks)
return i - 1;
return 0x0f;
}
@ -515,7 +515,7 @@ static unsigned getFilter(unsigned ticks)
void timerChConfigIC(const timerHardware_t *timHw, bool polarityRising, unsigned inputFilterTicks)
{
unsigned timer = lookupTimerIndex(timHw->tim);
if(timer >= USED_TIMER_COUNT)
if (timer >= USED_TIMER_COUNT)
return;
TIM_IC_InitTypeDef TIM_ICInitStructure;
@ -532,7 +532,7 @@ void timerChConfigIC(const timerHardware_t *timHw, bool polarityRising, unsigned
void timerChConfigICDual(const timerHardware_t *timHw, bool polarityRising, unsigned inputFilterTicks)
{
unsigned timer = lookupTimerIndex(timHw->tim);
if(timer >= USED_TIMER_COUNT)
if (timer >= USED_TIMER_COUNT)
return;
TIM_IC_InitTypeDef TIM_ICInitStructure;
@ -579,7 +579,7 @@ volatile timCCR_t* timerChCCR(const timerHardware_t *timHw)
void timerChConfigOC(const timerHardware_t* timHw, bool outEnable, bool stateHigh)
{
unsigned timer = lookupTimerIndex(timHw->tim);
if(timer >= USED_TIMER_COUNT)
if (timer >= USED_TIMER_COUNT)
return;
TIM_OC_InitTypeDef TIM_OCInitStructure;
@ -593,7 +593,7 @@ void timerChConfigOC(const timerHardware_t* timHw, bool outEnable, bool stateHig
HAL_TIM_OC_ConfigChannel(&timerHandle[timer].Handle, &TIM_OCInitStructure, timHw->channel);
if(outEnable) {
if (outEnable) {
TIM_OCInitStructure.OCMode = TIM_OCMODE_INACTIVE;
HAL_TIM_OC_ConfigChannel(&timerHandle[timer].Handle, &TIM_OCInitStructure, timHw->channel);
HAL_TIM_OC_Start(&timerHandle[timer].Handle, timHw->channel);
@ -610,17 +610,17 @@ static void timCCxHandler(TIM_TypeDef *tim, timerConfig_t *timerConfig)
unsigned tim_status;
tim_status = tim->SR & tim->DIER;
#if 1
while(tim_status) {
while (tim_status) {
// flags will be cleared by reading CCR in dual capture, make sure we call handler correctly
// currrent order is highest bit first. Code should not rely on specific order (it will introduce race conditions anyway)
unsigned bit = __builtin_clz(tim_status);
unsigned mask = ~(0x80000000 >> bit);
tim->SR = mask;
tim_status &= mask;
switch(bit) {
switch (bit) {
case __builtin_clz(TIM_IT_UPDATE): {
if(timerConfig->forcedOverflowTimerValue != 0){
if (timerConfig->forcedOverflowTimerValue != 0) {
capture = timerConfig->forcedOverflowTimerValue - 1;
timerConfig->forcedOverflowTimerValue = 0;
} else {
@ -628,7 +628,7 @@ static void timCCxHandler(TIM_TypeDef *tim, timerConfig_t *timerConfig)
}
timerOvrHandlerRec_t *cb = timerConfig->overflowCallbackActive;
while(cb) {
while (cb) {
cb->fn(cb, capture);
cb = cb->next;
}
@ -653,7 +653,7 @@ static void timCCxHandler(TIM_TypeDef *tim, timerConfig_t *timerConfig)
tim->SR = ~TIM_IT_Update;
capture = tim->ARR;
timerOvrHandlerRec_t *cb = timerConfig->overflowCallbackActive;
while(cb) {
while (cb) {
cb->fn(cb, capture);
cb = cb->next;
}
@ -812,10 +812,10 @@ void timerInit(void)
#endif
// initialize timer channel structures
for(int i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
for (int i = 0; i < USABLE_TIMER_CHANNEL_COUNT; i++) {
timerChannelInfo[i].type = TYPE_FREE;
}
for(int i = 0; i < USED_TIMER_COUNT; i++) {
for (int i = 0; i < USED_TIMER_COUNT; i++) {
timerInfo[i].priority = ~0;
}
}
@ -826,18 +826,18 @@ void timerInit(void)
void timerStart(void)
{
#if 0
for(unsigned timer = 0; timer < USED_TIMER_COUNT; timer++) {
for (unsigned timer = 0; timer < USED_TIMER_COUNT; timer++) {
int priority = -1;
int irq = -1;
for(unsigned hwc = 0; hwc < USABLE_TIMER_CHANNEL_COUNT; hwc++)
if((timerChannelInfo[hwc].type != TYPE_FREE) && (timerHardware[hwc].tim == usedTimers[timer])) {
for (unsigned hwc = 0; hwc < USABLE_TIMER_CHANNEL_COUNT; hwc++)
if ((timerChannelInfo[hwc].type != TYPE_FREE) && (timerHardware[hwc].tim == usedTimers[timer])) {
// TODO - move IRQ to timer info
irq = timerHardware[hwc].irq;
}
// TODO - aggregate required timer paramaters
configTimeBase(usedTimers[timer], 0, 1);
TIM_Cmd(usedTimers[timer], ENABLE);
if(priority >= 0) { // maybe none of the channels was configured
if (priority >= 0) { // maybe none of the channels was configured
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = irq;
@ -913,4 +913,4 @@ uint16_t timerGetPrescalerByDesiredHertz(TIM_TypeDef *tim, uint32_t hz)
return 0;
}
return (uint16_t)((timerClock(tim) + hz / 2 ) / hz) - 1;
}
}

View File

@ -188,7 +188,7 @@ void transponderIrWaitForTransmitComplete(void)
{
static uint32_t waitCounter = 0;
while(transponderIrDataTransferInProgress) {
while (transponderIrDataTransferInProgress) {
waitCounter++;
}
}

View File

@ -55,7 +55,7 @@ void updateTransponderDMABufferERLT(transponder_t *transponder, const uint8_t* t
addBitToBuffer(transponder, ERLTCyclesForZeroBit, ERLTBitQuiet);
//add data bits, only the 6 LSB
for(int i = 5; i >= 0; i--)
for (int i = 5; i >= 0; i--)
{
uint8_t bv = (byteToSend >> i) & 0x01;
paritysum += bv;

View File

@ -67,7 +67,7 @@ void vtxCommonSetBandAndChannel(uint8_t band, uint8_t channel)
if ((band > vtxDevice->capability.bandCount) || (channel > vtxDevice->capability.channelCount))
return;
if (vtxDevice->vTable->setBandAndChannel)
vtxDevice->vTable->setBandAndChannel(band, channel);
}
@ -80,7 +80,7 @@ void vtxCommonSetPowerByIndex(uint8_t index)
if (index > vtxDevice->capability.powerCount)
return;
if (vtxDevice->vTable->setPowerByIndex)
vtxDevice->vTable->setPowerByIndex(index);
}

View File

@ -326,7 +326,7 @@ static void printValuePointer(const clivalue_t *var, const void *valuePointer, b
break;
}
switch(var->type & VALUE_MODE_MASK) {
switch (var->type & VALUE_MODE_MASK) {
case MODE_DIRECT:
cliPrintf("%d", value);
if (full) {
@ -805,7 +805,7 @@ static void cliSerial(char *cmdline)
break;
}
switch(i) {
switch (i) {
case 0:
if (baudRateIndex < BAUD_9600 || baudRateIndex > BAUD_1000000) {
continue;
@ -859,7 +859,7 @@ static void cliSerialPassthrough(char *cmdline)
int index = 0;
while (tok != NULL) {
switch(index) {
switch (index) {
case 0:
id = atoi(tok);
break;
@ -1325,7 +1325,7 @@ static void cliModeColor(char *cmdline)
int modeIdx = args[MODE];
int funIdx = args[FUNCTION];
int color = args[COLOR];
if(!setModeColor(modeIdx, funIdx, color)) {
if (!setModeColor(modeIdx, funIdx, color)) {
cliShowParseError();
return;
}
@ -2016,7 +2016,7 @@ static void cliBeeper(char *cmdline)
if (len == 0) {
cliPrintf("Disabled:");
for (int32_t i = 0; ; i++) {
if (i == beeperCount - 2){
if (i == beeperCount - 2) {
if (mask == 0)
cliPrint(" none");
break;
@ -2126,7 +2126,7 @@ static void cliMap(char *cmdline)
static char *checkCommand(char *cmdLine, const char *command)
{
if(!strncasecmp(cmdLine, command, strlen(command)) // command names match
if (!strncasecmp(cmdLine, command, strlen(command)) // command names match
&& (isspace((unsigned)cmdLine[strlen(command)]) || cmdLine[strlen(command)] == 0)) {
return cmdLine + strlen(command) + 1;
} else {
@ -2280,13 +2280,13 @@ static void cliEscPassthrough(char *cmdline)
while (pch != NULL) {
switch (pos) {
case 0:
if(strncasecmp(pch, "sk", strlen(pch)) == 0) {
if (strncasecmp(pch, "sk", strlen(pch)) == 0) {
mode = PROTOCOL_SIMONK;
} else if(strncasecmp(pch, "bl", strlen(pch)) == 0) {
} else if (strncasecmp(pch, "bl", strlen(pch)) == 0) {
mode = PROTOCOL_BLHELI;
} else if(strncasecmp(pch, "ki", strlen(pch)) == 0) {
} else if (strncasecmp(pch, "ki", strlen(pch)) == 0) {
mode = PROTOCOL_KISS;
} else if(strncasecmp(pch, "cc", strlen(pch)) == 0) {
} else if (strncasecmp(pch, "cc", strlen(pch)) == 0) {
mode = PROTOCOL_KISSALL;
} else {
cliShowParseError();
@ -3464,7 +3464,7 @@ void cliProcess(void)
break;
}
}
if(cmd < cmdTable + ARRAYLEN(cmdTable))
if (cmd < cmdTable + ARRAYLEN(cmdTable))
cmd->func(options);
else
cliPrint("Unknown command, try 'help'");

View File

@ -351,7 +351,7 @@ void validateAndFixConfig(void)
#endif
#ifndef USE_OSD_SLAVE
if((motorConfig()->dev.motorPwmProtocol == PWM_TYPE_BRUSHED) && (motorConfig()->mincommand < 1000)){
if ((motorConfig()->dev.motorPwmProtocol == PWM_TYPE_BRUSHED) && (motorConfig()->mincommand < 1000)) {
motorConfigMutable()->mincommand = 1000;
}
@ -467,7 +467,7 @@ void validateAndFixGyroConfig(void)
// check for looptime restrictions based on motor protocol. Motor times have safety margin
const float pidLooptime = samplingTime * gyroConfig()->gyro_sync_denom * pidConfig()->pid_process_denom;
float motorUpdateRestriction;
switch(motorConfig()->dev.motorPwmProtocol) {
switch (motorConfig()->dev.motorPwmProtocol) {
case (PWM_TYPE_STANDARD):
motorUpdateRestriction = 1.0f/BRUSHLESS_MOTORS_PWM_RATE;
break;
@ -498,7 +498,7 @@ void validateAndFixGyroConfig(void)
if (motorConfig()->dev.useUnsyncedPwm && (motorConfig()->dev.motorPwmProtocol <= PWM_TYPE_BRUSHED) && motorConfig()->dev.motorPwmProtocol != PWM_TYPE_STANDARD) {
uint32_t maxEscRate = lrintf(1.0f / motorUpdateRestriction);
if(motorConfig()->dev.motorPwmRate > maxEscRate)
if (motorConfig()->dev.motorPwmRate > maxEscRate)
motorConfigMutable()->dev.motorPwmRate = maxEscRate;
}
}

View File

@ -649,7 +649,7 @@ void taskMainPidLoop(timeUs_t currentTimeUs)
static uint8_t pidUpdateCountdown;
#if defined(SIMULATOR_BUILD) && defined(SIMULATOR_GYROPID_SYNC)
if(lockMainPID() != 0) return;
if (lockMainPID() != 0) return;
#endif
if (debugMode == DEBUG_CYCLETIME) {

View File

@ -42,8 +42,8 @@ void dispatchEnable(void)
void dispatchProcess(uint32_t currentTime)
{
for(dispatchEntry_t **p = &head; *p; ) {
if(cmp32(currentTime, (*p)->delayedUntil) < 0)
for (dispatchEntry_t **p = &head; *p; ) {
if (cmp32(currentTime, (*p)->delayedUntil) < 0)
break;
// unlink entry first, so handler can replan self
dispatchEntry_t *current = *p;
@ -56,7 +56,7 @@ void dispatchAdd(dispatchEntry_t *entry, int delayUs)
{
uint32_t delayedUntil = micros() + delayUs;
dispatchEntry_t **p = &head;
while(*p && cmp32((*p)->delayedUntil, delayedUntil) < 0)
while (*p && cmp32((*p)->delayedUntil, delayedUntil) < 0)
p = &(*p)->next;
entry->next = *p;
*p = entry;

View File

@ -455,10 +455,10 @@ void init(void)
#endif
#ifdef USE_I2C_DEVICE_3
i2cInit(I2CDEV_3);
#endif
#endif
#ifdef USE_I2C_DEVICE_4
i2cInit(I2CDEV_4);
#endif
#endif
#endif /* USE_I2C */
#endif /* TARGET_BUS_INIT */

View File

@ -214,7 +214,7 @@ static void mspFc4waySerialCommand(sbuf_t *dst, sbuf_t *src, mspPostProcessFnPtr
escPortIndex = sbufReadU8(src);
}
switch(escMode) {
switch (escMode) {
case ESC_4WAY:
// get channel number
// switch all motor lines HI
@ -284,7 +284,7 @@ const box_t *findBoxByPermanentId(uint8_t permanentId)
static bool activeBoxIdGet(boxId_e boxId)
{
if(boxId > sizeof(activeBoxIds) * 8)
if (boxId > sizeof(activeBoxIds) * 8)
return false;
return bitArrayGet(&activeBoxIds, boxId);
}
@ -328,7 +328,7 @@ void initActiveBoxIds(void)
memset(&ena, 0, sizeof(ena));
// macro to enable boxId (BoxidMaskEnable). Reference to ena is hidden, local use only
#define BME(boxId) do { bitArraySet(&ena, boxId); } while(0)
#define BME(boxId) do { bitArraySet(&ena, boxId); } while (0)
BME(BOXARM);
if (!feature(FEATURE_AIRMODE)) {

View File

@ -139,7 +139,7 @@ static void scaleRcCommandToFpvCamAngle(void) {
static float cosFactor = 1.0;
static float sinFactor = 0.0;
if (lastFpvCamAngleDegrees != rxConfig()->fpvCamAngleDegrees){
if (lastFpvCamAngleDegrees != rxConfig()->fpvCamAngleDegrees) {
lastFpvCamAngleDegrees = rxConfig()->fpvCamAngleDegrees;
cosFactor = cos_approx(rxConfig()->fpvCamAngleDegrees * RAD);
sinFactor = sin_approx(rxConfig()->fpvCamAngleDegrees * RAD);
@ -167,7 +167,7 @@ static void scaleRcCommandToFpvCamAngle(void) {
const int16_t rcCommandSpeed = rcCommand[THROTTLE] - rcCommandThrottlePrevious[index];
if(ABS(rcCommandSpeed) > throttleVelocityThreshold)
if (ABS(rcCommandSpeed) > throttleVelocityThreshold)
pidSetItermAccelerator(CONVERT_PARAMETER_TO_FLOAT(currentPidProfile->itermAcceleratorGain));
else
pidSetItermAccelerator(1.0f);
@ -193,7 +193,7 @@ void processRcCommand(void)
if (rxConfig()->rcInterpolation) {
// Set RC refresh rate for sampling and channels to filter
switch(rxConfig()->rcInterpolation) {
switch (rxConfig()->rcInterpolation) {
case(RC_SMOOTHING_AUTO):
rxRefreshRate = currentRxRefreshRate + 1000; // Add slight overhead to prevent ramps
break;

View File

@ -221,7 +221,7 @@ static void applyStepAdjustment(controlRateConfig_t *controlRateConfig, uint8_t
beeperConfirmationBeeps(delta > 0 ? 2 : 1);
int newValue;
switch(adjustmentFunction) {
switch (adjustmentFunction) {
case ADJUSTMENT_RC_RATE:
newValue = constrain((int)controlRateConfig->rcRate8 + delta, 0, 250); // FIXME magic numbers repeated in cli.c
controlRateConfig->rcRate8 = newValue;
@ -339,7 +339,7 @@ static void applySelectAdjustment(uint8_t adjustmentFunction, uint8_t position)
{
uint8_t beeps = 0;
switch(adjustmentFunction) {
switch (adjustmentFunction) {
case ADJUSTMENT_RATE_PROFILE:
{
if (getCurrentControlRateProfileIndex() != position) {
@ -352,7 +352,7 @@ static void applySelectAdjustment(uint8_t adjustmentFunction, uint8_t position)
case ADJUSTMENT_HORIZON_STRENGTH:
{
uint8_t newValue = constrain(position, 0, 200); // FIXME magic numbers repeated in serial_cli.c
if(pidProfile->pid[PID_LEVEL].D != newValue) {
if (pidProfile->pid[PID_LEVEL].D != newValue) {
beeps = ((newValue - pidProfile->pid[PID_LEVEL].D) / 8) + 1;
pidProfile->pid[PID_LEVEL].D = newValue;
blackboxLogInflightAdjustmentEvent(ADJUSTMENT_HORIZON_STRENGTH, position);

View File

@ -317,7 +317,7 @@ static void imuMahonyAHRSupdate(float dt, float gx, float gy, float gz,
}
// Compute and apply integral feedback if enabled
if(imuRuntimeConfig.dcm_ki > 0.0f) {
if (imuRuntimeConfig.dcm_ki > 0.0f) {
// Stop integrating if spinning beyond the certain limit
if (spin_rate < DEGREES_TO_RADIANS(SPIN_RATE_LIMIT)) {
const float dcmKiGain = imuRuntimeConfig.dcm_ki;
@ -455,7 +455,7 @@ void imuUpdateAttitude(timeUs_t currentTimeUs)
if (sensors(SENSOR_ACC) && acc.isAccelUpdatedAtLeastOnce) {
IMU_LOCK;
#if defined(SIMULATOR_BUILD) && defined(SIMULATOR_IMU_SYNC)
if(imuUpdated == false){
if (imuUpdated == false) {
IMU_UNLOCK;
return;
}

View File

@ -339,7 +339,7 @@ bool mixerIsOutputSaturated(int axis, float errorRate)
// All PWM motor scaling is done to standard PWM range of 1000-2000 for easier tick conversion with legacy code / configurator
// DSHOT scaling is done to the actual dshot range
void initEscEndpoints(void) {
switch(motorConfig()->dev.motorPwmProtocol) {
switch (motorConfig()->dev.motorPwmProtocol) {
#ifdef USE_DSHOT
case PWM_TYPE_PROSHOT1000:
case PWM_TYPE_DSHOT1200:
@ -516,7 +516,7 @@ void mixTable(pidProfile_t *pidProfile)
throttlePrevious = rcCommand[THROTTLE];
throttle = rcCommand[THROTTLE] - rxConfig()->mincheck;
currentThrottleInputRange = rcCommandThrottleRange3dLow;
if(isMotorProtocolDshot()) mixerInversion = true;
if (isMotorProtocolDshot()) mixerInversion = true;
} else if (rcCommand[THROTTLE] >= (rxConfig()->midrc + flight3DConfig()->deadband3d_throttle)) { // Positive handling
motorOutputMax = motorOutputHigh;
motorOutputMin = deadbandMotor3dHigh;
@ -528,7 +528,7 @@ void mixTable(pidProfile_t *pidProfile)
motorOutputMin = motorOutputLow;
throttle = rxConfig()->midrc - flight3DConfig()->deadband3d_throttle;
currentThrottleInputRange = rcCommandThrottleRange3dLow;
if(isMotorProtocolDshot()) mixerInversion = true;
if (isMotorProtocolDshot()) mixerInversion = true;
} else { // Deadband handling from positive to negative
motorOutputMax = motorOutputHigh;
motorOutputMin = deadbandMotor3dHigh;
@ -561,8 +561,8 @@ void mixTable(pidProfile_t *pidProfile)
float motorMixMax = 0, motorMixMin = 0;
const int yawDirection = GET_DIRECTION(mixerConfig()->yaw_motors_reversed);
int motorDirection = GET_DIRECTION(isMotorsReversed());
for (int i = 0; i < motorCount; i++) {
float mix =
scaledAxisPidRoll * currentMixer[i].roll * (motorDirection) +

View File

@ -243,7 +243,7 @@ static float crashDtermThreshold;
static float crashGyroThreshold;
void pidInitConfig(const pidProfile_t *pidProfile) {
for(int axis = FD_ROLL; axis <= FD_YAW; axis++) {
for (int axis = FD_ROLL; axis <= FD_YAW; axis++) {
Kp[axis] = PTERM_SCALE * pidProfile->pid[axis].P;
Ki[axis] = ITERM_SCALE * pidProfile->pid[axis].I;
Kd[axis] = DTERM_SCALE * pidProfile->pid[axis].D;
@ -359,7 +359,7 @@ static float accelerationLimit(int axis, float currentPidSetpoint) {
static float previousSetpoint[3];
const float currentVelocity = currentPidSetpoint- previousSetpoint[axis];
if(ABS(currentVelocity) > maxVelocity[axis])
if (ABS(currentVelocity) > maxVelocity[axis])
currentPidSetpoint = (currentVelocity > 0) ? previousSetpoint[axis] + maxVelocity[axis] : previousSetpoint[axis] - maxVelocity[axis];
previousSetpoint[axis] = currentPidSetpoint;
@ -383,7 +383,7 @@ void pidController(const pidProfile_t *pidProfile, const rollAndPitchTrims_t *an
for (int axis = FD_ROLL; axis <= FD_YAW; axis++) {
float currentPidSetpoint = getSetpointRate(axis);
if(maxVelocity[axis])
if (maxVelocity[axis])
currentPidSetpoint = accelerationLimit(axis, currentPidSetpoint);
// Yaw control is GYRO based, direct sticks control is applied to rate PID

View File

@ -363,7 +363,7 @@ void beeperUpdate(timeUs_t currentTimeUs)
}
#ifdef USE_DSHOT
if (!ARMING_FLAG(ARMED) && currentBeeperEntry->mode == BEEPER_RX_SET) {
if (!ARMING_FLAG(ARMED) && currentBeeperEntry->mode == BEEPER_RX_SET) {
for (unsigned index = 0; index < getMotorCount(); index++) {
pwmWriteDshotCommand(index, DSHOT_CMD_BEEP3);
}

View File

@ -118,14 +118,14 @@ static const uint8_t ubloxInit[] = {
0x00, 0x00, 0x00, 0x10, 0x27, 0x00, 0x00, 0x05, 0x00, 0xFA, 0x00, // Collected by resetting a GPS unit to defaults. Changing mode to Pedistrian and
0xFA, 0x00, 0x64, 0x00, 0x2C, 0x01, 0x00, 0x3C, 0x00, 0x00, 0x00, // capturing the data from the U-Center binary console.
0x00, 0xC8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x17, 0xC2,
//Preprocessor Airborne_1g Dynamic Platform Model Option
#elif defined(GPS_UBLOX_MODE_AIRBORNE_1G)
0xB5, 0x62, 0x06, 0x24, 0x24, 0x00, 0xFF, 0xFF, 0x06, 0x03, 0x00, // CFG-NAV5 - Set engine settings
0x00, 0x00, 0x00, 0x10, 0x27, 0x00, 0x00, 0x05, 0x00, 0xFA, 0x00, // Collected by resetting a GPS unit to defaults. Changing mode to Airborne with
0xFA, 0x00, 0x64, 0x00, 0x2C, 0x01, 0x00, 0x3C, 0x00, 0x00, 0x00, // <1g acceleration and capturing the data from the U-Center binary console.
0x00, 0xC8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1A, 0x28,
//Default Airborne_4g Dynamic Platform Model
#else
0xB5, 0x62, 0x06, 0x24, 0x24, 0x00, 0xFF, 0xFF, 0x08, 0x03, 0x00, // CFG-NAV5 - Set engine settings
@ -133,7 +133,7 @@ static const uint8_t ubloxInit[] = {
0xFA, 0x00, 0x64, 0x00, 0x2C, 0x01, 0x00, 0x3C, 0x00, 0x00, 0x00, // <4g acceleration and capturing the data from the U-Center binary console.
0x00, 0xC8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x6C,
#endif
// DISABLE NMEA messages
0xB5, 0x62, 0x06, 0x01, 0x03, 0x00, 0xF0, 0x05, 0x00, 0xFF, 0x19, // VGS: Course over ground and Ground speed
0xB5, 0x62, 0x06, 0x01, 0x03, 0x00, 0xF0, 0x03, 0x00, 0xFD, 0x15, // GSV: GNSS Satellites in View
@ -273,7 +273,7 @@ void gpsInitNmea(void)
#if defined(COLIBRI_RACE) || defined(LUX_RACE)
uint32_t now;
#endif
switch(gpsData.state) {
switch (gpsData.state) {
case GPS_INITIALIZING:
#if defined(COLIBRI_RACE) || defined(LUX_RACE)
now = millis();
@ -361,7 +361,7 @@ void gpsInitUblox(void)
case GPS_CONFIGURE:
// Either use specific config file for GPS or let dynamically upload config
if( gpsConfig()->autoConfig == GPS_AUTOCONFIG_OFF ) {
if ( gpsConfig()->autoConfig == GPS_AUTOCONFIG_OFF ) {
gpsSetState(GPS_RECEIVING_DATA);
break;
}
@ -628,7 +628,7 @@ static bool gpsNewFrameNMEA(char c)
switch (gps_frame) {
case FRAME_GGA: //************* GPGGA FRAME parsing
switch(param) {
switch (param) {
// case 1: // Time information
// break;
case 2:
@ -661,7 +661,7 @@ static bool gpsNewFrameNMEA(char c)
}
break;
case FRAME_RMC: //************* GPRMC FRAME parsing
switch(param) {
switch (param) {
case 7:
gps_Msg.speed = ((grab_fields(string, 1) * 5144L) / 1000L); // speed in cm/s added by Mis
break;
@ -671,7 +671,7 @@ static bool gpsNewFrameNMEA(char c)
}
break;
case FRAME_GSV:
switch(param) {
switch (param) {
/*case 1:
// Total number of messages of this type in this cycle
break; */
@ -684,17 +684,17 @@ static bool gpsNewFrameNMEA(char c)
GPS_numCh = grab_fields(string, 0);
break;
}
if(param < 4)
if (param < 4)
break;
svPacketIdx = (param - 4) / 4 + 1; // satellite number in packet, 1-4
svSatNum = svPacketIdx + (4 * (svMessageNum - 1)); // global satellite number
svSatParam = param - 3 - (4 * (svPacketIdx - 1)); // parameter number for satellite
if(svSatNum > GPS_SV_MAXSATS)
if (svSatNum > GPS_SV_MAXSATS)
break;
switch(svSatParam) {
switch (svSatParam) {
case 1:
// SV PRN number
GPS_svinfo_chn[svSatNum - 1] = svSatNum;
@ -980,7 +980,7 @@ static bool UBLOX_parse_gps(void)
GPS_numCh = _buffer.svinfo.numCh;
if (GPS_numCh > 16)
GPS_numCh = 16;
for (i = 0; i < GPS_numCh; i++){
for (i = 0; i < GPS_numCh; i++) {
GPS_svinfo_chn[i]= _buffer.svinfo.channel[i].chn;
GPS_svinfo_svid[i]= _buffer.svinfo.channel[i].svid;
GPS_svinfo_quality[i]=_buffer.svinfo.channel[i].quality;
@ -1103,7 +1103,7 @@ void gpsEnablePassthrough(serialPort_t *gpsPassthroughPort)
waitForSerialPortToFinishTransmitting(gpsPort);
waitForSerialPortToFinishTransmitting(gpsPassthroughPort);
if(!(gpsPort->mode & MODE_TX))
if (!(gpsPort->mode & MODE_TX))
serialSetMode(gpsPort, gpsPort->mode | MODE_TX);
#ifdef USE_DASHBOARD

View File

@ -600,35 +600,35 @@ static void applyLedVtxLayer(bool updateNow, timeUs_t *timer)
// check if last vtx values have changed.
check = pit + (power << 1) + (band << 4) + (channel << 8);
if(!showSettings && check != lastCheck) {
if (!showSettings && check != lastCheck) {
// display settings for 3 seconds.
showSettings = 15;
}
lastCheck = check; // quick way to check if any settings changed.
if(showSettings) {
if (showSettings) {
showSettings--;
}
blink = !blink;
*timer += HZ_TO_US(5); // check 5 times a second
}
if(!active) { // no vtx device detected
if (!active) { // no vtx device detected
return;
}
hsvColor_t color = {0, 0, 0};
if(showSettings) { // show settings
if (showSettings) { // show settings
uint8_t vtxLedCount = 0;
for (int i = 0; i < ledCounts.count && vtxLedCount < 6; ++i) {
const ledConfig_t *ledConfig = &ledStripConfig()->ledConfigs[i];
if (ledGetOverlayBit(ledConfig, LED_OVERLAY_VTX)) {
if(vtxLedCount == 0) {
if (vtxLedCount == 0) {
color.h = HSV(GREEN).h;
color.s = HSV(GREEN).s;
color.v = blink ? 15 : 0; // blink received settings
}
else if(vtxLedCount > 0 && power >= vtxLedCount && !pit) { // show power
else if (vtxLedCount > 0 && power >= vtxLedCount && !pit) { // show power
color.h = HSV(ORANGE).h;
color.s = HSV(ORANGE).s;
color.v = blink ? 15 : 0; // blink received settings
@ -949,7 +949,7 @@ static void applyLedAnimationLayer(bool updateNow, timeUs_t *timer)
{
static uint8_t frameCounter = 0;
const int animationFrames = ledGridRows;
if(updateNow) {
if (updateNow) {
frameCounter = (frameCounter + 1 < animationFrames) ? frameCounter + 1 : 0;
*timer += HZ_TO_US(20);
}
@ -1087,7 +1087,7 @@ bool parseColor(int index, const char *colorConfig)
};
for (int componentIndex = 0; result && componentIndex < HSV_COLOR_COMPONENT_COUNT; componentIndex++) {
int val = atoi(remainingCharacters);
if(val > hsv_limit[componentIndex]) {
if (val > hsv_limit[componentIndex]) {
result = false;
break;
}
@ -1128,7 +1128,7 @@ bool setModeColor(ledModeIndex_e modeIndex, int modeColorIndex, int colorIndex)
if (colorIndex < 0 || colorIndex >= LED_CONFIGURABLE_COLOR_COUNT)
return false;
if (modeIndex < LED_MODE_COUNT) { // modeIndex_e is unsigned, so one-sided test is enough
if(modeColorIndex < 0 || modeColorIndex >= LED_DIRECTION_COUNT)
if (modeColorIndex < 0 || modeColorIndex >= LED_DIRECTION_COUNT)
return false;
ledStripConfigMutable()->modeColors[modeIndex].color[modeColorIndex] = colorIndex;
} else if (modeIndex == LED_SPECIAL) {

View File

@ -177,7 +177,7 @@ static int osdGetBatteryAverageCellVoltage(void)
static char osdGetBatterySymbol(int cellVoltage)
{
if(getBatteryState() == BATTERY_CRITICAL) {
if (getBatteryState() == BATTERY_CRITICAL) {
return SYM_MAIN_BATT; // FIXME: currently the BAT- symbol, ideally replace with a battery with exclamation mark
} else {
/* Calculate a symbol offset using cell voltage over full cell voltage range */
@ -532,7 +532,7 @@ static void osdDrawSingleElement(uint8_t item)
}
/* Show battery state warning */
switch(getBatteryState()) {
switch (getBatteryState()) {
case BATTERY_WARNING:
tfp_sprintf(buff, "LOW BATTERY");
break;
@ -586,7 +586,7 @@ static void osdDrawSingleElement(uint8_t item)
//Create empty battery indicator bar
buff[0] = SYM_PB_START;
for(uint8_t i = 1; i <= MAIN_BATT_USAGE_STEPS; i++) {
for (uint8_t i = 1; i <= MAIN_BATT_USAGE_STEPS; i++) {
if (i <= mAhUsedProgress)
buff[i] = SYM_PB_FULL;
else

View File

@ -48,7 +48,7 @@ static uint8_t crc_high_first(uint8_t *ptr, uint8_t len)
uint8_t i;
uint8_t crc=0x00;
while (len--) {
crc ^= *ptr++;
crc ^= *ptr++;
for (i=8; i>0; --i) {
if (crc & 0x80)
crc = (crc << 1) ^ 0x31;
@ -111,7 +111,7 @@ static void rcSplitProcessMode()
argument = RCSPLIT_CTRL_ARGU_INVALID;
break;
}
if (argument != RCSPLIT_CTRL_ARGU_INVALID) {
sendCtrlCommand(argument);
switchStates[switchIndex].isActivated = true;
@ -140,7 +140,7 @@ bool rcSplitInit(void)
uint8_t switchIndex = i - BOXCAMERA1;
switchStates[switchIndex].isActivated = true;
}
cameraState = RCSPLIT_STATE_IS_READY;
#ifdef USE_RCSPLIT

View File

@ -345,7 +345,7 @@ serialPort_t *openSerialPort(
serialPort_t *serialPort = NULL;
switch(identifier) {
switch (identifier) {
#ifdef USE_VCP
case SERIAL_PORT_USB_VCP:
serialPort = usbVcpOpen();
@ -536,7 +536,7 @@ void serialPassthrough(serialPort_t *left, serialPort_t *right, serialConsumer *
// Either port might be open in a mode other than MODE_RXTX. We rely on
// serialRxBytesWaiting() to do the right thing for a TX only port. No
// special handling is necessary OR performed.
while(1) {
while (1) {
// TODO: maintain a timestamp of last data received. Use this to
// implement a guard interval and check for `+++` as an escape sequence
// to return to CLI command mode.

View File

@ -310,7 +310,7 @@ uint16_t _crc_xmodem_update (uint16_t crc, uint8_t data) {
int i;
crc = crc ^ ((uint16_t)data << 8);
for (i=0; i < 8; i++){
for (i=0; i < 8; i++) {
if (crc & 0x8000)
crc = (crc << 1) ^ 0x1021;
else
@ -432,7 +432,7 @@ void esc4wayProcess(serialPort_t *mspPort)
#endif
bool isExitScheduled = false;
while(1) {
while (1) {
// restart looking for new sequence from host
do {
CRC_in.word = 0;
@ -460,7 +460,7 @@ void esc4wayProcess(serialPort_t *mspPort)
CRC_check.bytes[1] = ReadByte();
CRC_check.bytes[0] = ReadByte();
if(CRC_check.word == CRC_in.word) {
if (CRC_check.word == CRC_in.word) {
ACK_OUT = ACK_OK;
} else {
ACK_OUT = ACK_I_INVALID_CRC;
@ -475,12 +475,12 @@ void esc4wayProcess(serialPort_t *mspPort)
ioMem.D_PTR_I = ParamBuf;
switch(CMD) {
switch (CMD) {
// ******* Interface related stuff *******
case cmd_InterfaceTestAlive:
{
if (isMcuConnected()){
switch(CurrentInterfaceMode)
if (isMcuConnected()) {
switch (CurrentInterfaceMode)
{
#ifdef USE_SERIAL_4WAY_BLHELI_BOOTLOADER
case imATM_BLB:
@ -599,7 +599,7 @@ void esc4wayProcess(serialPort_t *mspPort)
}
O_PARAM_LEN = DeviceInfoSize; //4
O_PARAM = (uint8_t *)&DeviceInfo;
if(Connect(&DeviceInfo)) {
if (Connect(&DeviceInfo)) {
DeviceInfo.bytes[INTF_MODE_IDX] = CurrentInterfaceMode;
} else {
SET_DISCONNECTED;
@ -611,7 +611,7 @@ void esc4wayProcess(serialPort_t *mspPort)
#ifdef USE_SERIAL_4WAY_SK_BOOTLOADER
case cmd_DeviceEraseAll:
{
switch(CurrentInterfaceMode)
switch (CurrentInterfaceMode)
{
case imSK:
{
@ -661,14 +661,14 @@ void esc4wayProcess(serialPort_t *mspPort)
wtf.D_FLASH_ADDR_L=Adress_L;
wtf.D_PTR_I = BUF_I;
*/
switch(CurrentInterfaceMode)
switch (CurrentInterfaceMode)
{
#ifdef USE_SERIAL_4WAY_BLHELI_BOOTLOADER
case imSIL_BLB:
case imATM_BLB:
case imARM_BLB:
{
if(!BL_ReadFlash(CurrentInterfaceMode, &ioMem))
if (!BL_ReadFlash(CurrentInterfaceMode, &ioMem))
{
ACK_OUT = ACK_D_GENERAL_ERROR;
}
@ -678,7 +678,7 @@ void esc4wayProcess(serialPort_t *mspPort)
#ifdef USE_SERIAL_4WAY_SK_BOOTLOADER
case imSK:
{
if(!Stk_ReadFlash(&ioMem))
if (!Stk_ReadFlash(&ioMem))
{
ACK_OUT = ACK_D_GENERAL_ERROR;
}
@ -729,7 +729,7 @@ void esc4wayProcess(serialPort_t *mspPort)
default:
ACK_OUT = ACK_I_INVALID_CMD;
}
if(ACK_OUT == ACK_OK)
if (ACK_OUT == ACK_OK)
{
O_PARAM_LEN = ioMem.D_NUM_BYTES;
O_PARAM = (uint8_t *)&ParamBuf;

View File

@ -86,7 +86,7 @@ static uint8_t suart_getc_(uint8_t *bt)
uint16_t bitmask = 0;
uint8_t bit = 0;
while (micros() < btime);
while(1) {
while (1) {
if (ESC_IS_HI)
{
bitmask |= (1 << bit);
@ -109,8 +109,8 @@ static void suart_putc_(uint8_t *tx_b)
// shift out stopbit first
uint16_t bitmask = (*tx_b << 2) | 1 | (1 << 10);
uint32_t btime = micros();
while(1) {
if(bitmask & 1) {
while (1) {
if (bitmask & 1) {
ESC_SET_HI; // 1
}
else {
@ -148,22 +148,22 @@ static uint8_t BL_ReadBuf(uint8_t *pstring, uint8_t len)
LastCRC_16.word = 0;
uint8_t LastACK = brNONE;
do {
if(!suart_getc_(pstring)) goto timeout;
if (!suart_getc_(pstring)) goto timeout;
ByteCrc(pstring);
pstring++;
len--;
} while(len > 0);
} while (len > 0);
if(isMcuConnected()) {
if (isMcuConnected()) {
//With CRC read 3 more
if(!suart_getc_(&LastCRC_16.bytes[0])) goto timeout;
if(!suart_getc_(&LastCRC_16.bytes[1])) goto timeout;
if(!suart_getc_(&LastACK)) goto timeout;
if (!suart_getc_(&LastCRC_16.bytes[0])) goto timeout;
if (!suart_getc_(&LastCRC_16.bytes[1])) goto timeout;
if (!suart_getc_(&LastACK)) goto timeout;
if (CRC_16.word != LastCRC_16.word) {
LastACK = brERRORCRC;
}
} else {
if(!suart_getc_(&LastACK)) goto timeout;
if (!suart_getc_(&LastACK)) goto timeout;
}
timeout:
return (LastACK == brSUCCESS);
@ -252,7 +252,7 @@ void BL_SendCMDRunRestartBootloader(uint8_32_u *pDeviceInfo)
static uint8_t BL_SendCMDSetAddress(ioMem_t *pMem) //supports only 16 bit Adr
{
// skip if adr == 0xFFFF
if((pMem->D_FLASH_ADDR_H == 0xFF) && (pMem->D_FLASH_ADDR_L == 0xFF)) return 1;
if ((pMem->D_FLASH_ADDR_H == 0xFF) && (pMem->D_FLASH_ADDR_L == 0xFF)) return 1;
uint8_t sCMD[] = {CMD_SET_ADDRESS, 0, pMem->D_FLASH_ADDR_H, pMem->D_FLASH_ADDR_L };
BL_SendBuf(sCMD, 4);
return (BL_GetACK(2) == brSUCCESS);
@ -294,7 +294,7 @@ static uint8_t BL_WriteA(uint8_t cmd, ioMem_t *pMem, uint32_t timeout)
uint8_t BL_ReadFlash(uint8_t interface_mode, ioMem_t *pMem)
{
if(interface_mode == imATM_BLB) {
if (interface_mode == imATM_BLB) {
return BL_ReadA(CMD_READ_FLASH_ATM, pMem);
} else {
return BL_ReadA(CMD_READ_FLASH_SIL, pMem);

View File

@ -176,9 +176,9 @@ static uint8_t StkReadLeader(void)
// Wait for the first bit
uint32_t waitcycl; //250uS each
if((StkCmd == CMD_PROGRAM_EEPROM_ISP) || (StkCmd == CMD_CHIP_ERASE_ISP)) {
if ((StkCmd == CMD_PROGRAM_EEPROM_ISP) || (StkCmd == CMD_CHIP_ERASE_ISP)) {
waitcycl = STK_WAITCYLCES_EXT;
} else if(StkCmd == CMD_SIGN_ON) {
} else if (StkCmd == CMD_SIGN_ON) {
waitcycl = STK_WAITCYLCES_START;
} else {
waitcycl= STK_WAITCYLCES;
@ -189,7 +189,7 @@ static uint8_t StkReadLeader(void)
}
//Skip the first bits
if (waitcycl == 0){
if (waitcycl == 0) {
goto timeout;
}
@ -271,7 +271,7 @@ static uint8_t _CMD_LOAD_ADDRESS(ioMem_t *pMem)
{
// ignore 0xFFFF
// assume address is set before and we read or write the immediately following package
if((pMem->D_FLASH_ADDR_H == 0xFF) && (pMem->D_FLASH_ADDR_L == 0xFF)) return 1;
if ((pMem->D_FLASH_ADDR_H == 0xFF) && (pMem->D_FLASH_ADDR_L == 0xFF)) return 1;
StkCmd = CMD_LOAD_ADDRESS;
StkSendPacketHeader();
StkSendByte(0); // hi byte Msg len

View File

@ -226,7 +226,7 @@ void handleVTXControlButton(void)
LED1_OFF;
switch(actionCounter) {
switch (actionCounter) {
case 4:
vtxCycleBandOrChannel(0, +1);
break;

View File

@ -332,7 +332,7 @@ static void saProcessResponse(uint8_t *buf, int len)
dprintf(("processResponse: outstanding %d got %d\r\n", sa_outstanding, resp));
}
switch(resp) {
switch (resp) {
case SA_CMD_GET_SETTINGS_V2: // Version 2 Get Settings
case SA_CMD_GET_SETTINGS: // Version 1 Get Settings
if (len < 7)
@ -420,7 +420,7 @@ static void saReceiveFramer(uint8_t c)
static int len;
static int dlen;
switch(state) {
switch (state) {
case S_WAITPRE1:
if (c == 0xAA) {
state = S_WAITPRE2;

View File

@ -134,7 +134,7 @@ void trampCmdU16(uint8_t cmd, uint16_t param)
void trampSetFreq(uint16_t freq)
{
trampConfFreq = freq;
if(trampConfFreq != trampCurFreq)
if (trampConfFreq != trampCurFreq)
trampFreqRetries = TRAMP_MAX_RETRIES;
}
@ -151,7 +151,7 @@ void trampSetBandAndChannel(uint8_t band, uint8_t channel)
void trampSetRFPower(uint16_t level)
{
trampConfPower = level;
if(trampConfPower != trampPower)
if (trampConfPower != trampPower)
trampPowerRetries = TRAMP_MAX_RETRIES;
}
@ -163,7 +163,7 @@ void trampSendRFPower(uint16_t level)
// return false if error
bool trampCommitChanges()
{
if(trampStatus != TRAMP_STATUS_ONLINE)
if (trampStatus != TRAMP_STATUS_ONLINE)
return false;
trampStatus = TRAMP_STATUS_SET_FREQ_PW;
@ -184,7 +184,7 @@ char trampHandleResponse(void)
case 'r':
{
uint16_t min_freq = trampRespBuffer[2]|(trampRespBuffer[3] << 8);
if(min_freq != 0) {
if (min_freq != 0) {
trampRFFreqMin = min_freq;
trampRFFreqMax = trampRespBuffer[4]|(trampRespBuffer[5] << 8);
trampRFPowerMax = trampRespBuffer[6]|(trampRespBuffer[7] << 8);
@ -198,15 +198,15 @@ char trampHandleResponse(void)
case 'v':
{
uint16_t freq = trampRespBuffer[2]|(trampRespBuffer[3] << 8);
if(freq != 0) {
if (freq != 0) {
trampCurFreq = freq;
trampConfiguredPower = trampRespBuffer[4]|(trampRespBuffer[5] << 8);
trampPitMode = trampRespBuffer[7];
trampPower = trampRespBuffer[8]|(trampRespBuffer[9] << 8);
vtx58_Freq2Bandchan(trampCurFreq, &trampBand, &trampChannel);
if(trampConfFreq == 0) trampConfFreq = trampCurFreq;
if(trampConfPower == 0) trampConfPower = trampPower;
if (trampConfFreq == 0) trampConfFreq = trampCurFreq;
if (trampConfPower == 0) trampConfPower = trampPower;
return 'v';
}
@ -217,7 +217,7 @@ char trampHandleResponse(void)
case 's':
{
uint16_t temp = (int16_t)(trampRespBuffer[6]|(trampRespBuffer[7] << 8));
if(temp != 0) {
if (temp != 0) {
trampTemperature = temp;
return 's';
}
@ -263,7 +263,7 @@ static char trampReceive(uint32_t currentTimeUs)
uint8_t c = serialRead(trampSerialPort);
trampRespBuffer[trampReceivePos++] = c;
switch(trampReceiveState) {
switch (trampReceiveState) {
case S_WAIT_LEN:
if (c == 0x0F) {
trampReceiveState = S_WAIT_CODE;
@ -339,7 +339,7 @@ void vtxTrampProcess(uint32_t currentTimeUs)
debug[0] = trampStatus;
#endif
switch(replyCode) {
switch (replyCode) {
case 'r':
if (trampStatus <= TRAMP_STATUS_OFFLINE)
trampStatus = TRAMP_STATUS_ONLINE;
@ -351,7 +351,7 @@ void vtxTrampProcess(uint32_t currentTimeUs)
break;
}
switch(trampStatus) {
switch (trampStatus) {
case TRAMP_STATUS_OFFLINE:
case TRAMP_STATUS_ONLINE:
@ -361,7 +361,7 @@ void vtxTrampProcess(uint32_t currentTimeUs)
trampQueryR();
else {
static unsigned int cnt = 0;
if(((cnt++) & 1) == 0)
if (((cnt++) & 1) == 0)
trampQueryV();
else
trampQueryS();
@ -391,7 +391,7 @@ void vtxTrampProcess(uint32_t currentTimeUs)
done = false;
}
if(!done) {
if (!done) {
trampStatus = TRAMP_STATUS_CHECK_FREQ_PW;
// delay next status query by 300ms
@ -560,8 +560,8 @@ static long trampCmsCommence(displayPort_t *pDisp, const void *self)
static void trampCmsInitSettings()
{
if(trampBand > 0) trampCmsBand = trampBand;
if(trampChannel > 0) trampCmsChan = trampChannel;
if (trampBand > 0) trampCmsBand = trampBand;
if (trampChannel > 0) trampCmsChan = trampChannel;
trampCmsUpdateFreqRef();
trampCmsPitMode = trampPitMode + 1;
@ -725,7 +725,7 @@ bool vtxTrampInit(void)
#if defined(VTX_COMMON)
vtxCommonRegisterDevice(&vtxTramp);
#endif
return true;
}

View File

@ -83,7 +83,7 @@ static bool mspSerialProcessReceivedData(mspPort_t *mspPort, uint8_t c)
mspPort->c_state = (c == 'M') ? MSP_HEADER_M : MSP_IDLE;
} else if (mspPort->c_state == MSP_HEADER_M) {
mspPort->c_state = MSP_IDLE;
switch(c) {
switch (c) {
case '<': // COMMAND
mspPort->packetType = MSP_PACKET_COMMAND;
mspPort->c_state = MSP_HEADER_ARROW;

View File

@ -209,10 +209,10 @@ void init(void)
#endif
#ifdef USE_I2C_DEVICE_3
i2cInit(I2CDEV_3);
#endif
#endif
#ifdef USE_I2C_DEVICE_4
i2cInit(I2CDEV_4);
#endif
#endif
#endif /* USE_I2C */
#endif /* TARGET_BUS_INIT */

View File

@ -231,7 +231,7 @@ uint16_t calcCRC16(uint8_t *pt, uint8_t msgLen)
uint16_t crc16_data = 0;
uint8_t data=0;
for (uint8_t mlen = 0; mlen < msgLen; mlen++){
for (uint8_t mlen = 0; mlen < msgLen; mlen++) {
data = pt[mlen] ^ ((uint8_t)(crc16_data) & (uint8_t)(0xFF));
data ^= data << 4;
crc16_data = ((((uint16_t)data << 8) | ((crc16_data & 0xFF00) >> 8))
@ -265,7 +265,7 @@ void jetiExBusDecodeChannelFrame(uint8_t *exBusFrame)
uint8_t frameAddr;
// Decode header
switch (((uint16_t)exBusFrame[EXBUS_HEADER_SYNC] << 8) | ((uint16_t)exBusFrame[EXBUS_HEADER_REQ])){
switch (((uint16_t)exBusFrame[EXBUS_HEADER_SYNC] << 8) | ((uint16_t)exBusFrame[EXBUS_HEADER_REQ])) {
case EXBUS_CHANNELDATA_DATA_REQUEST: // not yet specified
case EXBUS_CHANNELDATA:
@ -322,7 +322,7 @@ static void jetiExBusDataReceive(uint16_t c)
// Check if we shall start a frame?
if (jetiExBusFramePosition == 0) {
switch(c){
switch (c) {
case EXBUS_START_CHANNEL_FRAME:
jetiExBusFrameState = EXBUS_STATE_IN_PROGRESS;
jetiExBusFrame = jetiExBusChannelFrame;
@ -345,12 +345,12 @@ static void jetiExBusDataReceive(uint16_t c)
// Check the header for the message length
if (jetiExBusFramePosition == EXBUS_HEADER_LEN) {
if((jetiExBusFrameState == EXBUS_STATE_IN_PROGRESS) && (jetiExBusFrame[EXBUS_HEADER_MSG_LEN] <= EXBUS_MAX_CHANNEL_FRAME_SIZE)) {
if ((jetiExBusFrameState == EXBUS_STATE_IN_PROGRESS) && (jetiExBusFrame[EXBUS_HEADER_MSG_LEN] <= EXBUS_MAX_CHANNEL_FRAME_SIZE)) {
jetiExBusFrameLength = jetiExBusFrame[EXBUS_HEADER_MSG_LEN];
return;
}
if((jetiExBusRequestState == EXBUS_STATE_IN_PROGRESS) && (jetiExBusFrame[EXBUS_HEADER_MSG_LEN] <= EXBUS_MAX_REQUEST_FRAME_SIZE)) {
if ((jetiExBusRequestState == EXBUS_STATE_IN_PROGRESS) && (jetiExBusFrame[EXBUS_HEADER_MSG_LEN] <= EXBUS_MAX_REQUEST_FRAME_SIZE)) {
jetiExBusFrameLength = jetiExBusFrame[EXBUS_HEADER_MSG_LEN];
return;
}
@ -381,7 +381,7 @@ static uint8_t jetiExBusFrameStatus()
if (jetiExBusFrameState != EXBUS_STATE_RECEIVED)
return RX_FRAME_PENDING;
if(calcCRC16(jetiExBusChannelFrame, jetiExBusChannelFrame[EXBUS_HEADER_MSG_LEN]) == 0) {
if (calcCRC16(jetiExBusChannelFrame, jetiExBusChannelFrame[EXBUS_HEADER_MSG_LEN]) == 0) {
jetiExBusDecodeChannelFrame(jetiExBusChannelFrame);
jetiExBusFrameState = EXBUS_STATE_ZERO;
return RX_FRAME_COMPLETE;
@ -453,18 +453,18 @@ uint8_t createExTelemetrieValueMessage(uint8_t *exMessage, uint8_t itemStart)
if ((item & 0x0F) == 0)
item++;
if(item >= JETI_EX_SENSOR_COUNT)
if (item >= JETI_EX_SENSOR_COUNT)
item = 1;
exMessage[EXTEL_HEADER_LSN_LB] = item & 0xF0; // Device ID
uint8_t *p = &exMessage[EXTEL_HEADER_ID];
while(item <= (itemStart | 0x0F)) {
while (item <= (itemStart | 0x0F)) {
*p++ = ((item & 0x0F) << 4) | jetiExSensors[item].exDataType; // Sensor ID (%16) | EX Data Type
sensorValue = jetiExSensors[item].value;
iCount = exDataTypeLen[jetiExSensors[item].exDataType];
while(iCount > 1) {
while (iCount > 1) {
*p++ = sensorValue;
sensorValue = sensorValue >> 8;
iCount--;
@ -472,9 +472,9 @@ uint8_t createExTelemetrieValueMessage(uint8_t *exMessage, uint8_t itemStart)
*p++ = (sensorValue & 0x9F) | jetiExSensors[item].decimals;
item++;
if(item > JETI_EX_SENSOR_COUNT)
if (item > JETI_EX_SENSOR_COUNT)
break;
if(EXTEL_MAX_PAYLOAD <= ((p-&exMessage[EXTEL_HEADER_ID]) + exDataTypeLen[jetiExSensors[item].exDataType]) + 1)
if (EXTEL_MAX_PAYLOAD <= ((p-&exMessage[EXTEL_HEADER_ID]) + exDataTypeLen[jetiExSensors[item].exDataType]) + 1)
break;
}
@ -517,13 +517,13 @@ void handleJetiExBusTelemetry(void)
// to prevent timing issues from request to answer - max. 4ms
timeDiff = micros() - jetiTimeStampRequest;
if(timeDiff > 3000) { // include reserved time
if (timeDiff > 3000) { // include reserved time
jetiExBusRequestState = EXBUS_STATE_ZERO;
framesLost++;
return;
}
if((jetiExBusRequestFrame[EXBUS_HEADER_DATA_ID] == EXBUS_EX_REQUEST) && (calcCRC16(jetiExBusRequestFrame, jetiExBusRequestFrame[EXBUS_HEADER_MSG_LEN]) == 0)) {
if ((jetiExBusRequestFrame[EXBUS_HEADER_DATA_ID] == EXBUS_EX_REQUEST) && (calcCRC16(jetiExBusRequestFrame, jetiExBusRequestFrame[EXBUS_HEADER_MSG_LEN]) == 0)) {
jetiExSensors[EX_VOLTAGE].value = getBatteryVoltage();
jetiExSensors[EX_CURRENT].value = getAmperage();
jetiExSensors[EX_ALTITUDE].value = getEstimatedAltitude();
@ -562,7 +562,7 @@ void sendJetiExBusTelemetry(uint8_t packetID)
static uint8_t requestLoop = 0;
uint8_t *jetiExTelemetryFrame = &jetiExBusTelemetryFrame[EXBUS_HEADER_DATA];
if (requestLoop == 100){ //every nth request send the name of a value
if (requestLoop == 100) { //every nth request send the name of a value
if (sensorDescriptionCounter == JETI_EX_SENSOR_COUNT )
sensorDescriptionCounter = 0;

View File

@ -153,7 +153,7 @@ static void decode_bind_packet(uint8_t *packet)
// Returns whether the data was successfully decoded
static rx_spi_received_e decode_packet(uint8_t *packet)
{
if(bind_phase != PHASE_BOUND) {
if (bind_phase != PHASE_BOUND) {
decode_bind_packet(packet);
return RX_SPI_RECEIVED_BIND;
}

View File

@ -457,7 +457,7 @@ static uint16_t getRxfailValue(uint8_t channel)
{
const rxFailsafeChannelConfig_t *channelFailsafeConfig = rxFailsafeChannelConfigs(channel);
switch(channelFailsafeConfig->mode) {
switch (channelFailsafeConfig->mode) {
case RX_FAILSAFE_MODE_AUTO:
switch (channel) {
case ROLL:

View File

@ -126,11 +126,11 @@ static uint8_t spektrumFrameStatus(void)
// This is the first frame status received.
spek_fade_last_sec_count = fade;
spek_fade_last_sec = current_secs;
} else if(spek_fade_last_sec != current_secs) {
} else if (spek_fade_last_sec != current_secs) {
// If the difference is > 1, then we missed several seconds worth of frames and
// should just throw out the fade calc (as it's likely a full signal loss).
if((current_secs - spek_fade_last_sec) == 1) {
if(rssi_channel != 0) {
if ((current_secs - spek_fade_last_sec) == 1) {
if (rssi_channel != 0) {
if (spekHiRes)
spekChannelData[rssi_channel] = 2048 - ((fade - spek_fade_last_sec_count) * 2048 / (SPEKTRUM_MAX_FADE_PER_SEC / SPEKTRUM_FADE_REPORTS_PER_SEC));
else
@ -144,7 +144,7 @@ static uint8_t spektrumFrameStatus(void)
for (int b = 3; b < SPEK_FRAME_SIZE; b += 2) {
const uint8_t spekChannel = 0x0F & (spekFrame[b - 1] >> spek_chan_shift);
if (spekChannel < rxRuntimeConfigPtr->channelCount && spekChannel < SPEKTRUM_MAX_SUPPORTED_CHANNEL_COUNT) {
if(rssi_channel == 0 || spekChannel != rssi_channel) {
if (rssi_channel == 0 || spekChannel != rssi_channel) {
spekChannelData[spekChannel] = ((uint32_t)(spekFrame[b - 1] & spek_chan_mask) << 8) + spekFrame[b];
}
}

View File

@ -225,7 +225,7 @@ retry:
#ifdef ACC_MPU6500_ALIGN
dev->accAlign = ACC_MPU6500_ALIGN;
#endif
switch(dev->mpuDetectionResult.sensor) {
switch (dev->mpuDetectionResult.sensor) {
case MPU_9250_SPI:
accHardware = ACC_MPU9250;
break;

View File

@ -110,7 +110,7 @@ void batteryUpdateVoltage(timeUs_t currentTimeUs)
{
UNUSED(currentTimeUs);
switch(batteryConfig()->voltageMeterSource) {
switch (batteryConfig()->voltageMeterSource) {
#ifdef USE_ESC_SENSOR
case VOLTAGE_METER_ESC:
if (feature(FEATURE_ESC_SENSOR)) {
@ -138,7 +138,7 @@ void batteryUpdateVoltage(timeUs_t currentTimeUs)
static void updateBatteryBeeperAlert(void)
{
switch(getBatteryState()) {
switch (getBatteryState()) {
case BATTERY_WARNING:
beeper(BEEPER_BAT_LOW);
@ -158,12 +158,12 @@ void batteryUpdatePresence(void)
static uint16_t previousVoltage = 0;
bool isVoltageStable = ABS(voltageMeter.filtered - previousVoltage) <= VBAT_STABLE_MAX_DELTA;
bool isVoltageFromBat = (voltageMeter.filtered >= batteryConfig()->vbatnotpresentcellvoltage //above ~0V
&& voltageMeter.filtered <= batteryConfig()->vbatmaxcellvoltage) //1s max cell voltage check
|| voltageMeter.filtered > batteryConfig()->vbatnotpresentcellvoltage*2; //USB voltage - 2s or more check
if (
voltageState == BATTERY_NOT_PRESENT
&& isVoltageFromBat
@ -208,7 +208,7 @@ void batteryUpdatePresence(void)
static void batteryUpdateVoltageState(void)
{
// alerts are currently used by beeper, osd and other subsystems
switch(voltageState) {
switch (voltageState) {
case BATTERY_OK:
if (voltageMeter.filtered <= (batteryWarningVoltage - batteryConfig()->vbathysteresis)) {
voltageState = BATTERY_WARNING;
@ -270,7 +270,7 @@ void batteryInit(void)
batteryCriticalVoltage = 0;
voltageMeterReset(&voltageMeter);
switch(batteryConfig()->voltageMeterSource) {
switch (batteryConfig()->voltageMeterSource) {
case VOLTAGE_METER_ESC:
#ifdef USE_ESC_SENSOR
voltageMeterESCInit();
@ -290,7 +290,7 @@ void batteryInit(void)
//
consumptionState = BATTERY_OK;
currentMeterReset(&currentMeter);
switch(batteryConfig()->currentMeterSource) {
switch (batteryConfig()->currentMeterSource) {
case CURRENT_METER_ADC:
currentMeterADCInit();
break;
@ -345,7 +345,7 @@ void batteryUpdateCurrentMeter(timeUs_t currentTimeUs)
const int32_t lastUpdateAt = cmp32(currentTimeUs, ibatLastServiced);
ibatLastServiced = currentTimeUs;
switch(batteryConfig()->currentMeterSource) {
switch (batteryConfig()->currentMeterSource) {
case CURRENT_METER_ADC:
currentMeterADCRefresh(lastUpdateAt);
currentMeterADCRead(&currentMeter);

View File

@ -77,7 +77,7 @@ retry:
dev->magAlign = ALIGN_DEFAULT;
switch(magHardwareToUse) {
switch (magHardwareToUse) {
case MAG_DEFAULT:
; // fallthrough

View File

@ -215,7 +215,7 @@ static uint8_t update_crc8(uint8_t crc, uint8_t crc_seed)
static uint8_t get_crc8(uint8_t *Buf, uint8_t BufLen)
{
uint8_t crc = 0;
for(int i=0; i<BufLen; i++) crc = update_crc8(Buf[i], crc);
for (int i=0; i<BufLen; i++) crc = update_crc8(Buf[i], crc);
return (crc);
}

View File

@ -155,7 +155,7 @@ STATIC_UNIT_TESTED gyroSensor_e gyroDetect(gyroDev_t *dev)
dev->gyroAlign = ALIGN_DEFAULT;
switch(gyroHardware) {
switch (gyroHardware) {
case GYRO_DEFAULT:
#ifdef USE_GYRO_MPU6050
case GYRO_MPU6050:
@ -222,7 +222,7 @@ STATIC_UNIT_TESTED gyroSensor_e gyroDetect(gyroDev_t *dev)
#else
if (mpu6500GyroDetect(dev)) {
#endif
switch(dev->mpuDetectionResult.sensor) {
switch (dev->mpuDetectionResult.sensor) {
case MPU_9250_SPI:
gyroHardware = GYRO_MPU9250;
break;

View File

@ -80,9 +80,9 @@ uint8_t interruptCounter = 0;
void bstProcessInCommand(void);
void I2C_EV_IRQHandler()
{
if(I2C_GetITStatus(BSTx, I2C_IT_ADDR)) {
if (I2C_GetITStatus(BSTx, I2C_IT_ADDR)) {
CRC8 = 0;
if(I2C_GetTransferDirection(BSTx) == I2C_Direction_Receiver) {
if (I2C_GetTransferDirection(BSTx) == I2C_Direction_Receiver) {
currentWriteBufferPointer = 0;
receiverAddress = true;
I2C_SendData(BSTx, (uint8_t) writeData[currentWriteBufferPointer++]);
@ -92,11 +92,11 @@ void I2C_EV_IRQHandler()
bufferPointer = 1;
}
I2C_ClearITPendingBit(BSTx, I2C_IT_ADDR);
} else if(I2C_GetITStatus(BSTx, I2C_IT_RXNE)) {
} else if (I2C_GetITStatus(BSTx, I2C_IT_RXNE)) {
uint8_t data = I2C_ReceiveData(BSTx);
readData[bufferPointer] = data;
if(bufferPointer > 1) {
if(readData[1]+1 == bufferPointer) {
if (bufferPointer > 1) {
if (readData[1]+1 == bufferPointer) {
crc8Cal(0);
bstProcessInCommand();
} else {
@ -105,21 +105,21 @@ void I2C_EV_IRQHandler()
}
bufferPointer++;
I2C_ClearITPendingBit(BSTx, I2C_IT_RXNE);
} else if(I2C_GetITStatus(BSTx, I2C_IT_TXIS)) {
if(receiverAddress) {
if(currentWriteBufferPointer > 0) {
if(!cleanflight_data_ready) {
} else if (I2C_GetITStatus(BSTx, I2C_IT_TXIS)) {
if (receiverAddress) {
if (currentWriteBufferPointer > 0) {
if (!cleanflight_data_ready) {
I2C_ClearITPendingBit(BSTx, I2C_IT_TXIS);
return;
}
if(interruptCounter < DELAY_SENDING_BYTE) {
if (interruptCounter < DELAY_SENDING_BYTE) {
interruptCounter++;
I2C_ClearITPendingBit(BSTx, I2C_IT_TXIS);
return;
} else {
interruptCounter = 0;
}
if(writeData[0] == currentWriteBufferPointer) {
if (writeData[0] == currentWriteBufferPointer) {
receiverAddress = false;
crc8Cal(0);
I2C_SendData(BSTx, (uint8_t) CRC8);
@ -129,11 +129,11 @@ void I2C_EV_IRQHandler()
I2C_SendData(BSTx, (uint8_t) writeData[currentWriteBufferPointer++]);
}
}
} else if(bstWriteDataLen) {
} else if (bstWriteDataLen) {
I2C_SendData(BSTx, (uint8_t) dataBuffer[dataBufferPointer]);
if(bstWriteDataLen > 1)
if (bstWriteDataLen > 1)
dataBufferPointer++;
if(dataBufferPointer == bstWriteDataLen) {
if (dataBufferPointer == bstWriteDataLen) {
I2C_ITConfig(BSTx, I2C_IT_TXI, DISABLE);
dataBufferPointer = 0;
bstWriteDataLen = 0;
@ -141,19 +141,19 @@ void I2C_EV_IRQHandler()
} else {
}
I2C_ClearITPendingBit(BSTx, I2C_IT_TXIS);
} else if(I2C_GetITStatus(BSTx, I2C_IT_NACKF)) {
if(receiverAddress) {
} else if (I2C_GetITStatus(BSTx, I2C_IT_NACKF)) {
if (receiverAddress) {
receiverAddress = false;
I2C_ITConfig(BSTx, I2C_IT_TXI, DISABLE);
}
I2C_ClearITPendingBit(BSTx, I2C_IT_NACKF);
} else if(I2C_GetITStatus(BSTx, I2C_IT_STOPF)) {
if(bstWriteDataLen && dataBufferPointer == bstWriteDataLen) {
} else if (I2C_GetITStatus(BSTx, I2C_IT_STOPF)) {
if (bstWriteDataLen && dataBufferPointer == bstWriteDataLen) {
dataBufferPointer = 0;
bstWriteDataLen = 0;
}
I2C_ClearITPendingBit(BSTx, I2C_IT_STOPF);
} else if(I2C_GetITStatus(BSTx, I2C_IT_BERR)
} else if (I2C_GetITStatus(BSTx, I2C_IT_BERR)
|| I2C_GetITStatus(BSTx, I2C_IT_ARLO)
|| I2C_GetITStatus(BSTx, I2C_IT_OVR)) {
bstTimeoutUserCallback();
@ -193,7 +193,7 @@ void bstInitPort(I2C_TypeDef *BSTx/*, uint8_t Address*/)
GPIO_InitTypeDef GPIO_InitStructure;
I2C_InitTypeDef BST_InitStructure;
if(BSTx == I2C1) {
if (BSTx == I2C1) {
RCC_AHBPeriphClockCmd(BST1_SCL_CLK_SOURCE | BST1_SDA_CLK_SOURCE, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_I2CCLKConfig(RCC_I2C1CLK_SYSCLK);
@ -241,7 +241,7 @@ void bstInitPort(I2C_TypeDef *BSTx/*, uint8_t Address*/)
I2C_Cmd(I2C1, ENABLE);
}
if(BSTx == I2C2) {
if (BSTx == I2C2) {
RCC_AHBPeriphClockCmd(BST2_SCL_CLK_SOURCE | BST2_SDA_CLK_SOURCE, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);
RCC_I2CCLKConfig(RCC_I2C2CLK_SYSCLK);
@ -314,7 +314,7 @@ uint16_t bstGetErrorCounter(void)
bool bstWriteBusy(void)
{
if(bstWriteDataLen)
if (bstWriteDataLen)
return true;
else
return false;
@ -322,14 +322,14 @@ bool bstWriteBusy(void)
bool bstMasterWrite(uint8_t* data)
{
if(bstWriteDataLen==0) {
if (bstWriteDataLen==0) {
CRC8 = 0;
dataBufferPointer = 0;
dataBuffer[0] = *data;
dataBuffer[1] = *(data+1);
bstWriteDataLen = dataBuffer[1] + 2;
for(uint8_t i=2; i<bstWriteDataLen; i++) {
if(i==(bstWriteDataLen-1)) {
for (uint8_t i=2; i<bstWriteDataLen; i++) {
if (i==(bstWriteDataLen-1)) {
crc8Cal(0);
dataBuffer[i] = CRC8;
} else {
@ -346,19 +346,19 @@ void bstMasterWriteLoop(void)
{
static uint32_t bstMasterWriteTimeout = 0;
uint32_t currentTime = micros();
if(bstWriteDataLen && dataBufferPointer==0) {
if (bstWriteDataLen && dataBufferPointer==0) {
bool scl_set = false;
if(BSTx == I2C1)
if (BSTx == I2C1)
scl_set = BST1_SCL_GPIO->IDR&BST1_SCL_PIN;
else
scl_set = BST2_SCL_GPIO->IDR&BST2_SCL_PIN;
if(I2C_GetFlagStatus(BSTx, I2C_FLAG_BUSY)==RESET && scl_set) {
if (I2C_GetFlagStatus(BSTx, I2C_FLAG_BUSY)==RESET && scl_set) {
I2C_TransferHandling(BSTx, dataBuffer[dataBufferPointer], dataBuffer[dataBufferPointer+1]+1, I2C_AutoEnd_Mode, I2C_Generate_Start_Write);
I2C_ITConfig(BSTx, I2C_IT_TXI, ENABLE);
dataBufferPointer = 1;
bstMasterWriteTimeout = micros();
}
} else if(currentTime>bstMasterWriteTimeout+BST_SHORT_TIMEOUT) {
} else if (currentTime>bstMasterWriteTimeout+BST_SHORT_TIMEOUT) {
bstTimeoutUserCallback();
}
}

View File

@ -269,7 +269,7 @@ static bool bstSlaveProcessFeedbackCommand(uint8_t bstRequest)
{
uint32_t i, tmp, junk;
switch(bstRequest) {
switch (bstRequest) {
case BST_API_VERSION:
bstWrite8(BST_PROTOCOL_VERSION);
@ -455,7 +455,7 @@ static bool bstSlaveProcessWriteCommand(uint8_t bstWriteCommand)
uint16_t tmp;
bool ret = BST_PASSED;
switch(bstWriteCommand) {
switch (bstWriteCommand) {
case BST_SELECT_SETTING:
if (!ARMING_FLAG(ARMED)) {
changePidProfile(bstRead8());
@ -620,7 +620,7 @@ static bool bstSlaveProcessWriteCommand(uint8_t bstWriteCommand)
}
bstWrite8(ret);
if(ret == BST_FAILED)
if (ret == BST_FAILED)
return false;
return true;
@ -651,18 +651,18 @@ extern bool cleanflight_data_ready;
void bstProcessInCommand(void)
{
readBufferPointer = 2;
if(bstCurrentAddress() == I2C_ADDR_CLEANFLIGHT_FC) {
if(bstReadCRC() == CRC8 && bstRead8()==BST_USB_COMMANDS) {
if (bstCurrentAddress() == I2C_ADDR_CLEANFLIGHT_FC) {
if (bstReadCRC() == CRC8 && bstRead8()==BST_USB_COMMANDS) {
uint8_t i;
writeBufferPointer = 1;
cleanflight_data_ready = false;
for(i = 0; i < BST_BUFFER_SIZE; i++) {
for (i = 0; i < BST_BUFFER_SIZE; i++) {
writeData[i] = 0;
}
switch (bstRead8()) {
case BST_USB_DEVICE_INFO_REQUEST:
bstRead8();
if(bstSlaveUSBCommandFeedback(/*bstRead8()*/))
if (bstSlaveUSBCommandFeedback(/*bstRead8()*/))
coreProReady = true;
break;
case BST_READ_COMMANDS:
@ -679,8 +679,8 @@ void bstProcessInCommand(void)
}
cleanflight_data_ready = true;
}
} else if(bstCurrentAddress() == 0x00) {
if(bstReadCRC() == CRC8 && bstRead8()==BST_GENERAL_HEARTBEAT) {
} else if (bstCurrentAddress() == 0x00) {
if (bstReadCRC() == CRC8 && bstRead8()==BST_GENERAL_HEARTBEAT) {
resetBstTimer = micros();
needResetCheck = true;
}
@ -689,8 +689,8 @@ void bstProcessInCommand(void)
static void resetBstChecker(timeUs_t currentTimeUs)
{
if(needResetCheck) {
if(currentTimeUs >= (resetBstTimer + BST_RESET_TIME))
if (needResetCheck) {
if (currentTimeUs >= (resetBstTimer + BST_RESET_TIME))
{
bstTimeoutUserCallback();
needResetCheck = false;
@ -709,23 +709,23 @@ static uint8_t sendCounter = 0;
void taskBstMasterProcess(timeUs_t currentTimeUs)
{
if(coreProReady) {
if(currentTimeUs >= next02hzUpdateAt_1 && !bstWriteBusy()) {
if (coreProReady) {
if (currentTimeUs >= next02hzUpdateAt_1 && !bstWriteBusy()) {
writeFCModeToBST();
next02hzUpdateAt_1 = currentTimeUs + UPDATE_AT_02HZ;
}
if(currentTimeUs >= next20hzUpdateAt_1 && !bstWriteBusy()) {
if(sendCounter == 0)
if (currentTimeUs >= next20hzUpdateAt_1 && !bstWriteBusy()) {
if (sendCounter == 0)
writeRCChannelToBST();
else if(sendCounter == 1)
else if (sendCounter == 1)
writeRollPitchYawToBST();
sendCounter++;
if(sendCounter > 1)
if (sendCounter > 1)
sendCounter = 0;
next20hzUpdateAt_1 = currentTimeUs + UPDATE_AT_20HZ;
}
#ifdef GPS
if(sensors(SENSOR_GPS) && !bstWriteBusy())
if (sensors(SENSOR_GPS) && !bstWriteBusy())
writeGpsPositionPrameToBST();
#endif
@ -779,7 +779,7 @@ static uint8_t numOfSat = 0;
#ifdef GPS
bool writeGpsPositionPrameToBST(void)
{
if((lat != gpsSol.llh.lat) || (lon != gpsSol.llh.lon) || (alt != gpsSol.llh.alt) || (numOfSat != gpsSol.numSat)) {
if ((lat != gpsSol.llh.lat) || (lon != gpsSol.llh.lon) || (alt != gpsSol.llh.alt) || (numOfSat != gpsSol.numSat)) {
lat = gpsSol.llh.lat;
lon = gpsSol.llh.lon;
alt = gpsSol.llh.alt;
@ -826,7 +826,7 @@ bool writeRCChannelToBST(void)
uint8_t i = 0;
bstMasterStartBuffer(PUBLIC_ADDRESS);
bstMasterWrite8(RC_CHANNEL_FRAME_ID);
for(i = 0; i < (USABLE_TIMER_CHANNEL_COUNT-1); i++) {
for (i = 0; i < (USABLE_TIMER_CHANNEL_COUNT-1); i++) {
bstMasterWrite16(rcData[i]);
}

View File

@ -68,10 +68,10 @@ static bool rcFrameComplete = false;
static void routeIncommingPacket(syslinkPacket_t* slp)
{
// Only support packets of type SYSLINK_RADIO_RAW
if(slp->type == SYSLINK_RADIO_RAW) {
if (slp->type == SYSLINK_RADIO_RAW) {
crtpPacket_t *crtpPacket = (crtpPacket_t*)(slp->data);
switch(crtpPacket->header.port) {
switch (crtpPacket->header.port) {
case CRTP_PORT_SETPOINT:
{
crtpCommanderRPYT_t *crtpRYPTPacket =
@ -95,7 +95,7 @@ static void routeIncommingPacket(syslinkPacket_t* slp)
case CRTP_PORT_SETPOINT_GENERIC:
// First byte of the packet is the type
// Only support the CPPM Emulation type
if(crtpPacket->data[0] == cppmEmuType) {
if (crtpPacket->data[0] == cppmEmuType) {
crtpCommanderCPPMEmuPacket_t *crtpCppmPacket =
(crtpCommanderCPPMEmuPacket_t*)&crtpPacket->data[1];
@ -124,7 +124,7 @@ static void routeIncommingPacket(syslinkPacket_t* slp)
static void dataReceive(uint16_t c)
{
counter++;
switch(rxState) {
switch (rxState) {
case waitForFirstStart:
rxState = (c == SYSLINK_START_BYTE1) ? waitForSecondStart : waitForFirstStart;
break;
@ -205,7 +205,7 @@ bool targetCustomSerialRxInit(const rxConfig_t *rxConfig, rxRuntimeConfig_t *rxR
{
rxRuntimeConfigPtr = rxRuntimeConfig;
if(rxConfig->serialrx_provider != SERIALRX_TARGET_CUSTOM)
if (rxConfig->serialrx_provider != SERIALRX_TARGET_CUSTOM)
{
return false;
}

View File

@ -63,7 +63,7 @@ void targetConfiguration(void)
featureSet(FEATURE_TELEMETRY);
#endif
parseRcChannels("TAER1234", rxConfigMutable());
pidProfilesMutable(0)->pid[PID_ROLL].P = 80;
pidProfilesMutable(0)->pid[PID_ROLL].I = 37;
pidProfilesMutable(0)->pid[PID_ROLL].D = 35;
@ -72,7 +72,7 @@ void targetConfiguration(void)
pidProfilesMutable(0)->pid[PID_PITCH].D = 35;
pidProfilesMutable(0)->pid[PID_YAW].P = 180;
pidProfilesMutable(0)->pid[PID_YAW].D = 45;
controlRateProfilesMutable(0)->rcRate8 = 100;
controlRateProfilesMutable(0)->rcYawRate8 = 100;
controlRateProfilesMutable(0)->rcExpo8 = 15;

View File

@ -17,7 +17,7 @@
#pragma once
#define TARGET_BOARD_IDENTIFIER "FRF3"
#define TARGET_BOARD_IDENTIFIER "FRF3"
#define TARGET_CONFIG
#define CONFIG_FASTLOOP_PREFERRED_ACC ACC_NONE
@ -111,7 +111,7 @@
#define SDCARD_SPI_CS_PIN SPI1_NSS_PIN
#define SDCARD_SPI_INITIALIZATION_CLOCK_DIVIDER 256
#define SDCARD_SPI_FULL_SPEED_CLOCK_DIVIDER 4
#define SDCARD_SPI_FULL_SPEED_CLOCK_DIVIDER 4
#define USE_ESC_SENSOR

View File

@ -91,7 +91,7 @@
#define USE_FLASH_M25P16
#define M25P16_CS_PIN PB12
#define M25P16_SPI_INSTANCE SPI2
#define ENABLE_BLACKBOX_LOGGING_ON_SPIFLASH_BY_DEFAULT
#define DEFAULT_FEATURES (FEATURE_OSD)
@ -118,9 +118,9 @@
// Performance logging for SD card operations:
// #define AFATFS_USE_INTROSPECTIVE_LOGGING
#define ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT
#define BARO
#define USE_BARO_MS5611
@ -143,7 +143,7 @@
#define SOFTSERIAL1_RX_PIN PB0
#define SOFTSERIAL1_TX_PIN PB1
#define SONAR
#define SONAR_ECHO_PIN PB1
#define SONAR_TRIGGER_PIN PB0

View File

@ -78,7 +78,7 @@
#define MAX7456_SPI_CS_PIN PB12
#define MAX7456_SPI_CLK (SPI_CLOCK_STANDARD*2)
#define MAX7456_RESTORE_CLK (SPI_CLOCK_FAST)
#define ENABLE_BLACKBOX_LOGGING_ON_SPIFLASH_BY_DEFAULT
#define DEFAULT_FEATURES FEATURE_OSD
@ -111,7 +111,7 @@
#define SDCARD_DMA_CHANNEL_TX_COMPLETE_FLAG DMA_FLAG_TCIF4
#define SDCARD_DMA_CLK RCC_AHB1Periph_DMA1
#define SDCARD_DMA_CHANNEL DMA_Channel_0
#define ENABLE_BLACKBOX_LOGGING_ON_SDCARD_BY_DEFAULT
#endif

View File

@ -29,7 +29,7 @@ const timerHardware_t timerHardware[USABLE_TIMER_CHANNEL_COUNT] = {
DEF_TIM(TIM2, CH2, PA1, TIM_USE_PPM | TIM_USE_TRANSPONDER, TIMER_INPUT_ENABLED), // PPM IN
DEF_TIM(TIM3, CH3, PB0, TIM_USE_PWM, TIMER_OUTPUT_ENABLED), // SS1Rx
DEF_TIM(TIM3, CH2, PB5, TIM_USE_PWM, TIMER_OUTPUT_ENABLED), // SS1Tx
DEF_TIM(TIM8, CH3, PB9, TIM_USE_MOTOR, TIMER_OUTPUT_ENABLED), // S1
DEF_TIM(TIM4, CH3, PB8, TIM_USE_MOTOR, TIMER_OUTPUT_ENABLED), // S2
DEF_TIM(TIM4, CH2, PB7, TIM_USE_MOTOR, TIMER_OUTPUT_ENABLED), // S3

View File

@ -70,7 +70,7 @@
#define DEFAULT_VOLTAGE_METER_SOURCE VOLTAGE_METER_ADC
#define USE_ADC
#define CURRENT_METER_ADC_PIN PB1
#define VBAT_ADC_PIN PA0
#define VBAT_ADC_PIN PA0
#define USE_SERIAL_4WAY_BLHELI_INTERFACE

View File

@ -110,6 +110,6 @@ void targetValidateConfiguration(void)
{
if (hardwareRevision < NAZE32_REV5 && accelerometerConfig()->acc_hardware == ACC_ADXL345) {
accelerometerConfigMutable()->acc_hardware = ACC_NONE;
}
}
}
#endif

View File

@ -79,7 +79,7 @@ void updateState(const fdm_packet* pkt) {
clock_gettime(CLOCK_MONOTONIC, &now_ts);
const uint64_t realtime_now = micros64_real();
if(realtime_now > last_realtime + 500*1e3) { // 500ms timeout
if (realtime_now > last_realtime + 500*1e3) { // 500ms timeout
last_timestamp = pkt->timestamp;
last_realtime = realtime_now;
sendMotorUpdate();
@ -87,7 +87,7 @@ void updateState(const fdm_packet* pkt) {
}
const double deltaSim = pkt->timestamp - last_timestamp; // in seconds
if(deltaSim < 0) { // don't use old packet
if (deltaSim < 0) { // don't use old packet
return;
}
@ -141,7 +141,7 @@ void updateState(const fdm_packet* pkt) {
#endif
if(deltaSim < 0.02 && deltaSim > 0) { // simulator should run faster than 50Hz
if (deltaSim < 0.02 && deltaSim > 0) { // simulator should run faster than 50Hz
// simRate = simRate * 0.5 + (1e6 * deltaSim / (realtime_now - last_realtime)) * 0.5;
struct timespec out_ts;
timeval_sub(&out_ts, &now_ts, &last_ts);
@ -168,7 +168,7 @@ static void* udpThread(void* data) {
while (workerRunning) {
n = udpRecv(&stateLink, &fdmPkt, sizeof(fdm_packet), 100);
if(n == sizeof(fdm_packet)) {
if (n == sizeof(fdm_packet)) {
// printf("[data]new fdm %d\n", n);
updateState(&fdmPkt);
}
@ -215,7 +215,7 @@ void systemInit(void) {
}
ret = pthread_create(&tcpWorker, NULL, tcpThread, NULL);
if(ret != 0) {
if (ret != 0) {
printf("Create tcpWorker error!\n");
exit(1);
}
@ -227,7 +227,7 @@ void systemInit(void) {
printf("start UDP server...%d\n", ret);
ret = pthread_create(&udpWorker, NULL, udpThread, NULL);
if(ret != 0) {
if (ret != 0) {
printf("Create udpWorker error!\n");
exit(1);
}
@ -266,7 +266,7 @@ void timerStart(void) {
void failureMode(failureMode_e mode) {
printf("[failureMode]!!! %d\n", mode);
while(1);
while (1);
}
void indicateFailure(failureMode_e mode, int repeatCount)
@ -440,7 +440,7 @@ void pwmCompleteMotorUpdate(uint8_t motorCount) {
pwmPkt.motor_speed[2] = motorsPwm[3] / outScale;
// get one "fdm_packet" can only send one "servo_packet"!!
if(pthread_mutex_trylock(&updateLock) != 0) return;
if (pthread_mutex_trylock(&updateLock) != 0) return;
udpSend(&pwmLink, &pwmPkt, sizeof(servo_packet));
// printf("[pwm]%u:%u,%u,%u,%u\n", idlePulse, motorsPwm[0], motorsPwm[1], motorsPwm[2], motorsPwm[3]);
}
@ -483,7 +483,7 @@ void FLASH_Unlock(void) {
printf("[FLASH_Unlock]size = %ld, %ld\n", lSize, (long)(&__config_end - &__config_start));
for (unsigned i = 0; i < (uintptr_t)(&__config_end - &__config_start); i++) {
int c = fgetc(eepromFd);
if(c == EOF) break;
if (c == EOF) break;
eeprom[i] = (uint8_t)c;
}
} else {

View File

@ -15,7 +15,7 @@
int udpInit(udpLink_t* link, const char* addr, int port, bool isServer) {
int one = 1;
if((link->fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) {
if ((link->fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) {
return -2;
}
@ -28,13 +28,13 @@ int udpInit(udpLink_t* link, const char* addr, int port, bool isServer) {
link->si.sin_port = htons(port);
link->port = port;
if(addr == NULL) {
if (addr == NULL) {
link->si.sin_addr.s_addr = htonl(INADDR_ANY);
}else{
link->si.sin_addr.s_addr = inet_addr(addr);
}
if(isServer) {
if (isServer) {
if (bind(link->fd, (const struct sockaddr *)&link->si, sizeof(link->si)) == -1) {
return -1;
}

View File

@ -83,7 +83,7 @@
/**
* @brief Adjust the value of External High Speed oscillator (HSE) used in your application.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSE is used as system clock source, directly or through the PLL).
* (when HSE is used as system clock source, directly or through the PLL).
*/
#if !defined (HSE_VALUE)
#if defined(USE_STM3210C_EVAL)
@ -114,22 +114,22 @@
#define LSE_VALUE ((uint32_t)32768) /*!< Value of the External oscillator in Hz*/
#endif /* LSE_VALUE */
#if !defined (LSE_STARTUP_TIMEOUT)
#define LSE_STARTUP_TIMEOUT ((uint32_t)5000) /*!< Time out for LSE start up, in ms */
#endif /* HSE_STARTUP_TIMEOUT */
/* Tip: To avoid modifying this file each time you need to use different HSE,
=== you can define the HSE value in your toolchain compiler preprocessor. */
/* ########################### System Configuration ######################### */
/**
* @brief This is the HAL system configuration section
*/
#define VDD_VALUE ((uint32_t)3300) /*!< Value of VDD in mv */
#define TICK_INT_PRIORITY ((uint32_t)0x000F) /*!< tick interrupt priority */
#define USE_RTOS 0
*/
#define VDD_VALUE ((uint32_t)3300) /*!< Value of VDD in mv */
#define TICK_INT_PRIORITY ((uint32_t)0x000F) /*!< tick interrupt priority */
#define USE_RTOS 0
#define PREFETCH_ENABLE 1
/* ########################## Assert Selection ############################## */
@ -152,7 +152,7 @@
#define MAC_ADDR4 0
#define MAC_ADDR5 0
/* Definition of the Ethernet driver buffers size and count */
/* Definition of the Ethernet driver buffers size and count */
#define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */
#define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */
#define ETH_RXBUFNB ((uint32_t)8) /* 4 Rx buffers of size ETH_RX_BUF_SIZE */
@ -189,7 +189,7 @@
#define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020) /*!< Auto-Negotiation process completed */
#define PHY_LINKED_STATUS ((uint16_t)0x0004) /*!< Valid link established */
#define PHY_JABBER_DETECTION ((uint16_t)0x0002) /*!< Jabber condition detected */
/* Section 4: Extended PHY Registers */
#define PHY_SR ((uint16_t)0x10) /*!< PHY status register Offset */
@ -220,15 +220,15 @@
#ifdef HAL_GPIO_MODULE_ENABLED
#include "stm32f1xx_hal_gpio.h"
#endif /* HAL_GPIO_MODULE_ENABLED */
#ifdef HAL_DMA_MODULE_ENABLED
#include "stm32f1xx_hal_dma.h"
#endif /* HAL_DMA_MODULE_ENABLED */
#ifdef HAL_ETH_MODULE_ENABLED
#include "stm32f1xx_hal_eth.h"
#endif /* HAL_ETH_MODULE_ENABLED */
#endif /* HAL_ETH_MODULE_ENABLED */
#ifdef HAL_CAN_MODULE_ENABLED
#include "stm32f1xx_hal_can.h"
#endif /* HAL_CAN_MODULE_ENABLED */
@ -291,11 +291,11 @@
#ifdef HAL_SD_MODULE_ENABLED
#include "stm32f1xx_hal_sd.h"
#endif /* HAL_SD_MODULE_ENABLED */
#endif /* HAL_SD_MODULE_ENABLED */
#ifdef HAL_NAND_MODULE_ENABLED
#include "stm32f1xx_hal_nand.h"
#endif /* HAL_NAND_MODULE_ENABLED */
#endif /* HAL_NAND_MODULE_ENABLED */
#ifdef HAL_SPI_MODULE_ENABLED
#include "stm32f1xx_hal_spi.h"
@ -332,8 +332,8 @@
#ifdef HAL_HCD_MODULE_ENABLED
#include "stm32f1xx_hal_hcd.h"
#endif /* HAL_HCD_MODULE_ENABLED */
#endif /* HAL_HCD_MODULE_ENABLED */
/* Exported macro ------------------------------------------------------------*/
#ifdef USE_FULL_ASSERT

View File

@ -86,7 +86,7 @@
/**
* @brief Adjust the value of External High Speed oscillator (HSE) used in your application.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSE is used as system clock source, directly or through the PLL).
* (when HSE is used as system clock source, directly or through the PLL).
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)8000000) /*!< Value of the External oscillator in Hz */
@ -115,13 +115,13 @@
*/
#if !defined (HSI_STARTUP_TIMEOUT)
#define HSI_STARTUP_TIMEOUT ((uint32_t)5000) /*!< Time out for HSI start up */
#endif /* HSI_STARTUP_TIMEOUT */
#endif /* HSI_STARTUP_TIMEOUT */
/**
* @brief Internal Low Speed oscillator (LSI) value.
*/
#if !defined (LSI_VALUE)
#define LSI_VALUE ((uint32_t)40000)
#define LSI_VALUE ((uint32_t)40000)
#endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz
The real value may vary depending on the variations
in voltage and temperature. */
@ -130,7 +130,7 @@
*/
#if !defined (LSE_VALUE)
#define LSE_VALUE ((uint32_t)32768) /*!< Value of the External Low Speed oscillator in Hz */
#endif /* LSE_VALUE */
#endif /* LSE_VALUE */
/**
* @brief Time out for LSE start up value in ms.
@ -156,7 +156,7 @@
/* ########################### System Configuration ######################### */
/**
* @brief This is the HAL system configuration section
*/
*/
#define VDD_VALUE ((uint32_t)3300) /*!< Value of VDD in mv */
#define TICK_INT_PRIORITY ((uint32_t)(1<<__NVIC_PRIO_BITS) - 1) /*!< tick interrupt priority (lowest by default) */
#define USE_RTOS 0
@ -187,7 +187,7 @@
#ifdef HAL_DMA_MODULE_ENABLED
#include "stm32f3xx_hal_dma.h"
#endif /* HAL_DMA_MODULE_ENABLED */
#ifdef HAL_CORTEX_MODULE_ENABLED
#include "stm32f3xx_hal_cortex.h"
#endif /* HAL_CORTEX_MODULE_ENABLED */
@ -235,7 +235,7 @@
#ifdef HAL_PCCARD_MODULE_ENABLED
#include "stm32f3xx_hal_pccard.h"
#endif /* HAL_PCCARD_MODULE_ENABLED */
#ifdef HAL_HRTIM_MODULE_ENABLED
#include "stm32f3xx_hal_hrtim.h"
#endif /* HAL_HRTIM_MODULE_ENABLED */
@ -323,8 +323,8 @@
void assert_failed(uint8_t* file, uint32_t line);
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
#endif /* USE_FULL_ASSERT */
#ifdef __cplusplus
}
#endif

View File

@ -47,7 +47,7 @@
/**
* @brief This is the list of modules to be used in the HAL driver
*/
#define HAL_MODULE_ENABLED
#define HAL_MODULE_ENABLED
#define HAL_ADC_MODULE_ENABLED
//#define HAL_CAN_MODULE_ENABLED
//#define HAL_CRC_MODULE_ENABLED
@ -97,7 +97,7 @@
/**
* @brief Adjust the value of External High Speed oscillator (HSE) used in your application.
* This value is used by the RCC HAL module to compute the system frequency
* (when HSE is used as system clock source, directly or through the PLL).
* (when HSE is used as system clock source, directly or through the PLL).
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)8000000U) /*!< Value of the External oscillator in Hz */
@ -150,7 +150,7 @@
/* ########################### System Configuration ######################### */
/**
* @brief This is the HAL system configuration section
*/
*/
#define VDD_VALUE ((uint32_t)3300U) /*!< Value of VDD in mv */
#define TICK_INT_PRIORITY ((uint32_t)0x0FU) /*!< tick interrupt priority */
#define USE_RTOS 0U
@ -177,7 +177,7 @@
#define MAC_ADDR4 0U
#define MAC_ADDR5 0U
/* Definition of the Ethernet driver buffers size and count */
/* Definition of the Ethernet driver buffers size and count */
#define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for receive */
#define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE /* buffer size for transmit */
#define ETH_RXBUFNB ((uint32_t)4U) /* 4 Rx buffers of size ETH_RX_BUF_SIZE */
@ -214,7 +214,7 @@
#define PHY_AUTONEGO_COMPLETE ((uint16_t)0x0020U) /*!< Auto-Negotiation process completed */
#define PHY_LINKED_STATUS ((uint16_t)0x0004U) /*!< Valid link established */
#define PHY_JABBER_DETECTION ((uint16_t)0x0002U) /*!< Jabber condition detected */
/* Section 4: Extended PHY Registers */
#define PHY_SR ((uint16_t)0x0010U) /*!< PHY status register Offset */
@ -256,7 +256,7 @@
#ifdef HAL_DMA_MODULE_ENABLED
#include "stm32f4xx_hal_dma.h"
#endif /* HAL_DMA_MODULE_ENABLED */
#ifdef HAL_CORTEX_MODULE_ENABLED
#include "stm32f4xx_hal_cortex.h"
#endif /* HAL_CORTEX_MODULE_ENABLED */
@ -312,7 +312,7 @@
#ifdef HAL_PCCARD_MODULE_ENABLED
#include "stm32f4xx_hal_pccard.h"
#endif /* HAL_PCCARD_MODULE_ENABLED */
#ifdef HAL_SDRAM_MODULE_ENABLED
#include "stm32f4xx_hal_sdram.h"
#endif /* HAL_SDRAM_MODULE_ENABLED */
@ -392,7 +392,7 @@
#ifdef HAL_HCD_MODULE_ENABLED
#include "stm32f4xx_hal_hcd.h"
#endif /* HAL_HCD_MODULE_ENABLED */
#ifdef HAL_DSI_MODULE_ENABLED
#include "stm32f4xx_hal_dsi.h"
#endif /* HAL_DSI_MODULE_ENABLED */

View File

@ -304,7 +304,7 @@ void SetSysClock(void)
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
} while ((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
@ -343,7 +343,7 @@ void SetSysClock(void)
RCC->CR |= RCC_CR_PLLON;
/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
while ((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}

View File

@ -642,7 +642,7 @@ void SetSysClock(void)
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
} while ((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
@ -700,18 +700,18 @@ void SetSysClock(void)
RCC->CR |= RCC_CR_PLLON;
/* Wait till the main PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
while ((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
#if defined(STM32F427_437xx) || defined(STM32F429_439xx) || defined(STM32F446xx) || defined(STM32F469_479xx)
/* Enable the Over-drive to extend the clock frequency to 180 Mhz */
PWR->CR |= PWR_CR_ODEN;
while((PWR->CSR & PWR_CSR_ODRDY) == 0)
while ((PWR->CSR & PWR_CSR_ODRDY) == 0)
{
}
PWR->CR |= PWR_CR_ODSWEN;
while((PWR->CSR & PWR_CSR_ODSWRDY) == 0)
while ((PWR->CSR & PWR_CSR_ODSWRDY) == 0)
{
}
#endif /* STM32F427_437x || STM32F429_439xx || STM32F446xx || STM32F469_479xx */
@ -1018,7 +1018,7 @@ void SystemInit_ExtMemCtl(void)
/* Clock enable command */
FMC_Bank5_6->SDCMR = 0x00000011;
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
while((tmpreg != 0) & (timeout-- > 0))
while ((tmpreg != 0) & (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
@ -1029,7 +1029,7 @@ void SystemInit_ExtMemCtl(void)
/* PALL command */
FMC_Bank5_6->SDCMR = 0x00000012;
timeout = 0xFFFF;
while((tmpreg != 0) & (timeout-- > 0))
while ((tmpreg != 0) & (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
@ -1037,7 +1037,7 @@ void SystemInit_ExtMemCtl(void)
/* Auto refresh command */
FMC_Bank5_6->SDCMR = 0x00000073;
timeout = 0xFFFF;
while((tmpreg != 0) & (timeout-- > 0))
while ((tmpreg != 0) & (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}
@ -1045,7 +1045,7 @@ void SystemInit_ExtMemCtl(void)
/* MRD register program */
FMC_Bank5_6->SDCMR = 0x00046014;
timeout = 0xFFFF;
while((tmpreg != 0) & (timeout-- > 0))
while ((tmpreg != 0) & (timeout-- > 0))
{
tmpreg = FMC_Bank5_6->SDSR & 0x00000020;
}

View File

@ -167,16 +167,16 @@
RCC_OscInitStruct.PLL.PLLQ = PLL_Q;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
if (ret != HAL_OK)
{
while(1) { ; }
while (1) { ; }
}
/* Activate the OverDrive to reach the 216 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive();
if(ret != HAL_OK)
if (ret != HAL_OK)
{
while(1) { ; }
while (1) { ; }
}
/* Select PLLSAI output as USB clock source */
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_CLK48;
@ -184,9 +184,9 @@
PeriphClkInitStruct.PLLSAI.PLLSAIN = PLL_SAIN;
PeriphClkInitStruct.PLLSAI.PLLSAIQ = PLL_SAIQ;
PeriphClkInitStruct.PLLSAI.PLLSAIP = PLL_SAIP;
if(HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
while(1) {};
while (1) {};
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
@ -197,9 +197,9 @@
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7);
if(ret != HAL_OK)
if (ret != HAL_OK)
{
while(1) { ; }
while (1) { ; }
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2
@ -223,7 +223,7 @@
ret = HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
if (ret != HAL_OK)
{
while(1) { ; }
while (1) { ; }
}
// Activating the timerprescalers while the APBx prescalers are 1/2/4 will connect the TIMxCLK to HCLK which has been configured to 216MHz
@ -288,9 +288,9 @@ void SystemInit(void)
/* Configure the system clock to 216 MHz */
SystemClock_Config();
if(SystemCoreClock != 216000000)
if (SystemCoreClock != 216000000)
{
while(1)
while (1)
{
// There is a mismatch between the configured clock and the expected clock in portable.h
}

View File

@ -231,10 +231,10 @@ static inline void updateAlarmBatteryStatus(HOTT_EAM_MSG_t *hottEAMMessage)
{
batteryState_e batteryState;
if (shouldTriggerBatteryAlarmNow()){
if (shouldTriggerBatteryAlarmNow()) {
lastHottAlarmSoundTime = millis();
batteryState = getBatteryState();
if (batteryState == BATTERY_WARNING || batteryState == BATTERY_CRITICAL){
if (batteryState == BATTERY_WARNING || batteryState == BATTERY_CRITICAL) {
hottEAMMessage->warning_beeps = 0x10;
hottEAMMessage->alarm_invers1 = HOTT_EAM_ALARM1_FLAG_BATTERY_1;
}
@ -282,7 +282,7 @@ static inline void hottEAMUpdateClimbrate(HOTT_EAM_MSG_t *hottEAMMessage)
int32_t vario = getEstimatedVario();
hottEAMMessage->climbrate_L = (30000 + vario) & 0x00FF;
hottEAMMessage->climbrate_H = (30000 + vario) >> 8;
hottEAMMessage->climbrate3s = 120 + (vario / 100);
hottEAMMessage->climbrate3s = 120 + (vario / 100);
}
void hottPrepareEAMResponse(HOTT_EAM_MSG_t *hottEAMMessage)
@ -401,7 +401,7 @@ void configureHoTTTelemetryPort(void)
static void hottSendResponse(uint8_t *buffer, int length)
{
if(hottIsSending) {
if (hottIsSending) {
return;
}
@ -514,7 +514,7 @@ static void hottSendTelemetryData(void) {
hottReconfigurePort();
--hottMsgRemainingBytesToSendCount;
if(hottMsgRemainingBytesToSendCount == 0) {
if (hottMsgRemainingBytesToSendCount == 0) {
hottSerialWrite(hottMsgCrc++);
return;
}
@ -572,7 +572,7 @@ void handleHoTTTelemetry(timeUs_t currentTimeUs)
return;
if (hottIsSending) {
if(currentTimeUs - serialTimer < HOTT_TX_DELAY_US) {
if (currentTimeUs - serialTimer < HOTT_TX_DELAY_US) {
return;
}
}

View File

@ -122,7 +122,7 @@ static ibusAddress_t getAddress(const uint8_t *ibusPacket)
static uint8_t dispatchMeasurementReply(ibusAddress_t address)
{
int value;
switch (sensorAddressTypeLookup[address - ibusBaseAddress]) {
case IBUS_SENSOR_TYPE_EXTERNAL_VOLTAGE:
value = getBatteryVoltage() * 10;

View File

@ -436,7 +436,7 @@ void mavlinkSendHUDAndHeartbeat(void)
mavModes |= MAV_MODE_FLAG_SAFETY_ARMED;
uint8_t mavSystemType;
switch(mixerConfig()->mixerMode)
switch (mixerConfig()->mixerMode)
{
case MIXER_TRI:
mavSystemType = MAV_TYPE_TRICOPTER;

View File

@ -242,7 +242,7 @@ static void smartPortDataReceive(uint16_t c)
rxBuffer[smartPortRxBytes++] = c;
if(smartPortRxBytes == SMARTPORT_FRAME_SIZE) {
if (smartPortRxBytes == SMARTPORT_FRAME_SIZE) {
if (c == (0xFF - checksum)) {
smartPortFrameReceived = true;
}
@ -280,7 +280,7 @@ static void smartPortSendPackageEx(uint8_t frameId, uint8_t* data)
{
uint16_t crc = 0;
smartPortSendByte(frameId, &crc);
for(unsigned i = 0; i < SMARTPORT_PAYLOAD_SIZE; i++) {
for (unsigned i = 0; i < SMARTPORT_PAYLOAD_SIZE; i++) {
smartPortSendByte(*data++, &crc);
}
smartPortSendByte(0xFF - (uint8_t)crc, NULL);
@ -559,11 +559,11 @@ void handleSmartPortTelemetry(void)
smartPortDataReceive(c);
}
if(smartPortFrameReceived) {
if (smartPortFrameReceived) {
smartPortFrameReceived = false;
// do not check the physical ID here again
// unless we start receiving other sensors' packets
if(smartPortRxBuffer.frameId == FSSP_MSPC_FRAME) {
if (smartPortRxBuffer.frameId == FSSP_MSPC_FRAME) {
// Pass only the payload: skip sensorId & frameId
handleSmartPortMspFrame(&smartPortRxBuffer);
@ -577,7 +577,7 @@ void handleSmartPortTelemetry(void)
return;
}
if(smartPortMspReplyPending) {
if (smartPortMspReplyPending) {
smartPortMspReplyPending = smartPortSendMspReply();
smartPortHasRequest = 0;
return;
@ -596,7 +596,7 @@ void handleSmartPortTelemetry(void)
static uint8_t t1Cnt = 0;
static uint8_t t2Cnt = 0;
switch(id) {
switch (id) {
#ifdef GPS
case FSSP_DATAID_SPEED :
if (sensors(SENSOR_GPS) && STATE(GPS_FIX)) {
@ -742,7 +742,7 @@ void handleSmartPortTelemetry(void)
} else if (feature(FEATURE_GPS)) {
smartPortSendPackage(id, 0);
smartPortHasRequest = 0;
} else if (telemetryConfig()->pidValuesAsTelemetry){
} else if (telemetryConfig()->pidValuesAsTelemetry) {
switch (t2Cnt) {
case 0:
tmp2 = currentPidProfile->pid[PID_ROLL].P;

View File

@ -193,7 +193,7 @@ void USB_Istr(void)
_SetCNTR(wCNTR);
/*poll for RESET flag in ISTR*/
while((_GetISTR()&ISTR_RESET) == 0);
while ((_GetISTR()&ISTR_RESET) == 0);
/* clear RESET flag in ISTR */
_SetISTR((uint16_t)CLR_RESET);

View File

@ -123,7 +123,7 @@ static int8_t CDC_Itf_Init(void)
/*##-4- Start the TIM Base generation in interrupt mode ####################*/
/* Start Channel1 */
if(HAL_TIM_Base_Start_IT(&TimHandle) != HAL_OK)
if (HAL_TIM_Base_Start_IT(&TimHandle) != HAL_OK)
{
/* Starting Error */
Error_Handler();
@ -222,14 +222,14 @@ static int8_t CDC_Itf_Control (uint8_t cmd, uint8_t* pbuf, uint16_t length)
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance != TIMusb) return;
if (htim->Instance != TIMusb) return;
uint32_t buffptr;
uint32_t buffsize;
if(UserTxBufPtrOut != UserTxBufPtrIn)
if (UserTxBufPtrOut != UserTxBufPtrIn)
{
if(UserTxBufPtrOut > UserTxBufPtrIn) /* Roll-back */
if (UserTxBufPtrOut > UserTxBufPtrIn) /* Roll-back */
{
buffsize = APP_RX_DATA_SIZE - UserTxBufPtrOut;
}
@ -242,7 +242,7 @@ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
USBD_CDC_SetTxBuffer(&USBD_Device, (uint8_t*)&UserTxBuffer[buffptr], buffsize);
if(USBD_CDC_TransmitPacket(&USBD_Device) == USBD_OK)
if (USBD_CDC_TransmitPacket(&USBD_Device) == USBD_OK)
{
UserTxBufPtrOut += buffsize;
if (UserTxBufPtrOut == APP_TX_DATA_SIZE)
@ -288,7 +288,7 @@ static void TIM_Config(void)
TimHandle.Init.Prescaler = (SystemCoreClock / 2 / (1000000)) - 1;
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
if(HAL_TIM_Base_Init(&TimHandle) != HAL_OK)
if (HAL_TIM_Base_Init(&TimHandle) != HAL_OK)
{
/* Initialization Error */
Error_Handler();
@ -318,7 +318,7 @@ static void Error_Handler(void)
uint32_t CDC_Receive_DATA(uint8_t* recvBuf, uint32_t len)
{
uint32_t count = 0;
if( (rxBuffPtr != NULL))
if ( (rxBuffPtr != NULL))
{
while ((rxAvailable > 0) && count < len)
{
@ -326,7 +326,7 @@ uint32_t CDC_Receive_DATA(uint8_t* recvBuf, uint32_t len)
rxBuffPtr++;
rxAvailable--;
count++;
if(rxAvailable < 1)
if (rxAvailable < 1)
USBD_CDC_ReceivePacket(&USBD_Device);
}
}
@ -361,7 +361,7 @@ uint32_t CDC_Send_FreeBytes(void)
uint32_t CDC_Send_DATA(const uint8_t *ptrBuffer, uint32_t sendLength)
{
USBD_CDC_HandleTypeDef *hcdc = (USBD_CDC_HandleTypeDef*)USBD_Device.pClassData;
while(hcdc->TxState != 0);
while (hcdc->TxState != 0);
for (uint32_t i = 0; i < sendLength; i++)
{

View File

@ -84,7 +84,7 @@ void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(hpcd->Instance == USB_OTG_FS)
if (hpcd->Instance == USB_OTG_FS)
{
/* Configure USB FS GPIOs */
__HAL_RCC_GPIOA_CLK_ENABLE();
@ -97,7 +97,7 @@ void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd)
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_FS;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
if(hpcd->Init.vbus_sensing_enable == 1)
if (hpcd->Init.vbus_sensing_enable == 1)
{
/* Configure VBUS Pin */
GPIO_InitStruct.Pin = GPIO_PIN_9;
@ -122,7 +122,7 @@ void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd)
/* Enable USBFS Interrupt */
HAL_NVIC_EnableIRQ(OTG_FS_IRQn);
}
else if(hpcd->Instance == USB_OTG_HS)
else if (hpcd->Instance == USB_OTG_HS)
{
#ifdef USE_USB_HS_IN_FS
@ -136,7 +136,7 @@ void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd)
GPIO_InitStruct.Alternate = GPIO_AF12_OTG_HS_FS;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
if(hpcd->Init.vbus_sensing_enable == 1)
if (hpcd->Init.vbus_sensing_enable == 1)
{
/* Configure VBUS Pin */
GPIO_InitStruct.Pin = GPIO_PIN_13 ;
@ -216,13 +216,13 @@ void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd)
*/
void HAL_PCD_MspDeInit(PCD_HandleTypeDef *hpcd)
{
if(hpcd->Instance == USB_OTG_FS)
if (hpcd->Instance == USB_OTG_FS)
{
/* Disable USB FS Clock */
__HAL_RCC_USB_OTG_FS_CLK_DISABLE();
__HAL_RCC_SYSCFG_CLK_DISABLE();
}
else if(hpcd->Instance == USB_OTG_HS)
else if (hpcd->Instance == USB_OTG_HS)
{
/* Disable USB HS Clocks */
__HAL_RCC_USB_OTG_HS_CLK_DISABLE();
@ -286,7 +286,7 @@ void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd)
USBD_SpeedTypeDef speed = USBD_SPEED_FULL;
/* Set USB Current Speed */
switch(hpcd->Init.speed)
switch (hpcd->Init.speed)
{
case PCD_SPEED_HIGH:
speed = USBD_SPEED_HIGH;
@ -559,7 +559,7 @@ uint8_t USBD_LL_IsStallEP(USBD_HandleTypeDef *pdev, uint8_t ep_addr)
{
PCD_HandleTypeDef *hpcd = pdev->pData;
if((ep_addr & 0x80) == 0x80)
if ((ep_addr & 0x80) == 0x80)
{
return hpcd->IN_ep[ep_addr & 0x7F].is_stall;
}

View File

@ -174,7 +174,7 @@ uint8_t *USBD_VCP_LangIDStrDescriptor(USBD_SpeedTypeDef speed, uint16_t *length)
*/
uint8_t *USBD_VCP_ProductStrDescriptor(USBD_SpeedTypeDef speed, uint16_t *length)
{
if(speed == USBD_SPEED_HIGH)
if (speed == USBD_SPEED_HIGH)
{
USBD_GetString((uint8_t *)USBD_PRODUCT_HS_STRING, USBD_StrDesc, length);
}
@ -223,7 +223,7 @@ uint8_t *USBD_VCP_SerialStrDescriptor(USBD_SpeedTypeDef speed, uint16_t *length)
*/
uint8_t *USBD_VCP_ConfigStrDescriptor(USBD_SpeedTypeDef speed, uint16_t *length)
{
if(speed == USBD_SPEED_HIGH)
if (speed == USBD_SPEED_HIGH)
{
USBD_GetString((uint8_t *)USBD_CONFIGURATION_HS_STRING, USBD_StrDesc, length);
}
@ -242,7 +242,7 @@ uint8_t *USBD_VCP_ConfigStrDescriptor(USBD_SpeedTypeDef speed, uint16_t *length)
*/
uint8_t *USBD_VCP_InterfaceStrDescriptor(USBD_SpeedTypeDef speed, uint16_t *length)
{
if(speed == USBD_SPEED_HIGH)
if (speed == USBD_SPEED_HIGH)
{
USBD_GetString((uint8_t *)USBD_INTERFACE_HS_STRING, USBD_StrDesc, length);
}
@ -286,9 +286,9 @@ static void IntToUnicode (uint32_t value , uint8_t *pbuf , uint8_t len)
{
uint8_t idx = 0;
for( idx = 0; idx < len; idx ++)
for ( idx = 0; idx < len; idx ++)
{
if( ((value >> 28)) < 0xA )
if ( ((value >> 28)) < 0xA )
{
pbuf[ 2* idx] = (value >> 28) + '0';
}

View File

@ -59,7 +59,7 @@ void PendSV_Handler(void)
#ifdef USE_USB_OTG_FS
void OTG_FS_WKUP_IRQHandler(void)
{
if(USB_OTG_dev.cfg.low_power)
if (USB_OTG_dev.cfg.low_power)
{
*(uint32_t *)(0xE000ED10) &= 0xFFFFFFF9 ;
SystemInit();
@ -77,7 +77,7 @@ void OTG_FS_WKUP_IRQHandler(void)
#ifdef USE_USB_OTG_HS
void OTG_HS_WKUP_IRQHandler(void)
{
if(USB_OTG_dev.cfg.low_power)
if (USB_OTG_dev.cfg.low_power)
{
*(uint32_t *)(0xE000ED10) &= 0xFFFFFFF9 ;
SystemInit();

View File

@ -225,7 +225,7 @@ uint8_t * USBD_USR_ProductStrDescriptor( uint8_t speed , uint16_t *length)
{
if(speed == 0)
if (speed == 0)
USBD_GetString ((uint8_t*)USBD_PRODUCT_HS_STRING, USBD_StrDesc, length);
else
USBD_GetString ((uint8_t*)USBD_PRODUCT_FS_STRING, USBD_StrDesc, length);
@ -256,7 +256,7 @@ uint8_t * USBD_USR_ManufacturerStrDescriptor( uint8_t speed , uint16_t *length)
*/
uint8_t * USBD_USR_SerialStrDescriptor( uint8_t speed , uint16_t *length)
{
if(speed == USB_OTG_SPEED_HIGH)
if (speed == USB_OTG_SPEED_HIGH)
USBD_GetString ((uint8_t*)USBD_SERIALNUMBER_HS_STRING, USBD_StrDesc, length);
else
USBD_GetString ((uint8_t*)USBD_SERIALNUMBER_FS_STRING, USBD_StrDesc, length);
@ -273,7 +273,7 @@ uint8_t * USBD_USR_SerialStrDescriptor( uint8_t speed , uint16_t *length)
*/
uint8_t * USBD_USR_ConfigStrDescriptor( uint8_t speed , uint16_t *length)
{
if(speed == USB_OTG_SPEED_HIGH)
if (speed == USB_OTG_SPEED_HIGH)
USBD_GetString ((uint8_t*)USBD_CONFIGURATION_HS_STRING, USBD_StrDesc, length);
else
USBD_GetString ((uint8_t*)USBD_CONFIGURATION_FS_STRING, USBD_StrDesc, length);
@ -291,7 +291,7 @@ uint8_t * USBD_USR_ConfigStrDescriptor( uint8_t speed , uint16_t *length)
*/
uint8_t * USBD_USR_InterfaceStrDescriptor( uint8_t speed , uint16_t *length)
{
if(speed == 0)
if (speed == 0)
USBD_GetString ((uint8_t*)USBD_INTERFACE_HS_STRING, USBD_StrDesc, length);
else
USBD_GetString ((uint8_t*)USBD_INTERFACE_FS_STRING, USBD_StrDesc, length);