remove unnecessary var, inline accsum_reset, lrintf , rename smallAngle

This commit is contained in:
treymarc 2014-04-16 22:48:37 +00:00
parent cd08d6d782
commit 6330456296
3 changed files with 25 additions and 37 deletions

View File

@ -5,7 +5,7 @@ int16_t gyroADC[3], accADC[3], accSmooth[3], magADC[3];
int32_t accSum[3]; int32_t accSum[3];
uint32_t accTimeSum = 0; // keep track for integration of acc uint32_t accTimeSum = 0; // keep track for integration of acc
int accSumCount = 0; int accSumCount = 0;
int16_t accZ_25deg = 0; int16_t smallAngle = 0;
int32_t baroPressure = 0; int32_t baroPressure = 0;
int32_t baroTemperature = 0; int32_t baroTemperature = 0;
uint32_t baroPressureSum = 0; uint32_t baroPressureSum = 0;
@ -33,7 +33,7 @@ static void getEstimatedAttitude(void);
void imuInit(void) void imuInit(void)
{ {
accZ_25deg = acc_1G * cosf(RAD * 25.0f); smallAngle = lrintf(acc_1G * cosf(RAD * 25.0f));
accVelScale = 9.80665f / acc_1G / 10000.0f; accVelScale = 9.80665f / acc_1G / 10000.0f;
throttleAngleScale = (1800.0f / M_PI) * (900.0f / cfg.throttle_correction_angle); throttleAngleScale = (1800.0f / M_PI) * (900.0f / cfg.throttle_correction_angle);
@ -197,27 +197,15 @@ void acc_calc(uint32_t deltaT)
accz_smooth = accz_smooth + (deltaT / (fc_acc + deltaT)) * (accel_ned.V.Z - accz_smooth); // low pass filter accz_smooth = accz_smooth + (deltaT / (fc_acc + deltaT)) * (accel_ned.V.Z - accz_smooth); // low pass filter
// apply Deadband to reduce integration drift and vibration influence // apply Deadband to reduce integration drift and vibration influence
accel_ned.V.Z = applyDeadband(lrintf(accz_smooth), cfg.accz_deadband); accSum[X] += applyDeadband(lrintf(accel_ned.V.X), cfg.accxy_deadband);
accel_ned.V.X = applyDeadband(lrintf(accel_ned.V.X), cfg.accxy_deadband); accSum[Y] += applyDeadband(lrintf(accel_ned.V.Y), cfg.accxy_deadband);
accel_ned.V.Y = applyDeadband(lrintf(accel_ned.V.Y), cfg.accxy_deadband); accSum[Z] += applyDeadband(lrintf(accz_smooth), cfg.accz_deadband);
// sum up Values for later integration to get velocity and distance // sum up Values for later integration to get velocity and distance
accTimeSum += deltaT; accTimeSum += deltaT;
accSumCount++; accSumCount++;
accSum[X] += lrintf(accel_ned.V.X);
accSum[Y] += lrintf(accel_ned.V.Y);
accSum[Z] += lrintf(accel_ned.V.Z);
} }
void accSum_reset(void)
{
accSum[0] = 0;
accSum[1] = 0;
accSum[2] = 0;
accSumCount = 0;
accTimeSum = 0;
}
// baseflight calculation by Luggi09 originates from arducopter // baseflight calculation by Luggi09 originates from arducopter
static int16_t calculateHeading(t_fp_vector *vec) static int16_t calculateHeading(t_fp_vector *vec)
@ -240,10 +228,10 @@ static int16_t calculateHeading(t_fp_vector *vec)
static void getEstimatedAttitude(void) static void getEstimatedAttitude(void)
{ {
uint32_t axis; int32_t axis;
int32_t accMag = 0; int32_t accMag = 0;
static t_fp_vector EstM; static t_fp_vector EstM;
static t_fp_vector EstN = { .A = { 1000.0f, 0.0f, 0.0f } }; static t_fp_vector EstN = { .A = { 1.0f, 0.0f, 0.0f } };
static float accLPF[3]; static float accLPF[3];
static uint32_t previousT; static uint32_t previousT;
uint32_t currentT = micros(); uint32_t currentT = micros();
@ -270,8 +258,7 @@ static void getEstimatedAttitude(void)
if (sensors(SENSOR_MAG)) { if (sensors(SENSOR_MAG)) {
rotateV(&EstM.V, deltaGyroAngle); rotateV(&EstM.V, deltaGyroAngle);
} else { } else {
rotateV(&EstN.V, deltaGyroAngle); rotateV(&EstN.V, deltaGyroAngle);
normalizeV(&EstN.V, &EstN.V);
} }
// Apply complimentary filter (Gyro drift correction) // Apply complimentary filter (Gyro drift correction)
@ -287,10 +274,7 @@ static void getEstimatedAttitude(void)
EstM.A[axis] = (EstM.A[axis] * (float)mcfg.gyro_cmpfm_factor + magADC[axis]) * INV_GYR_CMPFM_FACTOR; EstM.A[axis] = (EstM.A[axis] * (float)mcfg.gyro_cmpfm_factor + magADC[axis]) * INV_GYR_CMPFM_FACTOR;
} }
if (EstG.A[Z] > accZ_25deg) f.SMALL_ANGLE = (EstG.A[Z] > smallAngle);
f.SMALL_ANGLES_25 = 1;
else
f.SMALL_ANGLES_25 = 0;
// Attitude of the estimated vector // Attitude of the estimated vector
anglerad[ROLL] = atan2f(EstG.V.Y, EstG.V.Z); anglerad[ROLL] = atan2f(EstG.V.Y, EstG.V.Z);
@ -337,7 +321,6 @@ int getEstimatedAltitude(void)
float dt; float dt;
float vel_acc; float vel_acc;
float accZ_tmp; float accZ_tmp;
static float accZ_old = 0.0f;
static float vel = 0.0f; static float vel = 0.0f;
static float accAlt = 0.0f; static float accAlt = 0.0f;
static int32_t lastBaroAlt; static int32_t lastBaroAlt;
@ -383,7 +366,12 @@ int getEstimatedAltitude(void)
debug[2] = accAlt; // height debug[2] = accAlt; // height
#endif #endif
accSum_reset(); // Integrator done - reset accSum
accSum[0] = 0;
accSum[1] = 0;
accSum[2] = 0;
accSumCount = 0;
accTimeSum = 0;
baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime; baroVel = (BaroAlt - lastBaroAlt) * 1000000.0f / dTime;
lastBaroAlt = BaroAlt; lastBaroAlt = BaroAlt;
@ -394,11 +382,10 @@ int getEstimatedAltitude(void)
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity). // apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity).
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay // By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay
vel = vel * cfg.baro_cf_vel + baroVel * (1 - cfg.baro_cf_vel); vel = vel * cfg.baro_cf_vel + baroVel * (1 - cfg.baro_cf_vel);
vel_tmp = lrintf(vel);
// set vario // set vario
vel_tmp = lrintf(vel); vario = applyDeadband(vel_tmp, 5);
vel_tmp = applyDeadband(vel_tmp, 5);
vario = vel_tmp;
// Altitude P-Controller // Altitude P-Controller
error = constrain(AltHold - EstAlt, -500, 500); error = constrain(AltHold - EstAlt, -500, 500);
@ -407,7 +394,7 @@ int getEstimatedAltitude(void)
// Velocity PID-Controller // Velocity PID-Controller
// P // P
error = setVel - lrintf(vel); error = setVel - vel_tmp;
BaroPID = constrain((cfg.P8[PIDVEL] * error / 32), -300, +300); BaroPID = constrain((cfg.P8[PIDVEL] * error / 32), -300, +300);
// I // I
@ -416,9 +403,10 @@ int getEstimatedAltitude(void)
BaroPID += errorAltitudeI / 1024; // I in range +/-200 BaroPID += errorAltitudeI / 1024; // I in range +/-200
// D // D
accZ_old = accZ_tmp; BaroPID -= constrain(lrintf(cfg.D8[PIDVEL] * accZ_tmp / 32), -150, 150);
BaroPID -= constrain(cfg.D8[PIDVEL] * (accZ_tmp + accZ_old) / 64, -150, 150); // was not that supposed to be :
//BaroPID -= constrain(cfg.D8[PIDVEL] * (accZ_tmp + accZ_old) / 64, -150, 150);
//accZ_old = accZ_tmp;
return 1; return 1;
} }
#endif /* BARO */ #endif /* BARO */

View File

@ -172,7 +172,7 @@ int main(void)
calibratingA = CALIBRATING_ACC_CYCLES; calibratingA = CALIBRATING_ACC_CYCLES;
calibratingG = CALIBRATING_GYRO_CYCLES; calibratingG = CALIBRATING_GYRO_CYCLES;
calibratingB = CALIBRATING_BARO_CYCLES; // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles calibratingB = CALIBRATING_BARO_CYCLES; // 10 seconds init_delay + 200 * 25 ms = 15 seconds before ground pressure settles
f.SMALL_ANGLES_25 = 1; f.SMALL_ANGLE = 1;
// loopy // loopy
while (1) { while (1) {

View File

@ -193,7 +193,7 @@ void annexCode(void)
#endif #endif
if ((int32_t)(currentTime - calibratedAccTime) >= 0) { if ((int32_t)(currentTime - calibratedAccTime) >= 0) {
if (!f.SMALL_ANGLES_25) { if (!f.SMALL_ANGLE) {
f.ACC_CALIBRATED = 0; // the multi uses ACC and is not calibrated or is too much inclinated f.ACC_CALIBRATED = 0; // the multi uses ACC and is not calibrated or is too much inclinated
LED0_TOGGLE; LED0_TOGGLE;
calibratedAccTime = currentTime + 500000; calibratedAccTime = currentTime + 500000;
@ -832,7 +832,7 @@ void loop(void)
if (dif >= +180) if (dif >= +180)
dif -= 360; dif -= 360;
dif *= -mcfg.yaw_control_direction; dif *= -mcfg.yaw_control_direction;
if (f.SMALL_ANGLES_25) if (f.SMALL_ANGLE)
rcCommand[YAW] -= dif * cfg.P8[PIDMAG] / 30; // 18 deg rcCommand[YAW] -= dif * cfg.P8[PIDMAG] / 30; // 18 deg
} else } else
magHold = heading; magHold = heading;