Merge pull request #6194 from etracer65/rc_smoothing_retraining

RC smoothing retraining update - adds full support for CRSF
This commit is contained in:
Michael Keller 2018-06-24 10:24:28 +12:00 committed by GitHub
commit 95dcce8471
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 271 additions and 91 deletions

View File

@ -1333,6 +1333,7 @@ static bool blackboxWriteSysinfo(void)
rxConfig()->rc_smoothing_derivative_type);
BLACKBOX_PRINT_HEADER_LINE("rc_smoothing_active_cutoffs", "%d, %d", rcSmoothingGetValue(RC_SMOOTHING_VALUE_INPUT_ACTIVE),
rcSmoothingGetValue(RC_SMOOTHING_VALUE_DERIVATIVE_ACTIVE));
BLACKBOX_PRINT_HEADER_LINE("rc_smoothing_rx_average", "%d", rcSmoothingGetValue(RC_SMOOTHING_VALUE_AVERAGE_FRAME));
#endif // USE_RC_SMOOTHING_FILTER

View File

@ -72,5 +72,6 @@ const char * const debugModeNames[DEBUG_COUNT] = {
"ITERM_RELAX",
"ACRO_TRAINER",
"RC_SMOOTHING",
"RX_SIGNAL_LOSS",
"RX_SIGNAL_LOSS",
"RC_SMOOTHING_RATE",
};

View File

@ -91,6 +91,7 @@ typedef enum {
DEBUG_ACRO_TRAINER,
DEBUG_RC_SMOOTHING,
DEBUG_RX_SIGNAL_LOSS,
DEBUG_RC_SMOOTHING_RATE,
DEBUG_COUNT
} debugType_e;

View File

@ -56,6 +56,11 @@ void pt1FilterInit(pt1Filter_t *filter, float k)
filter->k = k;
}
void pt1FilterUpdateCutoff(pt1Filter_t *filter, float k)
{
filter->k = k;
}
FAST_CODE float pt1FilterApply(pt1Filter_t *filter, float input)
{
filter->state = filter->state + filter->k * (input - filter->state);
@ -167,6 +172,11 @@ FAST_CODE void biquadFilterUpdate(biquadFilter_t *filter, float filterFreq, uint
filter->y2 = y2;
}
FAST_CODE void biquadFilterUpdateLPF(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate)
{
biquadFilterUpdate(filter, filterFreq, refreshRate, BIQUAD_Q, FILTER_LPF);
}
/* Computes a biquadFilter_t filter on a sample (slightly less precise than df2 but works in dynamic mode) */
FAST_CODE float biquadFilterApplyDF1(biquadFilter_t *filter, float input)
{

View File

@ -67,6 +67,7 @@ float nullFilterApply(filter_t *filter, float input);
void biquadFilterInitLPF(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate);
void biquadFilterInit(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate, float Q, biquadFilterType_e filterType);
void biquadFilterUpdate(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate, float Q, biquadFilterType_e filterType);
void biquadFilterUpdateLPF(biquadFilter_t *filter, float filterFreq, uint32_t refreshRate);
float biquadFilterApplyDF1(biquadFilter_t *filter, float input);
float biquadFilterApply(biquadFilter_t *filter, float input);
@ -77,6 +78,7 @@ float laggedMovingAverageUpdate(laggedMovingAverage_t *filter, float input);
float pt1FilterGain(uint16_t f_cut, float dT);
void pt1FilterInit(pt1Filter_t *filter, float k);
void pt1FilterUpdateCutoff(pt1Filter_t *filter, float k);
float pt1FilterApply(pt1Filter_t *filter, float input);
void slewFilterInit(slewFilter_t *filter, float slewLimit, float threshold);

View File

@ -68,16 +68,16 @@ enum {
};
#ifdef USE_RC_SMOOTHING_FILTER
#define RC_SMOOTHING_IDENTITY_FREQUENCY 80 // Used in the formula to convert a BIQUAD cutoff frequency to PT1
#define RC_SMOOTHING_FILTER_STARTUP_DELAY_MS 5000 // Time to wait after power to let the PID loop stabilize before starting average frame rate calculation
#define RC_SMOOTHING_FILTER_TRAINING_DELAY_MS 1000 // Additional time to wait after receiving first valid rx frame before training starts
#define RC_SMOOTHING_FILTER_TRAINING_SAMPLES 50
#define RC_SMOOTHING_IDENTITY_FREQUENCY 80 // Used in the formula to convert a BIQUAD cutoff frequency to PT1
#define RC_SMOOTHING_FILTER_STARTUP_DELAY_MS 5000 // Time to wait after power to let the PID loop stabilize before starting average frame rate calculation
#define RC_SMOOTHING_FILTER_TRAINING_SAMPLES 50 // Number of rx frame rate samples to average
#define RC_SMOOTHING_FILTER_TRAINING_DELAY_MS 1000 // Additional time to wait after receiving first valid rx frame before initial training starts
#define RC_SMOOTHING_FILTER_RETRAINING_DELAY_MS 2000 // Guard time to wait after retraining to prevent retraining again too quickly
#define RC_SMOOTHING_RX_RATE_CHANGE_PERCENT 20 // Look for samples varying this much from the current detected frame rate to initiate retraining
#define RC_SMOOTHING_RX_RATE_MIN_US 5000 // 5ms or 200hz
#define RC_SMOOTHING_RX_RATE_MAX_US 50000 // 50ms or 20hz
static FAST_RAM_ZERO_INIT uint16_t defaultInputCutoffFrequency;
static FAST_RAM_ZERO_INIT uint16_t defaultDerivativeCutoffFrequency;
static FAST_RAM_ZERO_INIT uint16_t filterCutoffFrequency;
static FAST_RAM_ZERO_INIT uint16_t derivativeCutoffFrequency;
static FAST_RAM_ZERO_INIT uint16_t calculatedFrameTimeAverageUs;
static FAST_RAM_ZERO_INIT rcSmoothingFilter_t rcSmoothingData;
#endif // USE_RC_SMOOTHING_FILTER
float getSetpointRate(int axis)
@ -263,11 +263,14 @@ FAST_CODE uint8_t processRcInterpolation(void)
}
#ifdef USE_RC_SMOOTHING_FILTER
int calcRcSmoothingCutoff(float avgRxFrameTime, bool pt1)
// Determine a cutoff frequency based on filter type and the calculated
// average rx frame time
FAST_CODE_NOINLINE int calcRcSmoothingCutoff(int avgRxFrameTimeUs, bool pt1)
{
if (avgRxFrameTime > 0) {
float cutoff = (1 / avgRxFrameTime) / 2; // calculate the nyquist frequency
if (avgRxFrameTimeUs > 0) {
float cutoff = (1 / (avgRxFrameTimeUs * 1e-6f)) / 2; // calculate the nyquist frequency
cutoff = cutoff * 0.90f; // Use 90% of the calculated nyquist frequency
if (pt1) {
cutoff = sq(cutoff) / RC_SMOOTHING_IDENTITY_FREQUENCY; // convert to a cutoff for pt1 that has similar characteristics
}
@ -277,107 +280,231 @@ int calcRcSmoothingCutoff(float avgRxFrameTime, bool pt1)
}
}
// Preforms a reasonableness check on the rx frame time to avoid bad data
// skewing the average.
FAST_CODE bool rcSmoothingRxRateValid(int currentRxRefreshRate)
{
return (currentRxRefreshRate >= RC_SMOOTHING_RX_RATE_MIN_US && currentRxRefreshRate <= RC_SMOOTHING_RX_RATE_MAX_US);
}
// Initialize or update the filters base on either the manually selected cutoff, or
// the auto-calculated cutoff frequency based on detected rx frame rate.
FAST_CODE_NOINLINE void rcSmoothingSetFilterCutoffs(rcSmoothingFilter_t *smoothingData)
{
const float dT = targetPidLooptime * 1e-6f;
uint16_t oldCutoff = smoothingData->inputCutoffFrequency;
if (rxConfig()->rc_smoothing_input_cutoff == 0) {
smoothingData->inputCutoffFrequency = calcRcSmoothingCutoff(smoothingData->averageFrameTimeUs, (rxConfig()->rc_smoothing_input_type == RC_SMOOTHING_INPUT_PT1));
}
// initialize or update the input filter
if ((smoothingData->inputCutoffFrequency != oldCutoff) || !smoothingData->filterInitialized) {
for (int i = 0; i < PRIMARY_CHANNEL_COUNT; i++) {
if ((1 << i) & interpolationChannels) { // only update channels specified by rc_interp_ch
switch (rxConfig()->rc_smoothing_input_type) {
case RC_SMOOTHING_INPUT_PT1:
if (!smoothingData->filterInitialized) {
pt1FilterInit((pt1Filter_t*) &smoothingData->filter[i], pt1FilterGain(smoothingData->inputCutoffFrequency, dT));
} else {
pt1FilterUpdateCutoff((pt1Filter_t*) &smoothingData->filter[i], pt1FilterGain(smoothingData->inputCutoffFrequency, dT));
}
break;
case RC_SMOOTHING_INPUT_BIQUAD:
default:
if (!smoothingData->filterInitialized) {
biquadFilterInitLPF((biquadFilter_t*) &smoothingData->filter[i], smoothingData->inputCutoffFrequency, targetPidLooptime);
} else {
biquadFilterUpdateLPF((biquadFilter_t*) &smoothingData->filter[i], smoothingData->inputCutoffFrequency, targetPidLooptime);
}
break;
}
}
}
}
// update or initialize the derivative filter
oldCutoff = smoothingData->derivativeCutoffFrequency;
if ((rxConfig()->rc_smoothing_derivative_cutoff == 0) && (rxConfig()->rc_smoothing_derivative_type != RC_SMOOTHING_DERIVATIVE_OFF)) {
smoothingData->derivativeCutoffFrequency = calcRcSmoothingCutoff(smoothingData->averageFrameTimeUs, (rxConfig()->rc_smoothing_derivative_type == RC_SMOOTHING_DERIVATIVE_PT1));
}
if (!smoothingData->filterInitialized) {
pidInitSetpointDerivativeLpf(smoothingData->derivativeCutoffFrequency, rxConfig()->rc_smoothing_debug_axis, rxConfig()->rc_smoothing_derivative_type);
} else if (smoothingData->derivativeCutoffFrequency != oldCutoff) {
pidUpdateSetpointDerivativeLpf(smoothingData->derivativeCutoffFrequency);
}
}
FAST_CODE_NOINLINE void rcSmoothingResetAccumulation(rcSmoothingFilter_t *smoothingData)
{
smoothingData->training.sum = 0;
smoothingData->training.count = 0;
smoothingData->training.min = UINT16_MAX;
smoothingData->training.max = 0;
}
// Accumulate the rx frame time samples. Once we've collected enough samples calculate the
// average and return true.
FAST_CODE bool rcSmoothingAccumulateSample(rcSmoothingFilter_t *smoothingData, int rxFrameTimeUs)
{
smoothingData->training.sum += rxFrameTimeUs;
smoothingData->training.count++;
smoothingData->training.max = MAX(smoothingData->training.max, rxFrameTimeUs);
smoothingData->training.min = MIN(smoothingData->training.min, rxFrameTimeUs);
// if we've collected enough samples then calculate the average and reset the accumulation
if (smoothingData->training.count >= RC_SMOOTHING_FILTER_TRAINING_SAMPLES) {
smoothingData->training.sum = smoothingData->training.sum - smoothingData->training.min - smoothingData->training.max; // Throw out high and low samples
smoothingData->averageFrameTimeUs = lrintf(smoothingData->training.sum / (smoothingData->training.count - 2));
rcSmoothingResetAccumulation(smoothingData);
return true;
}
return false;
}
// Determine if we need to caclulate filter cutoffs. If not then we can avoid
// examining the rx frame times completely
FAST_CODE_NOINLINE bool rcSmoothingAutoCalculate(void)
{
bool ret = false;
// if the input cutoff is 0 (auto) then we need to calculate cutoffs
if (rxConfig()->rc_smoothing_input_cutoff == 0) {
ret = true;
}
// if the derivative type isn't OFF and the cutoff is 0 then we need to calculate
if (rxConfig()->rc_smoothing_derivative_type != RC_SMOOTHING_DERIVATIVE_OFF) {
if (rxConfig()->rc_smoothing_derivative_cutoff == 0) {
ret = true;
}
}
return ret;
}
FAST_CODE uint8_t processRcSmoothingFilter(void)
{
uint8_t updatedChannel = 0;
static FAST_RAM_ZERO_INIT float lastRxData[4];
static FAST_RAM_ZERO_INIT pt1Filter_t rcCommandFilterPt1[4];
static FAST_RAM_ZERO_INIT biquadFilter_t rcCommandFilterBiquad[4];
static FAST_RAM_ZERO_INIT bool initialized;
static FAST_RAM_ZERO_INIT bool filterInitialized;
static FAST_RAM_ZERO_INIT float rxFrameTimeSum;
static FAST_RAM_ZERO_INIT int rxFrameCount;
static FAST_RAM uint16_t minRxFrameInterval = UINT16_MAX;
static FAST_RAM_ZERO_INIT uint16_t maxRxFrameInterval;
static FAST_RAM_ZERO_INIT timeMs_t validRxFrameTimeMs;
static FAST_RAM_ZERO_INIT bool calculateCutoffs;
// first call initialization
if (!initialized) {
initialized = true;
filterCutoffFrequency = rxConfig()->rc_smoothing_input_cutoff;
derivativeCutoffFrequency = rxConfig()->rc_smoothing_derivative_cutoff;
rcSmoothingData.filterInitialized = false;
rcSmoothingData.averageFrameTimeUs = 0;
rcSmoothingResetAccumulation(&rcSmoothingData);
rcSmoothingData.inputCutoffFrequency = rxConfig()->rc_smoothing_input_cutoff;
if (rxConfig()->rc_smoothing_derivative_type != RC_SMOOTHING_DERIVATIVE_OFF) {
rcSmoothingData.derivativeCutoffFrequency = rxConfig()->rc_smoothing_derivative_cutoff;
}
calculateCutoffs = rcSmoothingAutoCalculate();
// if we don't need to calculate cutoffs dynamically then the filters can be initialized now
if (!calculateCutoffs) {
rcSmoothingSetFilterCutoffs(&rcSmoothingData);
rcSmoothingData.filterInitialized = true;
}
}
if (isRXDataNew) {
// store the new raw channel values
for (int i = 0; i < PRIMARY_CHANNEL_COUNT; i++) {
if ((1 << i) & interpolationChannels) {
lastRxData[i] = rcCommand[i];
}
}
// If the filter cutoffs are set to auto and we have good rx data, then determine the average rx frame rate
// and use that to calculate the filter cutoff frequencies
if (!filterInitialized) {
// for dynamically calculated filters we need to examine each rx frame interval
if (calculateCutoffs) {
const timeMs_t currentTimeMs = millis();
if (rxIsReceivingSignal() && (targetPidLooptime > 0) && (currentTimeMs > RC_SMOOTHING_FILTER_STARTUP_DELAY_MS)) {
if (validRxFrameTimeMs == 0) {
validRxFrameTimeMs = currentTimeMs;
} else if ((currentTimeMs - validRxFrameTimeMs) > RC_SMOOTHING_FILTER_TRAINING_DELAY_MS) {
rxFrameTimeSum += currentRxRefreshRate;
rxFrameCount++;
maxRxFrameInterval = MAX(maxRxFrameInterval, currentRxRefreshRate);
minRxFrameInterval = MIN(minRxFrameInterval, currentRxRefreshRate);
DEBUG_SET(DEBUG_RC_SMOOTHING, 0, rxFrameCount); // log the step count during training
DEBUG_SET(DEBUG_RC_SMOOTHING, 3, currentRxRefreshRate); // log each frame interval during training
if (rxFrameCount >= RC_SMOOTHING_FILTER_TRAINING_SAMPLES) {
rxFrameTimeSum = rxFrameTimeSum - minRxFrameInterval - maxRxFrameInterval; // Throw out high and low samples
calculatedFrameTimeAverageUs = lrintf(rxFrameTimeSum / (rxFrameCount - 2));
const float avgRxFrameTime = (rxFrameTimeSum / (rxFrameCount - 2)) * 1e-6f;
int sampleState = 0;
defaultInputCutoffFrequency = calcRcSmoothingCutoff(avgRxFrameTime, (rxConfig()->rc_smoothing_input_type == RC_SMOOTHING_INPUT_PT1));
filterCutoffFrequency = (filterCutoffFrequency == 0) ? defaultInputCutoffFrequency : filterCutoffFrequency;
// If the filter cutoffs are set to auto and we have good rx data, then determine the average rx frame rate
// and use that to calculate the filter cutoff frequencies
if ((currentTimeMs > RC_SMOOTHING_FILTER_STARTUP_DELAY_MS) && (targetPidLooptime > 0)) { // skip during FC initialization
if (rxIsReceivingSignal() && rcSmoothingRxRateValid(currentRxRefreshRate)) {
if (rxConfig()->rc_smoothing_derivative_type == RC_SMOOTHING_DERIVATIVE_OFF) {
derivativeCutoffFrequency = 0;
} else {
defaultDerivativeCutoffFrequency = calcRcSmoothingCutoff(avgRxFrameTime, (rxConfig()->rc_smoothing_derivative_type == RC_SMOOTHING_DERIVATIVE_PT1));
derivativeCutoffFrequency = (derivativeCutoffFrequency == 0) ? defaultDerivativeCutoffFrequency : derivativeCutoffFrequency;
}
// set the guard time expiration if it's not set
if (validRxFrameTimeMs == 0) {
validRxFrameTimeMs = currentTimeMs + (rcSmoothingData.filterInitialized ? RC_SMOOTHING_FILTER_RETRAINING_DELAY_MS : RC_SMOOTHING_FILTER_TRAINING_DELAY_MS);
} else {
sampleState = 1;
}
const float dT = targetPidLooptime * 1e-6f;
for (int i = 0; i < PRIMARY_CHANNEL_COUNT; i++) {
if ((1 << i) & interpolationChannels) {
switch (rxConfig()->rc_smoothing_input_type) {
case RC_SMOOTHING_INPUT_PT1:
pt1FilterInit(&rcCommandFilterPt1[i], pt1FilterGain(filterCutoffFrequency, dT));
break;
case RC_SMOOTHING_INPUT_BIQUAD:
default:
biquadFilterInitLPF(&rcCommandFilterBiquad[i], filterCutoffFrequency, targetPidLooptime);
break;
}
// if the guard time has expired then process the rx frame time
if (currentTimeMs > validRxFrameTimeMs) {
sampleState = 2;
bool accumulateSample = true;
// During initial training process all samples.
// During retraining check samples to determine if they vary by more than the limit percentage.
if (rcSmoothingData.filterInitialized) {
const float percentChange = (ABS(currentRxRefreshRate - rcSmoothingData.averageFrameTimeUs) / (float)rcSmoothingData.averageFrameTimeUs) * 100;
if (percentChange < RC_SMOOTHING_RX_RATE_CHANGE_PERCENT) {
// We received a sample that wasn't more than the limit percent so reset the accumulation
// During retraining we need a contiguous block of samples that are all significantly different than the current average
rcSmoothingResetAccumulation(&rcSmoothingData);
accumulateSample = false;
}
}
pidInitSetpointDerivativeLpf(derivativeCutoffFrequency, rxConfig()->rc_smoothing_debug_axis, rxConfig()->rc_smoothing_derivative_type);
filterInitialized = true;
// accumlate the sample into the average
if (accumulateSample) {
if (rcSmoothingAccumulateSample(&rcSmoothingData, currentRxRefreshRate)) {
// the required number of samples were collected so set the filter cutoffs
rcSmoothingSetFilterCutoffs(&rcSmoothingData);
rcSmoothingData.filterInitialized = true;
validRxFrameTimeMs = 0;
}
}
}
} else {
// we have either stopped receiving rx samples (failsafe?) or the sample time is unreasonable so reset the accumulation
validRxFrameTimeMs = 0;
rcSmoothingResetAccumulation(&rcSmoothingData);
}
} else {
rxFrameTimeSum = 0;
rxFrameCount = 0;
validRxFrameTimeMs = 0;
minRxFrameInterval = UINT16_MAX;
maxRxFrameInterval = 0;
}
// rx frame rate training blackbox debugging
if (debugMode == DEBUG_RC_SMOOTHING_RATE) {
DEBUG_SET(DEBUG_RC_SMOOTHING_RATE, 0, currentRxRefreshRate); // log each rx frame interval
DEBUG_SET(DEBUG_RC_SMOOTHING_RATE, 1, rcSmoothingData.training.count); // log the training step count
DEBUG_SET(DEBUG_RC_SMOOTHING_RATE, 2, rcSmoothingData.averageFrameTimeUs);// the current calculated average
DEBUG_SET(DEBUG_RC_SMOOTHING_RATE, 3, sampleState); // indicates whether guard time is active
}
}
}
if (filterInitialized && (debugMode == DEBUG_RC_SMOOTHING)) {
if (rcSmoothingData.filterInitialized && (debugMode == DEBUG_RC_SMOOTHING)) {
// after training has completed then log the raw rc channel and the calculated
// average rx frame rate that was used to calculate the automatic filter cutoffs
DEBUG_SET(DEBUG_RC_SMOOTHING, 0, lrintf(lastRxData[rxConfig()->rc_smoothing_debug_axis]));
DEBUG_SET(DEBUG_RC_SMOOTHING, 3, calculatedFrameTimeAverageUs);
DEBUG_SET(DEBUG_RC_SMOOTHING, 3, rcSmoothingData.averageFrameTimeUs);
}
// each pid loop continue to apply the last received channel value to the filter
for (updatedChannel = 0; updatedChannel < PRIMARY_CHANNEL_COUNT; updatedChannel++) {
if ((1 << updatedChannel) & interpolationChannels) {
if (filterInitialized) {
if ((1 << updatedChannel) & interpolationChannels) { // only smooth selected channels base on the rc_interp_ch value
if (rcSmoothingData.filterInitialized) {
switch (rxConfig()->rc_smoothing_input_type) {
case RC_SMOOTHING_INPUT_PT1:
rcCommand[updatedChannel] = pt1FilterApply(&rcCommandFilterPt1[updatedChannel], lastRxData[updatedChannel]);
rcCommand[updatedChannel] = pt1FilterApply((pt1Filter_t*) &rcSmoothingData.filter[updatedChannel], lastRxData[updatedChannel]);
break;
case RC_SMOOTHING_INPUT_BIQUAD:
default:
rcCommand[updatedChannel] = biquadFilterApply(&rcCommandFilterBiquad[updatedChannel], lastRxData[updatedChannel]);
rcCommand[updatedChannel] = biquadFilterApplyDF1((biquadFilter_t*) &rcSmoothingData.filter[updatedChannel], lastRxData[updatedChannel]);
break;
}
} else {
@ -594,16 +721,12 @@ void initRcProcessing(void)
int rcSmoothingGetValue(int whichValue)
{
switch (whichValue) {
case RC_SMOOTHING_VALUE_INPUT_AUTO:
return defaultInputCutoffFrequency;
case RC_SMOOTHING_VALUE_INPUT_ACTIVE:
return filterCutoffFrequency;
case RC_SMOOTHING_VALUE_DERIVATIVE_AUTO:
return defaultDerivativeCutoffFrequency;
return rcSmoothingData.inputCutoffFrequency;
case RC_SMOOTHING_VALUE_DERIVATIVE_ACTIVE:
return derivativeCutoffFrequency;
return rcSmoothingData.derivativeCutoffFrequency;
case RC_SMOOTHING_VALUE_AVERAGE_FRAME:
return calculatedFrameTimeAverageUs;
return rcSmoothingData.averageFrameTimeUs;
default:
return 0;
}

View File

@ -40,3 +40,4 @@ void resetYawAxis(void);
void initRcProcessing(void);
bool isMotorsReversed(void);
int rcSmoothingGetValue(int whichValue);
bool rcSmoothingAutoCalculate(void);

View File

@ -22,6 +22,7 @@
#include <stdbool.h>
#include "common/filter.h"
#include "pg/pg.h"
typedef enum rc_alias {
@ -77,9 +78,7 @@ typedef enum {
} rcSmoothingDerivativeFilter_e;
typedef enum {
RC_SMOOTHING_VALUE_INPUT_AUTO,
RC_SMOOTHING_VALUE_INPUT_ACTIVE,
RC_SMOOTHING_VALUE_DERIVATIVE_AUTO,
RC_SMOOTHING_VALUE_DERIVATIVE_ACTIVE,
RC_SMOOTHING_VALUE_AVERAGE_FRAME
} rcSmoothingInfoType_e;
@ -108,6 +107,27 @@ typedef enum {
extern float rcCommand[4];
typedef struct rcSmoothingFilterTraining_s {
float sum;
int count;
uint16_t min;
uint16_t max;
} rcSmoothingFilterTraining_t;
typedef union rcSmoothingFilterTypes_u {
pt1Filter_t pt1Filter;
biquadFilter_t biquadFilter;
} rcSmoothingFilterTypes_t;
typedef struct rcSmoothingFilter_s {
bool filterInitialized;
rcSmoothingFilterTypes_t filter[4];
uint16_t inputCutoffFrequency;
uint16_t derivativeCutoffFrequency;
int averageFrameTimeUs;
rcSmoothingFilterTraining_t training;
} rcSmoothingFilter_t;
typedef struct rcControlsConfig_s {
uint8_t deadband; // introduce a deadband around the stick center for pitch and roll axis. Must be greater than zero.
uint8_t yaw_deadband; // introduce a deadband around the stick center for yaw axis. Must be greater than zero.

View File

@ -325,6 +325,22 @@ void pidInitSetpointDerivativeLpf(uint16_t filterCutoff, uint8_t debugAxis, uint
}
}
}
void pidUpdateSetpointDerivativeLpf(uint16_t filterCutoff)
{
if ((filterCutoff > 0) && (rcSmoothingFilterType != RC_SMOOTHING_DERIVATIVE_OFF)) {
for (int axis = FD_ROLL; axis <= FD_PITCH; axis++) {
switch (rcSmoothingFilterType) {
case RC_SMOOTHING_DERIVATIVE_PT1:
pt1FilterUpdateCutoff(&setpointDerivativePt1[axis], pt1FilterGain(filterCutoff, dT));
break;
case RC_SMOOTHING_DERIVATIVE_BIQUAD:
biquadFilterUpdateLPF(&setpointDerivativeBiquad[axis], filterCutoff, targetPidLooptime);
break;
}
}
}
}
#endif // USE_RC_SMOOTHING_FILTER
typedef struct pidCoefficient_s {
@ -921,7 +937,7 @@ void FAST_CODE pidController(const pidProfile_t *pidProfile, const rollAndPitchT
pidSetpointDelta = pt1FilterApply(&setpointDerivativePt1[axis], pidSetpointDelta);
break;
case RC_SMOOTHING_DERIVATIVE_BIQUAD:
pidSetpointDelta = biquadFilterApply(&setpointDerivativeBiquad[axis], pidSetpointDelta);
pidSetpointDelta = biquadFilterApplyDF1(&setpointDerivativeBiquad[axis], pidSetpointDelta);
break;
}
if (axis == rcSmoothingDebugAxis) {

View File

@ -183,3 +183,4 @@ bool crashRecoveryModeActive(void);
void pidAcroTrainerInit(void);
void pidSetAcroTrainerState(bool newState);
void pidInitSetpointDerivativeLpf(uint16_t filterCutoff, uint8_t debugAxis, uint8_t filterType);
void pidUpdateSetpointDerivativeLpf(uint16_t filterCutoff);

View File

@ -3662,20 +3662,24 @@ static void cliRcSmoothing(char *cmdline)
if (rxConfig()->rc_smoothing_type == RC_SMOOTHING_TYPE_FILTER) {
cliPrintLine("FILTER");
uint16_t avgRxFrameMs = rcSmoothingGetValue(RC_SMOOTHING_VALUE_AVERAGE_FRAME);
cliPrint("# Detected RX frame rate: ");
if (avgRxFrameMs == 0) {
cliPrintLine("NO SIGNAL");
} else {
cliPrintLinef("%d.%dms", avgRxFrameMs / 1000, avgRxFrameMs % 1000);
if (rcSmoothingAutoCalculate()) {
cliPrint("# Detected RX frame rate: ");
if (avgRxFrameMs == 0) {
cliPrintLine("NO SIGNAL");
} else {
cliPrintLinef("%d.%dms", avgRxFrameMs / 1000, avgRxFrameMs % 1000);
}
}
cliPrintLinef("# Auto input cutoff: %dhz", rcSmoothingGetValue(RC_SMOOTHING_VALUE_INPUT_AUTO));
cliPrint("# Input filter type: ");
cliPrintLinef(lookupTables[TABLE_RC_SMOOTHING_INPUT_TYPE].values[rxConfig()->rc_smoothing_input_type]);
cliPrintf("# Active input cutoff: %dhz ", rcSmoothingGetValue(RC_SMOOTHING_VALUE_INPUT_ACTIVE));
if (rxConfig()->rc_smoothing_input_cutoff == 0) {
cliPrintLine("(auto)");
} else {
cliPrintLine("(manual)");
}
cliPrintLinef("# Auto derivative cutoff: %dhz", rcSmoothingGetValue(RC_SMOOTHING_VALUE_DERIVATIVE_AUTO));
cliPrint("# Derivative filter type: ");
cliPrintLinef(lookupTables[TABLE_RC_SMOOTHING_DERIVATIVE_TYPE].values[rxConfig()->rc_smoothing_derivative_type]);
cliPrintf("# Active derivative cutoff: %dhz (", rcSmoothingGetValue(RC_SMOOTHING_VALUE_DERIVATIVE_ACTIVE));
if (rxConfig()->rc_smoothing_derivative_type == RC_SMOOTHING_DERIVATIVE_OFF) {
cliPrintLine("off)");