Initial dynamic PID implementation
New Defaults and some rework in dynamic PID Cli Fixes Copy / Paste Protection Change Stick threshold Remove differentiator Change Default PIDs
This commit is contained in:
parent
ad756bceb4
commit
a4456ce6b9
|
@ -1280,8 +1280,8 @@ static bool blackboxWriteSysinfo()
|
|||
masterConfig.profile[masterConfig.current_profile_index].pidProfile.dterm_average_count);
|
||||
break;
|
||||
case 36:
|
||||
blackboxPrintfHeaderLine("dterm_differentiator:%d",
|
||||
masterConfig.profile[masterConfig.current_profile_index].pidProfile.dterm_differentiator);
|
||||
blackboxPrintfHeaderLine("dynamic_pterm:%d",
|
||||
masterConfig.profile[masterConfig.current_profile_index].pidProfile.dynamic_pterm);
|
||||
break;
|
||||
case 37:
|
||||
blackboxPrintfHeaderLine("rollPitchItermResetRate:%d",
|
||||
|
|
|
@ -148,10 +148,10 @@ static void resetPidProfile(pidProfile_t *pidProfile)
|
|||
pidProfile->pidController = 1;
|
||||
|
||||
pidProfile->P8[ROLL] = 45;
|
||||
pidProfile->I8[ROLL] = 30;
|
||||
pidProfile->I8[ROLL] = 35;
|
||||
pidProfile->D8[ROLL] = 18;
|
||||
pidProfile->P8[PITCH] = 45;
|
||||
pidProfile->I8[PITCH] = 30;
|
||||
pidProfile->I8[PITCH] = 35;
|
||||
pidProfile->D8[PITCH] = 18;
|
||||
pidProfile->P8[YAW] = 90;
|
||||
pidProfile->I8[YAW] = 40;
|
||||
|
@ -177,11 +177,12 @@ static void resetPidProfile(pidProfile_t *pidProfile)
|
|||
pidProfile->D8[PIDVEL] = 75;
|
||||
|
||||
pidProfile->yaw_p_limit = YAW_P_LIMIT_MAX;
|
||||
pidProfile->yaw_lpf_hz = 100;
|
||||
pidProfile->yaw_lpf_hz = 70;
|
||||
pidProfile->rollPitchItermResetRate = 200;
|
||||
pidProfile->rollPitchItermResetAlways = 0;
|
||||
pidProfile->yawItermResetRate = 50;
|
||||
pidProfile->dterm_lpf_hz = 70; // filtering ON by default
|
||||
pidProfile->dynamic_pterm = 1;
|
||||
|
||||
pidProfile->H_sensitivity = 75; // TODO - Cleanup during next EEPROM changes
|
||||
|
||||
|
@ -307,9 +308,9 @@ static void resetControlRateConfig(controlRateConfig_t *controlRateConfig) {
|
|||
controlRateConfig->rcExpo8 = 60;
|
||||
controlRateConfig->thrMid8 = 50;
|
||||
controlRateConfig->thrExpo8 = 0;
|
||||
controlRateConfig->dynThrPID = 0;
|
||||
controlRateConfig->dynThrPID = 20;
|
||||
controlRateConfig->rcYawExpo8 = 20;
|
||||
controlRateConfig->tpa_breakpoint = 1500;
|
||||
controlRateConfig->tpa_breakpoint = 1650;
|
||||
|
||||
for (uint8_t axis = 0; axis < FLIGHT_DYNAMICS_INDEX_COUNT; axis++) {
|
||||
controlRateConfig->rates[axis] = 50;
|
||||
|
@ -401,10 +402,10 @@ static void resetConf(void)
|
|||
masterConfig.dcm_kp = 2500; // 1.0 * 10000
|
||||
masterConfig.dcm_ki = 0; // 0.003 * 10000
|
||||
masterConfig.gyro_lpf = 0; // 256HZ default
|
||||
masterConfig.gyro_sync_denom = 8;
|
||||
masterConfig.gyro_soft_lpf_hz = 80;
|
||||
masterConfig.gyro_sync_denom = 4;
|
||||
masterConfig.gyro_soft_lpf_hz = 100;
|
||||
|
||||
masterConfig.pid_process_denom = 1;
|
||||
masterConfig.pid_process_denom = 2;
|
||||
|
||||
masterConfig.debug_mode = 0;
|
||||
|
||||
|
|
|
@ -93,6 +93,16 @@ float calculateExpoPlus(int axis, rxConfig_t *rxConfig) {
|
|||
return propFactor;
|
||||
}
|
||||
|
||||
uint16_t getDynamicKp(int axis, pidProfile_t *pidProfile) {
|
||||
uint16_t dynamicKp;
|
||||
|
||||
uint32_t dynamicFactor = constrain(ABS(rcCommand[axis] << 8) / DYNAMIC_PTERM_STICK_THRESHOLD, 0, 1 << 7);
|
||||
|
||||
dynamicKp = ((pidProfile->P8[axis] << 8) + (pidProfile->P8[axis] * dynamicFactor)) >> 8;
|
||||
|
||||
return dynamicKp;
|
||||
}
|
||||
|
||||
void pidResetErrorAngle(void)
|
||||
{
|
||||
errorAngleI[ROLL] = 0;
|
||||
|
@ -136,7 +146,7 @@ static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRa
|
|||
{
|
||||
float RateError, AngleRate, gyroRate;
|
||||
float ITerm,PTerm,DTerm;
|
||||
static float lastRate[3][PID_LAST_RATE_COUNT];
|
||||
static float lastRate[3];
|
||||
float delta;
|
||||
int axis;
|
||||
float horizonLevelStrength = 1;
|
||||
|
@ -200,11 +210,13 @@ static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRa
|
|||
// multiplication of rcCommand corresponds to changing the sticks scaling here
|
||||
RateError = AngleRate - gyroRate;
|
||||
|
||||
uint16_t kP = (pidProfile->dynamic_pterm) ? getDynamicKp(axis, pidProfile) : pidProfile->P8[axis];
|
||||
|
||||
// -----calculate P component
|
||||
if ((IS_RC_MODE_ACTIVE(BOXSUPEREXPO) && axis != YAW) || (axis == YAW && rxConfig->superExpoYawMode == SUPEREXPO_YAW_ALWAYS)) {
|
||||
PTerm = (luxPTermScale * pidProfile->P8[axis] * tpaFactor) * (AngleRate - gyroRate * calculateExpoPlus(axis, rxConfig));
|
||||
PTerm = (luxPTermScale * kP * tpaFactor) * (AngleRate - gyroRate * calculateExpoPlus(axis, rxConfig));
|
||||
} else {
|
||||
PTerm = luxPTermScale * RateError * pidProfile->P8[axis] * tpaFactor;
|
||||
PTerm = luxPTermScale * RateError * kP * tpaFactor;
|
||||
}
|
||||
|
||||
// Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply
|
||||
|
@ -220,7 +232,7 @@ static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRa
|
|||
}
|
||||
|
||||
if (axis == YAW) {
|
||||
if (ABS(gyroRate / 4.1f) >= pidProfile->yawItermResetRate) errorGyroIf[axis] = constrainf(errorGyroIf[axis], -ITERM_RESET_THRESHOLD_YAW, ITERM_RESET_THRESHOLD_YAW);
|
||||
if (ABS(gyroRate / 4.1f) >= pidProfile->yawItermResetRate) errorGyroIf[axis] = constrainf(errorGyroIf[axis], -ITERM_RESET_THRESHOLD, ITERM_RESET_THRESHOLD);
|
||||
}
|
||||
|
||||
if (antiWindupProtection || motorLimitReached) {
|
||||
|
@ -238,20 +250,8 @@ static void pidLuxFloat(pidProfile_t *pidProfile, controlRateConfig_t *controlRa
|
|||
if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT());
|
||||
DTerm = 0;
|
||||
} else {
|
||||
if (pidProfile->dterm_differentiator) {
|
||||
// Calculate derivative using noise-robust differentiator without time delay (one-sided or forward filters)
|
||||
// by Pavel Holoborodko, see http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
|
||||
// N=5: h[0] = 3/8, h[-1] = 1/2, h[-2] = -1/2, h[-3] = -3/4, h[-4] = 1/8, h[-5] = 1/4
|
||||
delta = -(3*gyroRate + 4*lastRate[axis][0] - 4*lastRate[axis][1] - 6*lastRate[axis][2] + 1*lastRate[axis][3] + 2*lastRate[axis][4]) / 8;
|
||||
for (int i = PID_LAST_RATE_COUNT - 1; i > 0; i--) {
|
||||
lastRate[axis][i] = lastRate[axis][i-1];
|
||||
}
|
||||
} else {
|
||||
// When DTerm low pass filter disabled apply moving average to reduce noise
|
||||
delta = -(gyroRate - lastRate[axis][0]);
|
||||
}
|
||||
|
||||
lastRate[axis][0] = gyroRate;
|
||||
delta = -(gyroRate - lastRate[axis]);
|
||||
lastRate[axis] = gyroRate;
|
||||
|
||||
// Divide delta by targetLooptime to get differential (ie dr/dt)
|
||||
delta *= (1.0f / getdT());
|
||||
|
@ -288,7 +288,7 @@ static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *co
|
|||
|
||||
int axis;
|
||||
int32_t PTerm, ITerm, DTerm, delta;
|
||||
static int32_t lastRate[3][PID_LAST_RATE_COUNT];
|
||||
static int32_t lastRate[3];
|
||||
int32_t AngleRateTmp, RateError, gyroRate;
|
||||
|
||||
int8_t horizonLevelStrength = 100;
|
||||
|
@ -342,11 +342,13 @@ static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *co
|
|||
gyroRate = gyroADC[axis] / 4;
|
||||
RateError = AngleRateTmp - gyroRate;
|
||||
|
||||
uint16_t kP = (pidProfile->dynamic_pterm) ? getDynamicKp(axis, pidProfile) : pidProfile->P8[axis];
|
||||
|
||||
// -----calculate P component
|
||||
if ((IS_RC_MODE_ACTIVE(BOXSUPEREXPO) && axis != YAW) || (axis == YAW && rxConfig->superExpoYawMode == SUPEREXPO_YAW_ALWAYS)) {
|
||||
PTerm = (pidProfile->P8[axis] * PIDweight[axis] / 100) * (AngleRateTmp - (int32_t)(gyroRate * calculateExpoPlus(axis, rxConfig))) >> 7;
|
||||
PTerm = (kP * PIDweight[axis] / 100) * (AngleRateTmp - (int32_t)(gyroRate * calculateExpoPlus(axis, rxConfig))) >> 7;
|
||||
} else {
|
||||
PTerm = (RateError * pidProfile->P8[axis] * PIDweight[axis] / 100) >> 7;
|
||||
PTerm = (RateError * kP * PIDweight[axis] / 100) >> 7;
|
||||
}
|
||||
|
||||
// Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply
|
||||
|
@ -366,11 +368,11 @@ static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *co
|
|||
errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13);
|
||||
|
||||
if ((pidProfile->rollPitchItermResetAlways || IS_RC_MODE_ACTIVE(BOXSUPEREXPO)) && axis != YAW) {
|
||||
if (ABS(gyroRate *10 / 41) >= pidProfile->rollPitchItermResetRate) errorGyroI[axis] = constrain(errorGyroI[axis], -ITERM_RESET_THRESHOLD, ITERM_RESET_THRESHOLD);
|
||||
if (ABS(gyroRate *10 / 41) >= pidProfile->rollPitchItermResetRate) errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) -ITERM_RESET_THRESHOLD << 13, (int32_t) + ITERM_RESET_THRESHOLD << 13);
|
||||
}
|
||||
|
||||
if (axis == YAW) {
|
||||
if (ABS(gyroRate * 10 / 41) >= pidProfile->yawItermResetRate) errorGyroI[axis] = constrain(errorGyroI[axis], -ITERM_RESET_THRESHOLD_YAW, ITERM_RESET_THRESHOLD_YAW);
|
||||
if (ABS(gyroRate * 10 / 41) >= pidProfile->yawItermResetRate) errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) -ITERM_RESET_THRESHOLD << 13, (int32_t) + ITERM_RESET_THRESHOLD << 13);
|
||||
}
|
||||
|
||||
if (antiWindupProtection || motorLimitReached) {
|
||||
|
@ -386,20 +388,8 @@ static void pidMultiWiiRewrite(pidProfile_t *pidProfile, controlRateConfig_t *co
|
|||
if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT());
|
||||
DTerm = 0;
|
||||
} else {
|
||||
if (pidProfile->dterm_differentiator) {
|
||||
// Calculate derivative using noise-robust differentiator without time delay (one-sided or forward filters)
|
||||
// by Pavel Holoborodko, see http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
|
||||
// N=5: h[0] = 3/8, h[-1] = 1/2, h[-2] = -1/2, h[-3] = -3/4, h[-4] = 1/8, h[-5] = 1/4
|
||||
delta = -(3*gyroRate + 4*lastRate[axis][0] - 4*lastRate[axis][1] - 6*lastRate[axis][2] + 1*lastRate[axis][3] + 2*lastRate[axis][4]) / 8;
|
||||
for (int i = PID_LAST_RATE_COUNT - 1; i > 0; i--) {
|
||||
lastRate[axis][i] = lastRate[axis][i-1];
|
||||
}
|
||||
} else {
|
||||
// When DTerm low pass filter disabled apply moving average to reduce noise
|
||||
delta = -(gyroRate - lastRate[axis][0]);
|
||||
}
|
||||
|
||||
lastRate[axis][0] = gyroRate;
|
||||
delta = -(gyroRate - lastRate[axis]);
|
||||
lastRate[axis] = gyroRate;
|
||||
|
||||
// Divide delta by targetLooptime to get differential (ie dr/dt)
|
||||
delta = (delta * ((uint16_t) 0xFFFF / ((uint16_t)targetPidLooptime >> 4))) >> 5;
|
||||
|
|
|
@ -22,9 +22,8 @@
|
|||
#define YAW_P_LIMIT_MIN 100 // Maximum value for yaw P limiter
|
||||
#define YAW_P_LIMIT_MAX 400 // Maximum value for yaw P limiter
|
||||
|
||||
#define PID_LAST_RATE_COUNT 7
|
||||
#define ITERM_RESET_THRESHOLD 20
|
||||
#define ITERM_RESET_THRESHOLD_YAW 10
|
||||
#define ITERM_RESET_THRESHOLD 15
|
||||
#define DYNAMIC_PTERM_STICK_THRESHOLD 400
|
||||
|
||||
typedef enum {
|
||||
PIDROLL,
|
||||
|
@ -81,7 +80,7 @@ typedef struct pidProfile_s {
|
|||
uint16_t yawItermResetRate; // Experimental threshold for resetting iterm for yaw on certain rates
|
||||
uint16_t yaw_p_limit;
|
||||
uint8_t dterm_average_count; // Configurable delta count for dterm
|
||||
uint8_t dterm_differentiator;
|
||||
uint8_t dynamic_pterm;
|
||||
|
||||
#ifdef GTUNE
|
||||
uint8_t gtune_lolimP[3]; // [0..200] Lower limit of P during G tune
|
||||
|
|
|
@ -653,7 +653,7 @@ const clivalue_t valueTable[] = {
|
|||
|
||||
{ "gyro_lpf", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.gyro_lpf, .config.lookup = { TABLE_GYRO_LPF } },
|
||||
{ "gyro_sync_denom", VAR_UINT8 | MASTER_VALUE, &masterConfig.gyro_sync_denom, .config.minmax = { 1, 8 } },
|
||||
{ "gyro_lowpass_hz", VAR_UINT16 | MASTER_VALUE, &masterConfig.gyro_soft_lpf_hz, .config.minmax = { 0, 500 } },
|
||||
{ "gyro_lowpass", VAR_UINT16 | MASTER_VALUE, &masterConfig.gyro_soft_lpf_hz, .config.minmax = { 0, 500 } },
|
||||
{ "moron_threshold", VAR_UINT8 | MASTER_VALUE, &masterConfig.gyroConfig.gyroMovementCalibrationThreshold, .config.minmax = { 0, 128 } },
|
||||
{ "imu_dcm_kp", VAR_UINT16 | MASTER_VALUE, &masterConfig.dcm_kp, .config.minmax = { 0, 50000 } },
|
||||
{ "imu_dcm_ki", VAR_UINT16 | MASTER_VALUE, &masterConfig.dcm_ki, .config.minmax = { 0, 50000 } },
|
||||
|
@ -721,12 +721,12 @@ const clivalue_t valueTable[] = {
|
|||
|
||||
{ "mag_hardware", VAR_UINT8 | MASTER_VALUE | MODE_LOOKUP, &masterConfig.mag_hardware, .config.lookup = { TABLE_MAG_HARDWARE } },
|
||||
{ "mag_declination", VAR_INT16 | MASTER_VALUE, &masterConfig.mag_declination, .config.minmax = { -18000, 18000 } },
|
||||
{ "dterm_lowpass_hz", VAR_FLOAT | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_lpf_hz, .config.minmax = {0, 500 } },
|
||||
{ "dterm_differentiator", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.dterm_differentiator, .config.lookup = { TABLE_OFF_ON } },
|
||||
{ "iterm_always_reset", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.rollPitchItermResetAlways, .config.lookup = { TABLE_OFF_ON } },
|
||||
{ "dterm_lowpass", VAR_INT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.dterm_lpf_hz, .config.minmax = {0, 500 } },
|
||||
{ "dynamic_pterm", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.dynamic_pterm, .config.lookup = { TABLE_OFF_ON } },
|
||||
{ "iterm_always_reset", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.rollPitchItermResetAlways, .config.lookup = { TABLE_OFF_ON } },
|
||||
{ "iterm_reset_degrees", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.rollPitchItermResetRate, .config.minmax = {50, 1000 } },
|
||||
{ "yaw_iterm_reset_degrees", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yawItermResetRate, .config.minmax = {25, 1000 } },
|
||||
{ "yaw_lowpass_hz", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yaw_lpf_hz, .config.minmax = {0, 500 } },
|
||||
{ "yaw_lowpass", VAR_UINT16 | PROFILE_VALUE, &masterConfig.profile[0].pidProfile.yaw_lpf_hz, .config.minmax = {0, 500 } },
|
||||
{ "pid_process_denom", VAR_UINT8 | MASTER_VALUE, &masterConfig.pid_process_denom, .config.minmax = { 1, 8 } },
|
||||
|
||||
{ "pid_controller", VAR_UINT8 | PROFILE_VALUE | MODE_LOOKUP, &masterConfig.profile[0].pidProfile.pidController, .config.lookup = { TABLE_PID_CONTROLLER } },
|
||||
|
|
|
@ -152,7 +152,7 @@ void setGyroSamplingSpeed(uint16_t looptime) {
|
|||
masterConfig.pid_process_denom = 1;
|
||||
if (currentProfile->pidProfile.pidController == 2) masterConfig.pid_process_denom = 2;
|
||||
if (looptime < 250) {
|
||||
masterConfig.pid_process_denom = 3;
|
||||
masterConfig.pid_process_denom = 4;
|
||||
} else if (looptime < 375) {
|
||||
if (currentProfile->pidProfile.pidController == 2) {
|
||||
masterConfig.pid_process_denom = 3;
|
||||
|
|
|
@ -770,17 +770,6 @@ uint8_t setPidUpdateCountDown(void) {
|
|||
}
|
||||
}
|
||||
|
||||
// Check for oneshot125 protection. With fast looptimes oneshot125 pulse duration gets more near the pid looptime
|
||||
bool shouldUpdateMotorsAfterPIDLoop(void) {
|
||||
if (targetPidLooptime > 375 ) {
|
||||
return true;
|
||||
} else if ((masterConfig.use_multiShot || masterConfig.use_oneshot42) && feature(FEATURE_ONESHOT125)) {
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Function for loop trigger
|
||||
void taskMainPidLoopCheck(void) {
|
||||
static uint32_t previousTime;
|
||||
|
@ -801,7 +790,6 @@ void taskMainPidLoopCheck(void) {
|
|||
static uint8_t pidUpdateCountdown;
|
||||
|
||||
if (runTaskMainSubprocesses) {
|
||||
if (!shouldUpdateMotorsAfterPIDLoop()) taskMotorUpdate();
|
||||
subTasksMainPidLoop();
|
||||
runTaskMainSubprocesses = false;
|
||||
}
|
||||
|
@ -813,7 +801,7 @@ void taskMainPidLoopCheck(void) {
|
|||
} else {
|
||||
pidUpdateCountdown = setPidUpdateCountDown();
|
||||
taskMainPidLoop();
|
||||
if (shouldUpdateMotorsAfterPIDLoop()) taskMotorUpdate();
|
||||
taskMotorUpdate();
|
||||
runTaskMainSubprocesses = true;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue